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Background: We performed a genome-wide scan of 27,578 CpG loci covering 14,475 genes to identify
differentially methylated loci (DML) in colorectal carcinoma (CRQO).

Methods: We used Illumina’s Infinium methylation assay in paired DNA samples extracted from 24 fresh frozen
CRC tissues and their corresponding normal colon tissues from 24 consecutive diagnosed patients at a tertiary

Results: We found a total of 627 DML in CRC covering 513 genes, of which 535 are novel DML covering 465
genes. We also validated the lllumina Infinium methylation data for top-ranking genes by non-bisulfite conversion
g-PCR-based methyl profiler assay in a subset of the same samples. We also carried out integration of genome-
wide copy number and expression microarray along with methylation profiling to see the functional effect of
methylation. Gene Set Enrichment Analysis (GSEA) showed that among the major “gene sets” that are
hypermethylated in CRC are the sets: “inhibition of adenylate cyclase activity by G-protein signaling”,
regulation of retinoic acid receptor signaling pathway” and “estrogen receptor
activity”. Two-level nested cross validation showed that DML-based predictive models may offer reasonable
sensitivity (@around 89%), specificity (around 95%), positive predictive value (around 95%) and negative predictive
value (around 89%), suggesting that these markers may have potential clinical application.

Conclusion: Our genome-wide methylation study in CRC clearly supports most of the previous findings;
additionally we found a large number of novel DML in CRC tissue. If confirmed in future studies, these findings
may lead to identification of genomic markers for potential clinical application.
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Background

Colorectal carcinoma (CRC) is one of the most common
human malignancies worldwide, and an increasing inci-
dence of CRC in Asia has been reported [1,2]. CRC cells
develop several genetic and epigenetic alterations in can-
cer-related genes to achieve malignant status [3]. Pro-
moter hypermethylation coupled with loss of
heterozygosity at the same locus results in loss of gene
function in many tumor cells [4]. Alterations in DNA
methylation in cancer, in general, have been known for
25 years, including hypomethylation of oncogenes and
hypermethylation of tumor suppressor genes [5]. Identi-
fication of specific DNA methylation markers would be
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helpful for understanding pathogenetic mechanisms, as
well as for developing new therapeutic strategies. So far
most of the studies addressing DNA methylation and
cancer have followed the candidate gene approach, or
addressed a handful of genes, or have used cell lines
[6-8]. Recently Ang et al. used Illumina’s GoldenGate
array covering 1,505 loci and found a total of 202 loci
covering 132 genes to be differentially methylated in
CRC [9]. Attempts are being made to classify CRC by
methylation patterns that correlate with prognosis
[10-15]. A recent study suggests that there may be a sig-
nificant difference in DNA methylation profiles between
cancer cell lines and original tumor tissue emphasizing
the need to be cautious in using cell lines as a tumor
model for molecular studies of cancer [16].

To our knowledge, there is no published study from
Southeast Asia addressing these molecular features in
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CRC to better understand the underlying pathology.
There is epidemiologic evidence of a link between ethni-
city, certain food habits (more red meat, less vegetables)
and CRC [17]. With very few exceptions in the tribal
areas, the Bangladeshi population is relatively homoge-
nous ethnically and has a more or less similar pattern of
food habit. In this study we have used Illumina’s Infi-
nium methylation assay to study the methylation status
in 27,578 CpG sites covering 14,475 genes in paired
CRC and surrounding healthy tissue from Bangladeshi
patients with CRC to identify differentially methylated
loci involved in CRC.

Methods

Tissue Samples

The samples were collected from surgically removed
colonic specimens received by the department of Pathol-
ogy, Bangabandhu Sheikh Mujib Medical University
(BSMMU), Dhaka, Bangladesh during the period of
December 2009 to March 2010. All samples were col-
lected by one surgical pathology fellow (MR) from the
operating room immediately after the surgical resection.
We considered the consecutive 24 eligible cases with
histologically confirmed diagnosis of CRC. Histopathol-
ogy was done independently by two histopathologists
(MK & MR), and there was concordance in all 24 cases.
For each patient, one sample was collected from the
tumor mass, and another sample was taken from the
resected unaffected part of the colon about 5-10 cm
away from the tumor mass. Thus, from each individual
we obtained a pair of tumor and normal tissues. From
each site, the tissue was collected as fresh frozen and
also in RNA-stabilizing buffer. The samples were
shipped on dry ice to the molecular genomics lab at
The University of Chicago for subsequent DNA extrac-
tion and methylation assay. Patient characteristics are
shown in Additional File 1 Table S1. For each patient,
we also abstracted key demographic and clinical data
and tumor characteristics from hospital medical records.
Written informed consent was obtained from all partici-
pants. The research protocol was approved by the “Ethi-
cal Review Committee, Bangabandhu Sheikh Mujib
Medical University”, Dhaka, Bangladesh (BSMMU/2010/
10096) and by the “Biological Sciences Division, Univer-
sity of Chicago Hospital Institutional Review Board”,
Chicago, IL, USA (10-264-E).

DNA extraction and quality control

DNA was extracted from fresh frozen tissue using Pure-
gene Core kit (Qiagen, Maryland, USA). The average
260/280 ratio was 1.85. Electropherogram from Agilent
BioAnalyzer with Agilent DNA 12000 chips showed the
fragment size to be >10000 bp (Additional File 2 Figure
S1).
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RNA extraction and quality control

RNA was extracted from RNA Later preserved colonic
tissue using Ribopure tissue kit (Ambion, USA, Cat#
AM1924). Quality was checked on Agilent BioAnalyzer.
RNA from two patients showed poor quality and that
was also reflected on the microarray data.

Genome-wide methylation assay

The Infinium Methylation-27Assay was used to detect
27,578 CpG sites genome-wide, spanning 14,495 genes.
The CpG sites were located within the proximal promo-
ter regions of genes, with the distance to transcription
start site (TSS) ranging from 0 to 1499 bp averaged at
389 + 341 bp. For bisulfite conversion, EZ DNA methy-
lation kit (Zymo Research, USA) was used. Paired sam-
ples (CRC and corresponding normal) were processed
on the same chip, and all the 48 samples were processed
on 4 chips (12 samples/chip) at the same time to avoid
batch effect. The Illumina protocol was followed for the
methylation assay. A Tecan Evo robot was used for
automated sample processing and the chips were
scanned on a single BeadArray reader (S-428). Control
panel in the BeadStudio analytical software showed
excellent intensity for staining (above 15,000), clear clus-
tering for the hybridization probes, good target removal
intensity (<400) and satisfactory bisulfite conversion.

Validation of Infinium methylation platform by q-PCR
array

We used commercially available custom Methyl profiler
PCR array from Qiagen-SABiosciences, which does not
require bisulfite conversion. Manufacturer’s protocol
(http://www.sabiosciences.com/dna_methylation_cus-
tom_PCRarray.php) was followed for the assay and
ABI7900 RT-PCR instrument was used to read the
plates. Basically, the assay relies on differential cleavage
of target sequences by two different restriction endonu-
cleases - methyl specific (MS) and methyl dependent
(MD), whose activity require either the presence or
absence of methylated cytosines respectively in their
recognition sequences. Details of the assay are published
elsewhere [18]. Using the standard AACt method the
proportion of hypermethylated and intermediately
methylated DNA was calculated [18] using the manufac-
turer supplied Excel macro spreadsheet.

High density SNP assay

We used Illumina 610 Quad BeadChip (Illumina Inc.) to
obtain the copy number data from a total of 620,901mar-
kers (592,532 SNPs and 28,369 CNV probes).

Genome-wide gene expression microarray
We used HT12 v4 BeadChip (Illumina Inc.) for gene
expression. The chip contains a total of 47,231 probes
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covering 31,335 genes. Paired samples were processed in
same chip (12 samples/chip) and all 48 samples were
processed in a single batch using 4 chips to minimize
batch effect.

Statistical analysis

To compare the continuous variables (e.g. number of
detected loci/samples or average signal intensity/average
B value etc. among the two groups), we used one-way
analysis of variance (ANOVA).

Genome-wide Methylation data analysis

For measuring methylation, we used the Illumina Bead-
Studio software to generate the  value for each locus
from the intensity of methylated and unmethylated
probes. We used the intensity values with and without
background normalization. The background value is
derived by averaging the signals of built-in negative con-
trol bead types, which are designed to be thermodyna-
mically equivalent to the regular probes but lack a
specific target in the transcriptome. The f is calculated
as (intensity of methylated probe)/(intensity of methy-
lated probe + intensity of unmethylated probe). Hence,
B ranges between 0 (least methylated) and 1 (most
methylated) and is proportional to the degree of methy-
lated state of any particular loci. The methylation mod-
ule of BeadStudio was used for differential methylation
analysis using Illumina custom model. The model oper-
ates under the assumption that the methylation value 8
is normally distributed among biological replicates cor-
responding to a set of biological conditions (tumor and
normal in the present scenario). DiffScore of a probe is
computed as:

DiffScore = 10 sign (Bumor — Bnormal) log;,p
DeltaB = (,Btumor - IBnormal)

In addition to the Illumina BeadStudio differential
methylation analysis, we exported the BeadStudio gener-
ated PB-values to PARTEK Genomic Suite [19] for
further statistical analyses. For statistical analysis we
used these B-values with and without quantile normali-
zation. In this way, initially we examined four sets of
data - (1) no normalization of signal intensity, no nor-
malization of f-values; (2) no normalization of signal
intensity to calculate B-values initially, but subsequently
quantile normalization of B-values were used; (3) back-
ground normalization of signal intensity to calculate 3-
values, but no normalization of B-values were used; (4)
background normalization of signal intensity to calculate
B-values, and quantile normalization of 3-values were
used. Principal component analysis (PCA) and sample
histograms were checked as a part of quality control
analyses of the data. Mixed-model multi-way ANOVA
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(which allows more than one ANOVA factor to be
entered in each model) was used to compare the indivi-
dual CpG loci methylation data across different groups.
In general, “tissue” (tumor/adjacent normal), sex (male/
female) and tumor location (proximal colon/distal
colon) were used as categorical variables with fixed
effect since the levels “tumor/normal”, “male/female”,
and “proximal/distal” represent all conditions of interest;
whereas “case ID#” (as proxy of inter-person variation)
was treated as categorical variable with random effect,
since the person ID is only a random sample of all the
levels of that factor. Method of moments estimation was
used to obtain estimates of variance components for
mixed models [20]. As per the study design, we pro-
cessed both the CRC tissue and the corresponding adja-
cent normal sample from one individual in a single chip
(one chip accommodates 12 samples) and all the four
chips required to run a total of 48 samples were run in
a single batch to avoid batch effect. In the ANOVA
model, the B-value for the CpG loci was used as the
response variable, and “tissue” (tumor or normal), case
ID#, “sex” and “location” were entered as ANOVA fac-
tors. It may be noted that “sex” and “location” were
nested within “case ID#”. One example of a model is as
follows:

Yijlam = p + Tissue; + Sex; + Locationy + CaselD (Sex * Location)ikl + Eijkim

where Yjjm represents the m-th observation on the i-
th Tissue j-th Sex k-th Location I-th CaselD, p is the
common effect for the whole experiment, &;iim repre-
sents the random error present in the m-th observation
on the i-th Tissue j-th Sex k-th Location 1-th CaselD.
The errors g are assumed to be normally and inde-
pendently distributed with mean 0 and standard devia-
tion o for all measurements.

In GO Enrichment analysis, we tested if the genes
found to be differentially methylated fell into a Gene
Ontology category more often than expected by chance.
We used chi-square test to compare “number of signifi-
cant genes from a given category/total number of signif-
icant genes” vs. “number of genes on chip in that
category/total number of genes on the microarray chip”.
Negative log of the p-value for this test was used as the
enrichment score. Therefore, a GO group with a high
enrichment score represents a lead functional group.
The enrichment scores were analyzed in a hierarchical
visualization and in tabular form.

In addition to looking at differential methylation at the
level of individual CpG loci, we also examined the dif-
ferential methylation of “gene sets” using the Gene Set
Enrichment Analysis (GSEA) [21]. Given an a priori
defined set of genes S (sharing the same GO category),
the goal of GSEA was to determine whether the
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members of S were randomly distributed throughout the
ranked list or primarily found at the top or bottom.
Considering the fact that GSEA can look at single vari-
able (unadjusted pB-value), we also used GO-ANOVA
which offers adjustments for other factors such as “per-
son-to-person” variation, “tissue type” variation etc.

GO-ANOVA is a mixed model ANOVA to test the
methylation of a set of genes (sharing the same GO
category) instead of an individual gene in different
groups [19]. The analysis is performed at the gene level,
but the result is expressed at the level of the GO-cate-
gory by averaging the member genes’ results. The equa-
tion for the model was:

Model : Y= +T+P+G+S(T*P)+¢

where Y represents the methylation status of a GO-
category, | is the common effect or average methylation
of the GO-category, T is the tissue-to-tissue (tumor/
healthy) effect, P is the patient-to-patient effect, G is the
gene-to-gene effect (differential methylation of genes
within the GO-category independent of tissue types), S
(T*P) is the sample-to-sample effect (this is a random
effect, and nested in tissue and patient) and & represents
the random error.

Cross-validation

For the one-level cross validation, the data was first
divided into 10 random partitions. In each iteration,
10% of samples were held out for testing while the
remaining 90% samples were used to fit the parameters
of the model. We also used a 6 x 10 two-level nested
cross-validation [22]. In the outer cross-validation, with
random 1/6-th of the samples (n = 8) were held out as
test samples, and the remaining 40 samples were used
in an inner 10-fold cross-validation (1/10-th of these
samples (n = 4) were held out at each iteration, and it
was repeated 10 times) to determine the optimal predic-
tor variables and other classifier parameters. The model
that performed the best on the inner cross-validation
was applied to the 8 test samples that were held-out in
the outer cross-validation. This was repeated 6 times.
Thus we had a total of 10 x 6 or 60 permutations for
inner cross-validation and 6 for the outer cross-valida-
tion. The inner cross-validation was performed in order
to select predictor variables and optimal model para-
meters, and the outer cross-validation was used to pro-
duce overall accuracy estimates for the classifier.
Initially we tested several classification methods: (a) K-
Nearest Neighbor (KNN) with Euclidean distance mea-
sure and 1-neighbor, (b) K-Nearest Neighbor (KNN)
with Euclidean distance measure and 3-neighbor (c)
nearest centroid with equal prior probability and (d) lin-
ear discriminent analysis with equal prior probability.
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Based on the results (normalized correct rate), we finally
used KNN with Euclidean distance measure and 3-
neighbor as the classifier, and regarding the number of
variables, we tested 1 through 50 variables. For auto-
mated variable selection, we used 2-way ANOVA where
tissue type and case ID# were used as ANOVA factors.
One of the loci with maximum delta-p (DAB2IP) was
forced into the model.

Genome-wide Copy number (CN) analysis

BeadStudio normalized intensity values were imported
into PARTEK genomic suit [19]. Intensity data from the
normal tissue was used as reference for generating copy
number data for each marker. Standard PCA and sam-
ple histogram were generated as part of QC. Genomic
segmentation was done with a setting of minimum of 10
markers, p-value threshold of 0.001 for two neighboring
regions having significantly differing means. A segment
was considered as amplification if the mean CN was
>2.5 and deletion if the mean was <1.5. The phenotype
(CRC or normal) was tested for association with amplifi-
cation/deletion status of the sample using Pearson’s Chi-
square test.

Genome-wide Gene Expression analysis

In BeadStudio, quantile normalization was used for the
intensity data. PCA detected the arrays from the same
two patients as outlier which showed poor RNA quality
on Agilent BioAnalyzer. Microarray data from those two
patients were excluded from the analysis. Differential
gene expression analysis was done using the same
mixed model multi-way ANOVA [19] as in case of
methylation analysis. We report genes to be differen-
tially expressed only if that shows at least 1.3 fold
change in either direction at FDR 0.05. We used this 1.3
fold as cut-off based on the power calculation from our
data. Given the sample size, we had 80% power to detect
90% of the truly differentially genes at 1.3 fold.

Correlation between methylation/gene expression and
methylation/copy number

To investigate the effect of DNA methylation on gene
expression, we used Spearman’s rank to test correlation
between the beta-value of a methylation locus and the
log,-transformed normalized expression value of a gene
within a maximum distance of 2 Kb from that methyla-
tion locus. Correlated methylation and expression data
were taken from the same samples. In the same way, to
see the effect of copy number on gene expression, we
also used Spearman’s rank to test correlation between
the average copy number of a genomic segment and the
log,-transformed normalized expression value of a gene
overlapping with that genomic segment. Copy number
and methylation data were also from the same samples.
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Results

Our study was conducted on 24 patients (17 male, 7
female) with CRC with a mean age of 45.5 years (SD
16.8) (Additional File 1 Table S1). There were a total of
27,578 loci covering 14,495 genes (average 1.9 CpG loci
per gene) that were studied for methylation status per
sample. On average, about 27,511 loci (95% CI 27,488 -
27,534) were detected in each sample at p < 0.05 level.
A locus was said to be detected at p < 0.05 level if the
mean signal intensity from multiple probes for that CpG
locus was significantly higher (at the level of p < 0.05)
than the negative control on the same chip. Mean num-
ber of loci detected at p < 0.05 in tumor and normal tis-
sue was similar: 27483.88 (SD 114.75) vs. 27507.25 (SD
65.84) (p = 0.41). There was a very strong correlation
(r* = 0.9932) of the total signal intensity (methylated
and unmethylated) of the 27,578 loci between the 24
normal tissues and corresponding 24 tumor tissues sug-
gesting uniform amplification and hybridization for all
samples. However, when the average B of tumor tissue
samples were plotted against that of corresponding nor-
mal tissue samples, there were clearly a number of loci
that were differentially methylated in CRC tissues com-
pared to normal tissues. The data discussed in the publi-
cation have been deposited in NCBI's Gene Expression
Omnibus [23] and will be accessible through GEO
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Series accession number GSE29490 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE29490).

Sources of variation in the methylation data

Principal component analysis (PCA) suggested a cluster-
ing of samples by tissue type (not shown). In the next
step, to further investigate the source of variation in the
expression, we used multivariate ANOVA. Figure 1A
shows the significance of different sources of variation
in the entire data in ANOVA model where tissue type
(tumor/normal), person-to-person variation (case ID#),
sex and location were entered as explanatory variables
at a time for the B-value (representing methylation sta-
tus). The figure shows that “tissue type” and sex were
the most significant sources of variation.

Differential methylation of colon tissue in male and
female subjects

When we compared all 27,578 loci in females with those
in males, there were a total of 568 loci differentially
methylated at FDR 0.01 level. Interestingly, 551 of them
(97.0%) were in the X-chromosome, 2 were in the Y-
chromosome and 15 were distributed in the autosomes.
This finding is explained by the X-inactivation process,
in which one of the two copies of genes on the X chro-
mosome in females is silenced. Considering this fact, we

Mean F Ratio

markers.

Figure 1 A and B Sources of variation in methylation data. Statistical significance of the different sources of variation in the methylation
data estimated by 4-way ANOVA models. F-ratio for each factor (source) represents the F-statistics for that factor/F-statistics for error (noise). 1A
shows the result in all 27,578 loci and 1B shows similar result only in the autosomal loci (n = 26,486) depicting the effect of sex chromosomal

Mean F Ratio
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excluded all the sex chromosome markers (n = 1092, of
which 1085 in X-chromosome and 7 in Y-chromosome)
from subsequent analysis for differential methylation in
CRC compared to normal. The significance of different
sources of variation in the methylation data in auto-
somes only is shown in Figure 1B.

Differential methylation in colorectal carcinoma tissue
compared to adjacent normal colon tissue

In a total set of 48 samples (tumor and corresponding
adjacent normal tissue from 24 patients with CRC), we
looked at genome-wide differential methylation in CRC
tissue compared to normal tissue. There were a total of
26,486 CpG loci in the autosomes covering 13,890
genes. Here we present the analysis of B-value calculated
from background normalized signal intensity. No further
normalization of derived B-value was used. In the
methylation module of BeadStudio, using the in-built
[llumina custom model, we found a total of 875 signifi-
cantly differentially methylated autosomal loci in CRC
tissue compared to normal colonic tissue, of which 275
were hypomethylated (DiffScore = < -30 and delta-f§ =
<-0.2) and 600 were hypermethylated (DiffScore > = 30
and delta B> = 0.2). Univariate and unpaired analysis
was used for this.

In the next step, we used multi-way mixed model
ANOVA to identify differentially methylated loci in
CRC after adjustment for sex, “person to person varia-
tion” and location of the tumor (proximal colon or dis-
tal colon). To be conservative, we report only
differentially methylated loci with absolute delta B of at
least 0.2 at FDR 0.01. Following this criteria, we found a
total of 852 differentially methylated loci covering 691
genes (see the List BGN_Auto in the Venn diagram,
Figure 2). Figure 2 also shows the lists of differentially
methylated loci found using the same criteria (absolute
delta B 0.2 at FDR 0.01) for the data with different nor-
malization procedures (as described in statistical method
section). There was a good overlap between the normal-
ization procedures, and 627 loci were common to all the
analyses. In other words, irrespective of normalization
methods (with or without background normalization for
signal intensity, with or without quantile normalization
of the calculated B-value) these 627 loci were differen-
tially methylated in CRC tissue compared to corre-
sponding normal colonic tissue even after adjustment
for sex, person-to-person variation and location of the
tumor. Unsupervised clustering based on the common
differentially methylated loci divided the samples into
two main clusters, and most of the CRC samples were
clustered together (figure not shown).

For further analysis, we focused on these 627 common
differentially methylated loci, of which 479 CpG loci
were hypermethylated (median distance from TSS 219
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List_BGN_Auto(852) List_Autosome_Qntl (632)

/57 N0
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List_BGN_Auto_Qntl(759

Figure 2 Overlap of results from different normalization
methods. Venn diagram showing overlap between the lists of
differentially methylated autosomal loci identified by ANOVA
models from four different normalization procedures- (a) no
normalization of signal intensity, no normalization of B-values- right
lower ellipse (n = 724) (b) no normalization of signal intensity to
calculate B-values initially, but subsequently quantile normalization
of B-values- right upper ellipse (n = 632); (c) background
normalization of signal intensity to calculate B-values, but no
normalization of B-values- left upper ellipse (n = 852) and (d)
background normalization of signal intensity to calculate B-values,

and quantile normalization of B-values- left lower ellipse (n = 759).
. J

bp) and 148 were hypomethylated (median distance
from TSS 308 bp) in CRC. Hypomethylated loci were
slightly more distal from TSS (Mann-Whitney U test, p
< 0.001). On average, 42.8% of the variation in the
methylation status of these 627 CpG loci could be
explained by tissue (tumor or normal), 26.6% of the var-
iation could be explained by person-to-person variation,
4.52% of the variation was due to sex, 1.42% was due to
location and 24.66% of the variation could not be
explained by the ANOVA model. Within this list of 627
loci, if we look at the greater magnitude of differential
methylation (Delta B = <-0.45 or > = 0.45) or the varia-
tion of that loci explained by the tissue type (at least
65%), there were 20 loci covering 17 genes (see Figures
3 and 4). The hypermethylated genes include FLJ25477,
ITGA4, DAB2IP, KCNQ5, ZNF625, Clorfl65, PRKARIB,
MDFI, C2o0rf32, RYR2, FLI1, RIC3, TRH, VGCNLI,
EYA4 (for q-PCR validation we selected the genes from
this list) and the hypomethylated genes include IL2IR
and PI3. It may be noted that DAB2IP is a known
tumor suppressor gene that has been reported to be
associated with other cancers [9,24,25]; ITGA4 is also
reported to be required for lymphangiogenesis & tumor
metastasis [26]. The B-values of some of these loci in
CRC and corresponding normal tissue are shown in Fig-
ure 5.

In fact, there was also a very good overlap between
the univariate analysis of BeadStudio Methylation
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Figure 3 Volcano plot of 627 significantly differentially
methylated loci. For the 627 DML, the magnitude of differential
methylation (Delta B) is shown in the x-axis and the variability of B
value explained by the tissue type (CRC or normal) is shown on the
y-axis. Color coding was done by the distance of the locus from the
transcription start site (TSS), where blue indicates close & red
indicates away from the TSS.

module and the mixed model multi way ANOVA analy-
sis. A total of 832 loci were common between the lists
generated by univariate Illumina custom model (n =
875) and the list generated by mixed model multi way
ANOVA analysis (n = 852) as mentioned above.

If we looked at the multiple loci near a single gene,
usually all the loci showed a similar trend. For example,
there were six loci for the gene ESRI, and all were
hypermethylated in CRC. We also took the average 3
values of multiple markers from the same gene and
looked for differentially methylated genes in CRC (not
shown here), and the result was almost similar to what
we see with probe level analysis.

GO Enrichment Analyses of the lists of differentially
methylated genes in colorectal carcinoma tissue
compared to adjacent normal colon tissue

We examined the list of 627 loci covering 513 genes
(479 loci representing 374 genes were hypermethylated
and 148 loci representing 139 genes were hypomethy-
lated) to see if any particular group of genes were found
to be differentially expressed in the ANOVA models
more frequently than by chance. The Gene Ontology
(GO) database (http://www.geneontology.org) cate-
gorizes genes on the basis of (a) “molecular function”,
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(b) “biological process” and (c) “cellular component”.
For example, the number of hypermethylated loci (n =
479) in the list represent only 1.8% of the total autoso-
mal loci (n = 26486). In other words, if 479 loci were
picked randomly, then we would not expect more than
1.8% of the loci from any particular category to be pre-
sent in that list. GO-enrichment analysis tests if a group
of genes is overrepresented (i.e., enriched) in a list than
would occur by chance. The higher the Enrichment
Score (ES), the more significant the enrichment is. This
is used for ranking the groups. For the list of hyper-
methylated loci, if we use “molecular function” for cate-
gorization, then we see that the top-ranking groups of
genes that were enriched include “transmembrane
receptor activity”, “receptor activity”, “transcription fac-
tor activity” “G-protein coupled receptor activity”, “iono-
tropic glutamate receptor activity”, “glutamate receptor
activity”, “extracellular-glutamate-gated ion channel
activity” and “transmembrane receptor protein phospha-
tase activity”. In other words, most of these groups or
subgroups are under the broader categories of “receptor
activity” or “transcription factor activity” (Figure 6).
Similarly, if we use “biological process” for categoriza-
tion, then the genes under the broader category “cellular
developmental process” and its sub-class “cell differen-
tiation” were highly enriched in the list of hypermethy-

lated loci.

Differential methylation profile at “gene set” level in
colorectal carcinoma

After looking into the differential methylation at the
individual gene level, we also looked for differential
methylation of different “gene sets” (different groups of
genes) in colorectal carcinoma by using Gene Set
Enrichment Analysis (GSEA) as well as GO-ANOVA.
Gene sets were defined using publicly available data
from the GO website (http://www.geneontology.org).
GSEA revealed that a total of 512 “gene sets” were dif-
ferentially methylated as the normalized enrichment
score (NES) was = <-1.5 (n = 270, hypomethylated) or
NES > = 1.5 (n = 242, hypermethylated). Using the per-
mutation p-value for the Enrichment Score (ES) as a
cut-off, a total of 220 “gene sets” were differentially
methylated at p = <0.01. In GO-ANOVA analysis a total
of 2851 “gene sets” crossed the threshold of FDR 0.01,
and a total of 932 gene sets showed an average delta-f3
of = <-0.1 (n = 384, hypomethylated) or > = 0.1 (n =
548, hypermethylated). Additional File 1 Table S2 shows
the results from GSEA as well as GO-ANOVA for the
gene sets that had p = <0.01 for ES, NES either = <-1.5
or > = 1.5 in GSEA and also showed significant GO-
ANOVA p-value at FDR 0.01 and an average delta § =
<-0.1 or > = 0.1. The gene sets are arranged by NES in
descending order in Additional File 1 Table S2.


http://www.geneontology.org
http://www.geneontology.org
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Obviously sorting by GO-ANOVA p-value would
change the ranking. The major groups or “gene sets”
that are hypermethylated in CRC are “inhibition of ade-
nylate cyclase activity by G-protein signaling” (Figure 7),
“Rac guanyl-nucleotide exchange factor activity”, “regu-

lation of retinoic acid receptor signaling pathway” and
“estrogen receptor activity”.

Comparisons to colorectal carcinoma signatures from
prior studies

We compared our conservative list of 513 differentially
methylated genes to lists obtained by a number of pre-
vious studies. In a 2010 review paper, Kim et al. [27]
compiled a comprehensive list of differentially methy-
lated genes in CRC tissue and other clinical samples
from patients with CRC. These were mainly candidate
gene approach based studies. There were a total of 59
unique genes reported to have differential methylation
in CRC tissue. Out of those 59 genes, 40 of them were

also studied in our present study. In fact there were 245
loci on the chip we used that covered these 40 genes. It
may be noted that 17 of those 40 genes (42.5%) were
also found in our conservative list of 513 differentially
methylated genes. In addition to comparing the gene
lists, we also looked at the differential methylation pat-
tern of these 245 loci covering those 40 genes in our
setting. A volcano plot (Additional File 3 Figure S2A)
clearly shows that most of these loci were differentially
methylated, but the number actually depends on the
strictness of the criteria used to define differential
methylation. In fact 32 of them (80%) were significant at
EDR 0.05 level without considering the delta . Recently
Ang et al. published a study on CRC using a genome
wide approach using Illumina’s GoldenGate methylation
panel of 1505 CpG loci [9]. They reported a total of 202
differentially methylated loci in CRC covering 132 genes
[9]. Of those 132 genes, 37 were common to our list.
But again, if we look at the methylation data, then we
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see that in our assay there were a total of 376 loci cov-
ering those genes and 263 of those loci (70%) were also
differentially methylated at FDR 0.05 in our data set
(Additional File 3 Figure S2B). Therefore, it is important
to take the selection criteria of a list into account while
comparing the gene list. Hence, our genome-wide
methylation assay not only clearly supports most of the
previous findings from the literature, but in addition to
that we found a large number of novel differentially
methylated loci in CRC tissue compared to surrounding
healthy colon tissue. The complete list of differentially
methylated loci is presented as additional material
(Additional File 1 Table S3) that shows the loci that
have been previously reported as well as the novel loci
found in present study. Kim et al. [27] also compiled a
list of genes that were reported in the literature to be
differentially methylated in other clinical samples
(serum/plasma or stool) from CRC patients. The authors
reported a total of 19 unique genes (there were 129 loci
in the chip we used that covered 18 of these 19 genes)
and interestingly 9 (50%) of those genes were also found
in our conservative list of 513 differentially methylated
genes in CRC. In fact, 63 of the loci covering 14 of
those 18 genes (77.8%) were significantly differentially
methylated at FDR 0.05 level.

In addition to looking only at CRC methylation sig-
natures in the literature, we also compared our list to
that of hypo- and hyper-methylated genes in cancer as
a whole. In a 2009 review, Pogribny et al. compiled a
list of 38 unique genes that are reported to be hypo-
methylated in different human cancers [28]. Only four
of those (ESRI, HSPE2, TCL1 and TNFRSF8) were
common in our list, and we found that all four of
them were found to be hypermethylated to some
degree in CRC in our study. In contrast these four
genes were reported to be hypomethylated in different
cancers - endometrial carcinoma, prostate cancer, T-
cell Lymphocytic leukemia and in Hodgkin lymphoma
respectively.

Table 1 Results from two-level nested cross-validation
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In a2007 review, Esteller et al. [29] compiled a list of
47 genes that were reported to be hypermethylated in
different human cancers. Eight of those (CDHI3,
CDKN2A, ESRI, TMEFF2, GATA4, SFRP1, TP73 and
SOCS3) were common in our list and all were hyper-
methylated in CRC in our study.

DNA repair genes are known to be important for the
pathogenesis of carcinoma in general. In a review,
Ronen and Glickman compiled a list of 261 DNA repair
genes [30]. It was interesting to note that none of these
261 genes were common to our list of 513 genes with
differential methylation in CRC.

Uses of methylation signatures

We attempted to identify some models for differentiat-
ing CRC samples from normal samples based on methy-
lation status. The models were identified using a 2-level
nested cross validation method. Though an independent
sample set was unavailable for this study, this method
provided a means to estimate the accuracy of the mod-
els that may be expected in an independent set of sam-
ples. However we agree that statistical model can not
replace the need of validation in an independent set of
real samples.

The overall idea was to set aside a random set of sam-
ples, and then use the rest of the samples from the pre-
sent study to identify an optimal combination of loci
that would classify the samples as CRC or normal, and
then to test the expected accuracy and different test
characteristics [sensitivity, specificity, positive predictive
value and negative predictive value] of the model in a
different set of samples that was held out initially.
Table 1 shows the summary of different models. For
example, the model with 4 loci - Illumina ID#
¢g02656594, cg13577076, cg20415809 and cg27650175 is
expected to correctly predict the diagnosis (normal or
CRCQ) in 94% of the samples. These loci are located
close to the transcription start site of the genes IL2IR,
PRKARIB, ITGA4 and DAB2IP respectively. It may be

No. of variables in KNN model

Expected test characteristics in another set of data

Accuracy SEN (%) SPEC (%) PPV (%) NPV (%)
4 variables 94.44 91.67 95.83 95.65 92.00
6 variables 92.36 87.50 95.83 9545 8846
8 variables 92.36 87.50 95.83 9545 8846
10 variables 92.36 87.50 95.83 95.45 88.46
21 variables 93.05 89.58 95.83 95.56 90.20
31 variables 92.36 87.50 95.83 9545 88.46
41 variables 9236 89.58 95.83 95.56 90.20
51 variables 93.06 89.58 95.83 95.56 90.20

K-Nearest Neighborhood model with Euclidean distance measure & 3 neighbor was used; SEN: sensitivity; SPEC: specificity; PPV: Positive Predictive Value; NPV:

Negative Predictive Value.
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noted that the other models involving more variables
also give reasonable sensitivity (around 89%), specificity
(around 95%), positive predictive value (around 95%)
and negative predictive value (around 89%). Therefore,
these markers may be considered for clinical application.

We also attempted to identify methylation signatures
that could differentiate histopathological findings in
CRC. Although the present study was not designed to
address this issue, we analyzed the 24 CRC samples
using different phenotypes, including tumor stage,
tumor grade, differentiation of the tumor, tumor infiltra-
tion by lymphocytes, extracellular mucin and signet ring
cell. Irrespective of the histopathological diagnosis (ade-
nocarcinoma or mucinous adenocarcinoma) and age at
diagnosis (= <45 yrs vs. >45 yrs), a total of 14 loci were
significantly differentially methylated in CRC of the
proximal colon than those of the distal colon. Unsuper-
vised hierarchical clustering of those loci in the CRC
samples is shown in the Additional File 4 Figure S3.
GO-Enrichment analysis of these 14 genes showed sig-
nificant enrichment of genes related to “gut
morphogenesis”.

Results from g-PCR validation

We selected the top-ranking hypermethylated 12 genes
(shown in Figure 3) for validation of the Infinium
methylation platform data using a methyl profiler assay.
Assay development was not feasible for PRKARIB for
technical reasons and so that gene was replaced by the
next highest-ranking gene, TRH. For validation we used
paired DNA samples from 10 randomly selected patients
from the same sample set. To compare the data from q-
PCR to the B-value in the microarray, we added the pro-
portion of intermediate methylation and hypermethyla-
tion in the q-PCR data to obtain the proportion of
methylated DNA. Figure 8 and Additional File 1 Table
S4 summarizes the differential methylation of these
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genes in CRC tissue compared to corresponding adja-
cent normal colonic mucosa. It may be noted that 10
out of these 12 genes were also found to be significantly
hypermethylated in the q-PCR experiment. Among
these 10 validated genes, 7 are novel (TRH, C2o0rf32,
FLJ25477, KCNQS, Clorf165, MDFI and RIC3) and the
remaining three (ITGA4, DAB2IP and FLII) were pre-
viously reported by others [9,27]. The correlation coeffi-
cients ("r”) also suggest reasonably good correlation
between the q-PCR data and the microarray data (Addi-
tional File 1 Table S4).

Does the differential methylation status correlate with
chromosomal abnormalities and differential gene
expression in CRC?

To address this issue, we also did a high density oligo-
nucleotide SNP array (610 Quad) to detect cytogenomic
abnormalities and a genome-wide gene expression assay
(HT12 v4), for the same 24 patients. We detected a
total of 1196 genomic segmentation regions (harboring
970 genes), for which the copy number significantly (p <
0.05, chi-square test) differs between CRC and normal
mucosa. We also detected a total of 1399 down-regu-
lated and 1209 up-regulated genes (at least 1.3 fold at
FDR 0.01) in CRC compared to normal mucosa. Only
28 hypermethylated genes were down-regulated, and 48
down-regulated genes were among the genes located in
genomic regions that show significant copy number
change in CRC compared to normal colonic mucosa
(Figure 9A). Similarly, only 6 of the hypomethylated
genes were up-regulated in CRC, and 60 up-regulated
genes were among the genes located in genomic regions
that show significant copy number change in CRC com-
pared to normal colonic mucosa (Figure 9B). In other
words, there are relatively few genes for which either
differential methylation or copy number change alone
can account for the observed changes in gene expres-
sion. This clearly depicts the complexity of genomic and
epi-genomic interplay in carcinogenesis. Figure 9C
shows the heatmap for gene expression of those 25
genes which are down-regulated by hypermethylation
irrespective of CN status.

In general, statistically significant cis-correlation (with
in 2 kb region, with rank correlation p = <0.05) between
methylation and gene expression was observed at 704
loci. However, only a few of these genes were differen-
tially methylated or expressed in CRC compared to nor-
mal tissue (Figure 10A as example), while for many of
the genes the methylation status correlated with gene
expression at sample level without being differentially
methylated or expressed in CRC tissues (Figure 10B). In
the same line, we found that in a total of 3850 genomic
segmentation regions, the gene expression was signifi-
cantly correlated (rank correlation p = <0.05) to copy
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number status of the region harboring the gene. But
only a few of these genes were differentially expressed
or showed differential CN change in CRC compared to
normal tissue (Figure 10C as example), while for many
of the genes the expression level correlated with geno-
mic CN status at sample level without being differen-
tially expressed or having differential CN status in CRC
tissues (Figure 10D as example).

Discussion

There are only a few studies addressing the genome-
wide methylation in colorectal carcinoma [9,31-33].
Very recently Kim et al [32] (Feb 2011) and Oster et al
[33] (Mar 2011) used the same commercially available
Infinium methylation 27 arrays in CRC and identified
differentially methylated sites in Korean and European

population respectively. Oster’s study used carcinoma
and normal tissue from different individuals for methy-
lation analysis, whereas ours used paired tumor and
adjacent normal tissue from the same patient. This
allowed us to eliminate inter-individual variation in our
methylation analysis, which may be one reason why our
study detected a larger number of differentially methy-
lated genes in carcinoma. Kim’s study compared the
methylation in paired samples like ours, but they looked
at gene expression in a different set of individuals.
While they looked for effect of methylation on gene
expression, they could not find statistically significant
difference in the mRNA expression level between pro-
moter hypermethylation group and hypomethylation
group, whereas we were able to calculate correlation
coefficients using paired data in every gene and found
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several significant correlations. The only other genome-
wide methylation study in CRC addressing promoter
CpG loci using commercially available array, used much
lower density array (only 1505 CpG loci) [9].

Our study in south-east Asian population suggests
that, in comparison to the normal colonic mucosa, the
corresponding CRC tissue shows a large number of dif-
ferentially methylated loci within the CpG islands close
to the transcript start site of genes, indicating the role
of DNA methylation in the pathogenesis of colorectal
carcinoma. The results from our study not only confirm
the findings from many previous candidate gene
approach based studies, but we also report a large num-
ber of novel loci that show differential methylation in
CRC.

We noticed the influence of sex on genome-wide
methylation that is explained by the X-inactivation pro-
cess, in which one of the two copies of genes on the X-

chromosome in females is silenced. A similar finding
was also recently reported by Liu et al. [34].

Laird et al. [35] has recently focused on the different
statistical issues for methylation data. We applied differ-
ent normalization methods and found considerable
overlap between the results. Use of stringent criteria for
selecting differentially methylated loci and the consider-
able overlap between the results from different analyses,
the 2-level cross validation and finally the q-PCR valida-
tion in subset suggest that we detected the truly differ-
entially methylated loci in CRC.

Recently Irizarry et al. used a Comprehensive High-
throughput Array for Relative Methylation (CHARM)
assay to show that most methylation alterations in CRC
occur up to 2000 bp away from the CpG islands them-
selves [31]. Because of the design of the chip used in the
present study, we did not have the opportunity to look
at the differential methylation at loci > 1500 bp away
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from the TSS. However, similar to results from Irizarry
et al. [31], we also found that the hypomethylated loci
were slightly more upstream than the hypermethylated
loci.

The cross-validation results are very encouraging as a
potential biomarker, but we have cross-validated only in
colon tissues and not in circulating plasma DNA. In the
future we would like to test the markers in an indepen-
dent sample set of circulating plasma or serum DNA in
CRC patients and healthy individuals. Recently He et al.
[36] selected three methylation markers from the pub-
lished literature and tested the practical use of those
markers in peripheral blood sample from CRC patients.
They found a sensitivity of 81% and a specificity of 90%.
We had the advantage of profiling a very large number
of CpG loci in paired CRC and normal colonic mucosa
tissue, and our 2-level cross validation suggested that
the four markers could be used as biomarkers with
slightly better test characteristics.

Tanaka et al. [37] have recently applied an analytical
strategy known as structural equation modeling to
understanding methylation in CRC. Using a large data-
base of over 800 samples, the authors were able to con-
struct causality pathways of KRAS and BRAF mutations,
as well as various phenotypes, on methylation of specific
genes. This strategy was not feasible for our current
study because of our smaller sample size and because
we had not obtained information on KRAS and BRAF
mutations. Nonetheless, it will be valuable for our
planned future study with an expanded cohort.

[llumina’s methylation assay has been compared to
other platforms by others and has shown dependable
results with the correlation ranging from 0.8 to 0.9
[32,33,38]. We also have validated the methylation data
form Infinium methylation for 12 of the highly differen-
tially methylated genes in our study and also found
similar high correlations with Methyl Profiler assay (see
Additional File 1 Table-S4 and Additional File 5 Figure
S4). In another study, reproducibility tests of Infinium
methylation platform was reported to have correlation
greater than 0.98 between technical replicates [39]. We
are aware of the fact that Illumina’s Methylation27 assay
detects the methylation status of on average ~2 CpG
sites per gene for most genes. However, for the genes
for which there were multiple CpG loci on the array (e.
g. ESR1 or DAB2IP), we found all of the loci to be dif-
ferentially methylated in the same direction. We also
validated Illumina’s platform in the top-ranking genes
by methyl profiler PCR array which is (a) not dependent
on bisulfite conversion and also (b) provides an overall
methylation status of the target region as opposed to
single loci. This paper was focused mainly to look at
DML in CRC. However, we have also explored the link
between chromosomal abnormalities (copy number),
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methylation and gene expression. Regulation of gene
expression is complex and is not dependant only on
methylation status or copy number status. Using inte-
gration of molecular cytogenetics, genome-wide copy
number and expression microarray profiling, Camps et
al have demonstrated the effect of copy number on gene
expression in CRC [40]. To our knowledge, our study is
the first one to comprehensively look at the genome-
wide methylation, copy number and gene expression -
all three together in primary CRC tissue. In our study,
expression of a small proportion of genes was found to
be correlated to methylation and another small propor-
tion was correlated to copy number changes seen in
CRC. Although methylation status of many loci could
not explain the functional relevance to gene expression,
these promoters methylation may be used clinically as
biomarkers.

Conclusions

Our genome-wide methylation study in CRC clearly
supports most of the previous findings from the litera-
ture, and in addition to that we found a large number of
novel DML in CRC tissue, some of which may be used
for clinical application. Further study is warranted to
confirm these findings.

Additional material

Additional File 1: Table S1: Patient characteristics. Table S2: Result
from Gene Set Enrichment Analysis (GSEA) and GO-ANOVA. Table S3:
Differentially methylated loci (DML) in CRC compared to adjacent normal
colonic mucosa. Table S4: Validation of microarray methylation data by
gPCR-based methyl profiler assay of twelve genes in paired samples from
10 patients (20 samples).

Additional File 2: Figure S1: Electropherogram of DNA samples.
Agilent 2100 BioAnalyzer electropherogram of 10 DNA samples (in
different colors) overlaid on ladder marker (shown in violet). Size (bp) of
each peak of the DNA ladder in shown on the top of each peak. The
figure shows DNA fragment size >10000 bp.

Additional File 3: Figure S2: Volcano plot showing methylation
status of previously reported genes in our samples. The Delta B is
shown on x-axis and ANOVA p-value on the y-axis. A: represents the 245
loci covering the previously reported genes mainly from candidate gene
approach-based studies; B: represents the 376 loci covering the 132
genes reported from a single study based on genome-wide approach
(although testing only 1505 CpG sites). The side bar shows the color
scale depending on Delta B where blue indicates hypomethylation and
red indicates hypermethylation in CRC.

Additional File 4: Figure S3: Heatmap of 14 loci that are
differentially methylated in proximal CRC compared to distal CRC.
Unsupervised hierarchical clustering of the 14 loci (rows) in 24 CRC
samples (columns). Thirteen of these loci were hypermethylated in
proximal CRC compared to distal CRC. The two major clusters generated
(top dendogram) in this analysis separated most of the proximal CRC
tissues from the distal CRC tissues. Age at diagnosis (>45 yrs or = <45 yrs
and the differentiation of the tumor (moderately differentiated or poorly
differentiated) are shown above the heatmap.

Additional File 5: Figure S4. Comparison between g-PCR and
microarray methylation data. Graphs are shown for the 12 genes
validated by g-PCR. The y-axis plots the B value from microarray data.
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The x-axis plots the proportion of intermediately methylated and
hypermethylated DNA.
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