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Abstract

Background: Copy number variants (CNV) are a potentially important component of the genetic contribution to
risk of common complex diseases. Analysis of the association between CNVs and disease requires that uncertainty
in CNV copy-number calls, which can be substantial, be taken into account; failure to consider this uncertainty can
lead to biased results. Therefore, there is a need to develop and use appropriate statistical tools. To address this
issue, we have developed CNVassoc, an R package for carrying out association analysis of common copy number
variants in population-based studies. This package includes functions for testing for association with different
classes of response variables (e.g. class status, censored data, counts) under a series of study designs (case-control,
cohort, etc) and inheritance models, adjusting for covariates. The package includes functions for inferring copy
number (CNV genotype calling), but can also accept copy number data generated by other algorithms (e.g.
CANARY, CGHcall, IMPUTE).

Results: Here we present a new R package, CNVassoc, that can deal with different types of CNV arising from
different platforms such as MLPA o aCGH. Through a real data example we illustrate that our method is able to
incorporate uncertainty in the association process. We also show how our package can also be useful when
analyzing imputed data when analyzing imputed SNPs. Through a simulation study we show that CNVassoc
outperforms CNVtools in terms of computing time as well as in convergence failure rate.

Conclusions: We provide a package that outperforms the existing ones in terms of modelling flexibility, power,
convergence rate, ease of covariate adjustment, and requirements for sample size and signal quality. Therefore, we
offer CNVassoc as a method for routine use in CNV association studies.

Background
The proportion of variation in risk of complex diseases
explained by the single nucleotide polymorphisms (SNPs)
that have been discovered in recent years using the gen-
ome-wide association approach appears to limited. This
has lead to the suggestion that other, possibly more com-
plex, genetic variants could partly explain the remaining
disease susceptibility. Technological advances now allow a
class of genetic variants known as copy number variants
(CNV) to be genotyped with increasing levels of accuracy,
and several studies have recently explored the relationship
between these variants and risk of complex disease [1,2].
Genotyping these kinds of complex genetic markers is still
a challenge and current laboratory techniques and plat-
forms often contain a non-negligible percentage of errors.
In order to minimise bias in the results of association

studies involving CNVs, uncertainty in these copy number
calls must be taken into account in the analysis. In addi-
tion, large-scale CNV genotyping projects need a tool to
automate the analysis of thousands of CNVs. Here, we
present CNVassoc, an R package [3] designed to analyze
CNV data. Methodological details of the algorithms and
applications implemented in CNVassoc are described in
[4]. In addition to these, other techniques, such as
accounting for batch effects in inferring copy number sta-
tus, or modelling other response distributions (Poisson or
Weibull for censored data) have now been incorporated
into CNVassoc. In this application note we present an
overview of the package. The Additional file 1 contains a
tutorial (the vignette for the package) together with techni-
cal notes on the derivation of the likelihoods for the differ-
ent models.

Implementation
We developed a set of functions to analyse copy number
variants and integrated them as an R package called
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CNVassoc. Also, we created a very extensive manual of
the package (vignette) with several examples of real and
simulated data explaining how to use the package func-
tions and their capabilities.
The R software is a general purpose and open source

program commonly used in all type of statistical analysis.
Having incorporated the functions as an R package
allows user to take advantage of R flexibility in manipu-
lating the input and the results when analysing CNVs
with CNVassoc. In addition, we structured CNVassoc
functions and results in methods and classes to make the
package usage easier and more intuitive.

Software main features
To date, only one other R package, CNVtools[5], has
been developed that can appropriately incorporate CNV
copy number call uncertainty in the test for association
between CNVs and disease. However, CNVtools has
some limitations, mainly related to the fact that the copy
number calling and association testing steps are com-
bined in a single procedure. The current version of
CNVtoolshttp://bioconductor.org uses complex and
computationally intensive algorithms, cannot adjust for
covariates, and can only model binary and normally dis-
tributed responses. By separating these two steps,
CNVassoc offers significant advances in terms of analy-
tical flexibility and computational speed.

Inferring copy number status
By separating the CNV calling and association testing
steps, CNVassoc allows the user to test for association
between CNVs and disease using copy number probabil-
ities from any source. While the use of probability data
from more powerful calling algorithms such as CGHcall
[6], IMPUTE [7,8] or CANARY [9] is recommended,
CNVassoc provides several tools for inferring copy
number status, where necessary. For example, CNVas-
soc can fit a mixture of normal distributions to CNV
signal intensity data [10], or assign copy number status
by defining a set of signal intensity cut points, which
might be useful when analysing probe intensity data
from MLPA [11] or qPCR [12]. In addition, there is an
option to take batch effects into account, in order to
reduce false positives and provide robust estimates, as
discussed in [5].
Considering batch effect
In CNVassoc, the batch effect has been handled in the
following way:
Formally, the intensity signal distribution, y, is sup-

posed to follow a mixture of gaussian distributions,

f (yib) =
∑

c

φ(μcb, σkb)wc

where, j is the gaussian density function, μcb and scb

is the mean and standard deviation respectively of inten-
sity signal for c copy number variants in b-th batch, and
wc is the proportion of individuals with c copies in the
population. Notice that mean and standard deviation
can vary not only between copy number status but also
between batches, but the copy number status preva-
lences (wc) not. If μcb and scb varies between batches
and batches are associated with the disease/response,
then the batch effect exists by definition, and can lead
to false association if it is not taken into account [5].
In CNVassoc, specific means, standard deviations and

prevalences estimates are calculated separately using
data from each batch. Then, prevalences estimates are
obtained averaging from specific prevalences:

ŵc =
B∑

b=1

nbŵcb/n

where nb is the number of sample individuals in the b-
th batch, B is the total number of batches in the sample,
and n is the total number of individuals in the sample.

Improved association test
To incorporate CNV copy number uncertainty in the
association test, CNVassoc uses a simpler model for-
mulation than that of CNVtools. This allows us to use
the faster Newton-Raphson procedure, which yields not
only the effect estimate for the CNV, but also its confi-
dence interval.

Adjustment for covariates
CNVassoc can fit association models adjusted for cov-
ariates (age, gender, smoking, etc.), which may be parti-
cularly important where it is necessary to adjust for
population stratification [13].

Response phenotypes
CNVassoc can be used to analyse dichotomous (Bino-
mial), count (Poisson), or continuous (Gaussian)
response phenotypes, as well as data from cohort studies
(Weibull).

Inheritance models
CNVassoc can perform association analysis under a
codominant (additive) model, which assumes a constant
effect on phenotype per unit change in copy number, or
under a model-free design, which treats each copy num-
ber as an independent category.

Analysis of multiple CNVs
To perform association testing of multiple CNVs with
greater computational efficiency, a function called
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multiCNVassoc has been implemented. When multiple
processors are available, it can parallelize association
tests using the Snow package http://www.sfu.ca/~sblay/
R/snow.html. An example of association tests involving
several CNVs is shown in Section 3 of the Additional
file 1 where data from a CGH array is analysed.

Computational Efficiency
Using the same sample sizes and probe signal intensity
distributions as used in [5], we performed a simulation
study in order to compare the performance of the meth-
ods implemented in CNVassoc and CNVtools. We
observed that both methods performed well, but we
note that CNVassoc has a number of important advan-
tages over CNVtools in terms of computational speed
and robustness in situations of limited sample sizes.

Performing association tests
First, an object of class cnv must be created by CNVas-
soc or using probabilities from other algorithms. Then,
an association test between the CNV and disease can be
performed using the CNVassoc function, which returns
an object of class ‘CNVassoc’. Associated print and
summary functions give exhaustive outputs. The
(CNVtest) function computes an overall p-value to test
whether a CNV is associated with the disease

Functions to simulate CNV data
In CNVassoc package, function to simulate CNV data
have been implemented. It is possible to simulate data
from different type of responses and studies: case-control
(simCNVdataCaseCon), cohort with binary response
(simCNVdataBinary), counting process with poisson-
distributed response (simCNVdataPois), quantitative
normal-distributed response (simCNVdataNorm) and
time-to-event with right-censored-weibull-distributed
response (simCNVdataWeibull).

Association analysis on imputed SNPs
Also, it is possible to analyse association of imputed
SNPs and response. Taking the genotypes probabilities
obtained from any software capable to impute SNPs,
such as IMPUTE [7,8], association analysis for case-con-
trol studies, cohort, quantitative or counting response
can be performed with CNVassoc. In section 5 of the
Additional file 1 we show in detail how to analyse a
data set downloadable from SNPTEST website which
contains probabilities of different imputed genotypes
from different SNPs among a set of cases and controls.

Results and Discussion
In this section we show the results obtained in inferring
copy number status and association analysis on a real
data set including 360 cases and 291 controls (data

described in [4]). The data contains peaks intensities for
two genes arising from an MLPA assay. From this
example, we present the main CNVassoc functions and
illustrate how to use them to infer copy number copies
and estimate association on case-control status.
A more detailed description of all these analyses and

others (imputed SNPs, aCGH data, other phenotypes
distributions -poisson, weibull and normal-) can be
found in Additional file 1.

Inferring copy number status
Previous to association analysis, inferring copy number
status process must be done. To do so, the function cnv
is used. In this subsection, gene 2 from MLPA data
example is used. This data set can be load from the
CNVassoc package.
>library(CNVassoc)
>data(dataMLPA)
>CNV <- cnv(x = dataMLPA$Gene2, threshold.0 =

0.01, mix.method = “mixdist”)
The peak intensities of gene 2 are assumed to follow a

mixture of normal distributions, and the method used
to estimate this distribution is specified by the mix.
method argument. When threshold.0 = 0.01, all indivi-
duals with peak intensities lower than 0.01 are assumed
to carry 0 copies. The CNV object is of class cnv, which
can be printed and plotted (Figure 1).
>CNV
Inferred copy number variant by a quanti-

tative signal
Method: function mix {package: mixdist}
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Figure 1 Plot of a cnv object generated from CNV signal
intensity data.
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-. Number of individuals: 651
-. Copies 0, 1, 2
-. Estimated means: 0, 0.2435, 0.4469
-. Estimated variances: 0, 0.0041, 0.0095
-. Estimated proportions: 0.1306,

0.4187, 0.4507
-. Goodness-of-fit test: p-value =

0.4887659
-. Note: number of classes has been

selected using the best BIC
>plot(CNV)
A measure that quantifies the amount of uncertainty

in the CNV calling estimation can be computed using
the function getQualityScore. Various measures are
available; the following is an example of how to obtain
the quality score (uncertainty measure) described in the
CNVtools paper [5]:
>getQualityScore(CNV, type = “CNVtools”)
–CNVtools Quality Score: 3.057171
In some cases, it may be preferable to infer copy num-

ber status using another algorithm that is not implemen-
ted in CNVassoc, e.g. if the probe signal intensities do
not follow a mixture of normal distributions. A matrix of
copy number probabilities obtained from other algo-
rithms can be used as input for the cnv function to create
a cnv class object, which can then be used to perform
association analysis. Also, it is possible to take suspected
batch effects in the signal intensity distributions into
account by specifying the batch variable using the batch
argument in the cnv function. This is important in order
to avoid false positives in the posterior association model
estimation, as suggested in [5]. A more detailed explana-
tion and example of this issue can be found in section 4.2
of Additional File 1.

Performing association models
To carry out association analysis between CNV and dis-
ease, the function CNVassoc is used. This function incor-
porates copy number call uncertainty by using a latent
class model as described in [4]. The response variable (dis-
ease) can be: binary, quantitative (normally distributed),
from a counting process, time to event (Weibull distribu-
ted). Also, an additive or model-free pattern of inheritance
can be analysed. The result returned by the CNVassoc
function is an object that can be printed and summarized
and its structure is very similar to other well known R
functions such as glm.
Here, we continue with the same MLPA data taking

the CNV object for gene 2 in the previous section. To
fit a logistic regression model with case-control status as
a response and CNV copy number as a predictor, and
assuming an additive genetic effect, we type
>mod <- CNVassoc(casco ~ CNV, data = dataMLPA)
>summary(mod)

Call:
CNVassoc(formula = casco ~ CNV, data =

dataMLPA)
Deviance: 876.396
Number of parameters: 3
Number of individuals: 651
Coefficients:

ORlower.limupper.lim SE Stat pvalue
CNV0 1.0000
CNV1 0.4772 0.2742 0.8304 0.2827 -

2.6172 0.009
CNV2 0.3169 0.1834 0.5477 0.2791 -

4.1169 3.84e-05
(Dispersion parameter for binomial

family taken to be 1)
Covariance between coefficients:

CNV0 CNV1 CNV2
CNV0 0.0613 0.0000 0.0000
CNV1 0.0186 -0.0032
CNV2 0.0166
By applying the summary function to the result, we

obtain odds ratios, confidence intervals, and p-values for
every copy number status with respect to the reference
copy number category.
To compute the global CNV significance p-value, the

CNVtest function can be used as follows:
>CNVtest(mod, “LRT”)
——CNV Likelihood Ratio Test——
Chi = 18.75453 (df = 2), pvalue =

8.462633e-05
In this example, a Likelihood Ratio Test (LRT) is com-

puted, comparing a model containing CNV to a model
lacking CNV (i.e. a model without predictors or the null
model).
Using the CNVassoc function it is possible to change

the inheritance model to additive (changing the model
argument), or adjust for other covariates (such as age,
sex, or principal components) in the formula argument
in the usual way. Also, other types of response can be
analysed changing the family argument. More detailed
examples are in the Additional file 1.

Response phenotypes: Weibull
In this section, we illustrate how to analyse a time-to-
event response variable (Weibull distributed) using
simulated data generated with the function simCNVda-
taWeibull. In the following example, a CNV has been
generated with 0, 1 and 2 possible copies with probabil-
ities of 25%, 50% and 25% respectively, with intensity
signal standard deviation of 0.4 for each copy status,
and means of 0, 1 and 2 respectively. The response vari-
able has been simulated under a Weibull distribution
with shape parameter equal to 1 and disease incidence
equal to 0.05 (per person-year) among the population
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with zero copies (reference). The proportion of observed
events (non-censored) was set to 10%. Finally, these data
have been generated assuming a additive CNV effect
with a Hazard Ratio of 1.5 per copy.
>set.seed(123456)
>n <- 5000
>w <- c(0.25, 0.5, 0.25)
>mu.surrog <- 0:2
>sd.surrog <- rep(0.4, 3)
>hr <- 1.5
>incid0 <- 0.05
>lambda <- c(incid0, incid0 * hr, incid0 * hr^2)
>shape <- 1
>scale <- lambda^(-1/shape)
>perc.obs <- 0.1
>time.cens <- qweibull(perc.obs, mean(shape), mean

(scale))
>dsim <- simCNVdataWeibull(n, mu.surrog, sd.surrog,

w, lambda,
+ shape, time.cens)
Once the CNV data and phenotype has been gener-

ated, inferring copy number status and fitting the asso-
ciation model is performed in the following two steps:

(1) Inferring copy number status, as for case-control
studies:
>CNV <- cnv(dsim$surrog, mix = “mclust”)
>attr(CNV, “num.copies”) <- 0:2
Note that 3 copy number statuses has been esti-
mated by BIC criteria. By default 1, 2 and 3 copies
are assigned. The number of copies for each status
can be changed to 0, 1 and 2 respectively by modify-
ing the num.copies attribute.
2) Testing for association between CNV and time-
to-event, specifying the family argument as “weibull":
>fit <- CNVassoc(Surv(resp, cens) ~ CNV, data =
dsim, family = “weibull”,
+ model = “add”)
>coef(summary(fit))

HR lower.lim upper.
lim SE stat pvalue

trend 1.385556 1.205619 1.592348 -
0.07097498 4.594595 4.335896e-06

Note that, Hazard Ratios (HR) are displayed instead
of Odds Ratios. In this case, an additive CNV effect
has been assumed in performing the association
model.

Computational Efficiency
In this section, we compare the performance of CNVas-
soc in terms of speed and convergence rate to that of

CNVtools, which is the only other tool that is currently
available for performing CNV association analysis, while
correctly taking copy number uncertainty into account.
Simulated case-control data was generated for different
sample sizes (500 cases and 500 controls; 2,000 cases and
2,000 controls), and different degrees of call uncertainty,
from very little uncertainty (Q = 6) to a moderate-high
degree of uncertainty (Q = 3). A single CNV marker has
been simulated using 1,000 iterations (simulations), under
the described scenarios. In each simulation, univariate
probe signal intensities (similar to MLPA) have been gen-
erated from a gaussian mixture distribution, and copy
number status has been inferred from them. After this, an
association model has been performed using the proposed
method (Latent Class model). The uncertainty measure,
Q, was proposed by [5] (see page 3); values of Q below 3
indicate moderate-high uncertainty and this must be tak-
ing into account in the association analysis, while values of
Q bigger than 4.5 or 5 indicate that uncertainty is almost
insignificant. Table 1 shows the number of times model
estimation fails using CNVassoc and CNVtools under
these various scenarios. CNVassoc converges in all simu-
lations, except when sample size is small and uncertainty
is high. When sample size is high (2,000 cases and 2,000
controls) CNVassoc converges in all situations, while
CNVtools fails in some simulations when uncertainty is
high. And when sample size is moderate-low (500 cases
and 500 controls), CNVassoc converges almost in all
times except when uncertainty is high (Q < 3.5), while
CNVtools fails in some simulations even when the
degree of uncertainty is low (Q = 6) and starts to fail in
the majority of situations when uncertainty is moderate
(Q < 4) and performs even worse when is high.
We have also observed a marked difference in the

speed of each procedure: when analyzing 10,000 CNVs
in 2,000 cases and 2,000 controls, and with a Q = 4,
CNVtools took 1 day and 17 hours to complete the

Table 1 Number of failed convergence simulations out of
500 using CNVassoc and CNVtools according to inferring
copy number uncertainty Q and number of cases N

N = 2000 N = 500

Q CNVassoc CNVtools CNVassoc CNVtools

6.0 0 0 0 15

5.5 0 0 0 20

5.0 0 0 0 65

4.5 0 0 0 92

4.2 0 0 0 187

4.0 0 0 0 246

3.7 0 0 0 294

3.5 0 1 0 299

3.2 0 13 212 389

3.0 0 65 331 400
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analysis, whereas CNVassoc took just 90 minutes; with
Q = 3, CNVtools took 6 days and 16 hours, but
CNVassoc took only 2 hours. More comparisons
between CNVassoc and CNVtools are shown in sec-
tion 4.3.1 of Additional file 1.

Conclusions
We present a new package for performing analysis of
association between copy number variants and disease,
appropriately taking uncertainty in CNV copy number
calls into account. The numerical procedure for fitting
the model is simple and computationally efficient, hand-
ling thousands of CNVs in reasonable time. In addition,
it is possible to adjust for covariates which may be neces-
sary to control for population stratification. A central fea-
ture of CNVassoc is that input data can come from any
CNV calling algorithm that produces copy number prob-
abilities. Note that the CNVassoc package can also be
applied to SNPs. For instance, in the context of imputed
SNPs (e.g., IMPUTE [7,8], BIMBAM [14], MACH1
http://www.sph.umich.edu/csg/abecasis/MACH/, etc.)
the probability estimates of each genotype coming from
this software can easily be incorporated to our functions.
We intend to continue developing the package, and
expect to incorporate CNV * non-genetic predictor inter-
actions, and CNV * CNV interactions, in the near future.
In conclusion, considering the advantages in terms of

modelling flexibility, power, convergence rate, ease of
covariate adjustment, and requirements for sample size
and signal quality, we offer CNVassoc as a method for
routine use in CNV association studies.

Availability and requirements
1. Project name: CNVassoc
2. Project home page: http://www.creal.cat/jrgonzalez/

software.htm and http://www.cran.r-project.org
3. Operating system(s): Platform independent
4. Programming language: R
5. R Dependencies: mixdist, mclust, survival
6. R Suggested: CGHcall, CGHregions, snow, CNVtools
7. License: GPL or newer

Additional material

Additional file 1: User’s manual. CNVassoc_manual.pdf is the
user’s guide of CNVassoc package, where detailed examples with real
and simulated data are shown, illustrating how to use the CNVassoc
package functions.
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