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Combinations of newly confirmed Glioma-
Associated loci link regions on chromosomes
1 and 9 to increased disease risk
Tun-Hsiang Yang1, Mark Kon1,2, Jui-Hung Hung1 and Charles DeLisi1,3*

Abstract

Background: Glioblastoma multiforme (GBM) tends to occur between the ages of 45 and 70. This relatively
early onset and its poor prognosis make the impact of GBM on public health far greater than would be
suggested by its relatively low frequency. Tissue and blood samples have now been collected for a number
of populations, and predisposing alleles have been sought by several different genome-wide association
(GWA) studies. The Cancer Genome Atlas (TCGA) at NIH has also collected a considerable amount of data.
Because of the low concordance between the results obtained using different populations, only 14
predisposing single nucleotide polymorphism (SNP) candidates in five genomic regions have been replicated
in two or more studies. The purpose of this paper is to present an improved approach to biomarker
identification.

Methods: Association analysis was performed with control of population stratifications using the EIGENSTRAT
package, under the null hypothesis of “no association between GBM and control SNP genotypes,” based on an
additive inheritance model. Genes that are strongly correlated with identified SNPs were determined by linkage
disequilibrium (LD) or expression quantitative trait locus (eQTL) analysis. A new approach that combines meta-
analysis and pathway enrichment analysis identified additional genes.

Results: (i) A meta-analysis of SNP data from TCGA and the Adult Glioma Study identifies 12 predisposing SNP
candidates, seven of which are reported for the first time. These SNPs fall in five genomic regions (5p15.33, 9p21.3,
1p21.2, 3q26.2 and 7p15.3), three of which have not been previously reported. (ii) 25 genes are strongly correlated
with these 12 SNPs, eight of which are known to be cancer-associated. (iii) The relative risk for GBM is highest for
risk allele combinations on chromosomes 1 and 9. (iv) A combined meta-analysis/pathway analysis identified an
additional four genes. All of these have been identified as cancer-related, but have not been previously associated
with glioma. (v) Some SNPs that do not occur reproducibly across populations are in reproducible (invariant)
pathways, suggesting that they affect the same biological process, and that population discordance can be
partially resolved by evaluating processes rather than genes.

Conclusion: We have uncovered 29 glioma-associated gene candidates; 12 of them known to be cancer related (p
= 1. 4 × 10-6), providing additional statistical support for the relevance of the new candidates. This additional
information on risk loci is potentially important for identifying Caucasian individuals at risk for glioma, and for
assessing relative risk.
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Background
Determining the molecular changes that underlie phe-
notypic distinctions is a major thrust of cell biology.
More specifically, identifying the precise DNA altera-
tions in the genes and regulatory regions that underlie
predisposition, initiation and progression of tumors is a
central theme of biomedical research. Understanding
the molecular changes associated with initiation and
progression requires tissue samples from the tumor
itself which are often difficult to obtain, as well as from
a suitable control population. On the other hand, under-
standing molecular changes associated with predisposi-
tion requires only genomic DNA (e.g., from white blood
cells) from the target and control populations, which
can be obtained relatively readily. In this manuscript we
focus on the latter, since that is where the preponder-
ance of available information is. The methods can, how-
ever, be easily extended to the study of somatic genomic
associations as control tissue samples from the brain
become available.
Identifying predisposition involves (i) identification of

the approximate genomic location of a change correlat-
ing with phenotypic distinction, which is usually done
by finding correlative single nucleotide polymorphisms
(SNPs), followed by (ii) the identification of genes or
promoters in strong linkage disequilibrium with the
SNPs, i.e. those that are coinherited. Following this is
(iii) a search for mechanisms, such as point mutations,
deletions, and translocations, which can be carried out
by sequencing identified genomic regions in a suffi-
ciently large number of samples from affected and con-
trol populations.
Here we focus on identifying regions and genes that

predispose to glioblastoma multiforme (GBM) (i.e. (i)
and (ii), above) by conducting a genome-wide associa-
tion (GWA) study. A number of such studies have
already been carried out for GBM and, as is typical for
such studies, very few genes have been consistently
identified across different populations [1,2].

Methods
Populations
The Cancer Genome Atlas (TCGA) samples
To identify risk variants for glioma, we conducted a
principal component-adjusted genome-wide association
(GWA) study on The Cancer Genome Atlas (TCGA) [3]
SNP data. TCGA contains 226 blood samples from
glioma patients. Genotypes were determined using the
Illumina 550 K HumanHap SNP Array. We eliminated
all samples for which more than 5% of the SNPs were
missing, and eliminated all SNPs that (i) were deter-
mined in fewer than 95% of the samples, (ii) had minor
allele frequency less than 5%, or (iii) had a Hardy-

Weinberg p-value of less than 10-6. The procedure is
outlined in Figure 1. In order to minimize the con-
founding effects of ethnicity-specific SNP frequencies in
TCGA samples, we confined our study to European
Americans, which was the predominant ethnic group in
the data. Ethnicity was determined using a two-step
screening procedure: (a) self-report of ancestry, and (b)
computationally-assisted stratification. The latter was
carried out using the EIGENSTRAT package [4]. After
this screening, 179 TCGA samples remained. Of these,
we used for confirmation only the 92 that were released
after August 2009, since the majority of prior samples
were included in the Adult Glioma Study (AGS) [1].
Control Samples
Normal European American blood samples (n = 1366)
were downloaded from the Illumina iControlDB (iCon-
trols) as the comparison group. After screening, 1306
control samples remained. Because the iControl has
more than 3000 samples, we treat it as a background
population for our TCGA analysis and use it as a con-
trol group (that is also used in AGS). Its treatment as a
background population means that we would not expect
the results to change with another sample from the
same background population. As a partial check of this
statement, we divided the glioma samples from TCGA
into 2 independent samples, conducting a GWA analysis
on each using the same iControl population. If the use
of a single control created bias, we’d expect overlapping
results. In fact the results have no overlap SNP at the
10-6 significance level (Additional file 1).

Statistical Methods
Association Analysis
Association analysis was performed using the EIGEN-
STRAT package, under the null hypothesis of “no asso-
ciation between the GBM and control SNP genotypes”
based on an additive inheritance model [4]. The signifi-
cance threshold p for association needed to be set strin-
gently to allow for the large number of multiple tests in
the GWA study. In particular, if we require that the
probability of 1 or more false positives be less than 0.05,
we must have 1-e-Np ≤ 0.05 or p ≤ 0.93 × 10-7 ≈ 10-7 with
N, the total number of SNPs examined, taken as 550,000.
At this level, few if any SNPs will be detected for typical
glioma population sizes. The alternative is to accept a
less stringent p-value, and to eliminate false discoveries
by seeking confirmation in an independent study.
Meta-analysis
Rigorous methods for combining p-values from two
independent studies were used. Since the AGS study has
many more participants than TCGA, we used unequal
weights and employed the method of Stouffer. In parti-
cular, the fused p-value is given by
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where we take sample-specific weights (Wi) propor-
tional to the square root of the “total number of indivi-
duals” and Zi = F-1(1-pi); F

-1 (.) is an inverse standard
normal CDF (cumulative distribution function). The
false discovery rate is estimated as the fused probability

The sample in our study after quality control:

179 glioma cases from TCGA.
(92 were released after Aug. 2009) 

1306 from Illumina controls (iControls) 

The sample in AGS study after quality control:

692 high-grade glioma cases 
--602 from AGS
--70 glioma cases from TCGA
3,992 controls 
--602 controls from AGS
--3390 from Illumina controls (iControls) 

excluding SNPs with Minor Allele Frequency < 5% 

excluding SNPs with P value< 10^-5 for
Hardy-Weinberg equilibrium in either AGS 
controls or iControls

excluding >5% missing genotyping data in any of 
the four subject groups, AGS cases or controls, 
iControls or TCGA cases

 

excluding SNPs with Minor Allele Frequency < 5% 

excluding SNPs with P<10^-6 for
Hardy-Weinberg equilibrium in either AGS controls 
or iControls

excluding >5% missing genotyping data in any of 
the four subject groups, AGS cases or controls, 
iControls or TCGA cases

489,781 SNPs left from 550K 
SNPs in our TCGA study

275,895 SNPs left from 
300k SNPs in AGS study

Checked for evidence of non-European ancestry and sample duplicates or 
related subjects among AGS samples, TCGA and iControls by performing 
multidimensional scaling (MDS) and EIGENSTRAT package

Figure 1 Subjects and single-SNP exclusion schema for genome-wide association studies.
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multiplied by the total number of SNPs, which was
300,000 in the AGS study.
The procedure for calculating the fused p-values

begins with lists of SNPs that have p-values of less than
0.001 in each population. We walk down this list, calcu-
lating a combined p value (equation (1)) for each pair,
and accept all SNPs for which the false discovery rate
(FDR) is less than 0.05 (or equivalently p12 = 0.05/
300,000 = 1.7 × 10-7 ; see Table 1 and additional file 2).
When p exceeds 0.001 in either population, P12 no
longer meets the required threshold, and the walk stops.
As a practical matter, the walk can be stopped at more
stringent p values without changing the main conclu-
sions. In particular stopping AGS at p = 10-5, and
TCGA at 10-3, while requiring that p12 pass the genomic
significance level (1.7 × 10-7), loses only 2 SNPs
(rs12021720 and rs2810424), neither of which adds new
genomic regions.
eQTL Correlation
We use the coefficient of determination, R2, to identify
the genes with strong eQTL correlation with the SNPs,
identified by meta-analysis. R2 was calculated based on
the correlation between gene expression level and SNP
genotype, using the “SCAN: SNP and CNV Annotation
Database” resource (http://scan.bsd.uchicago.edu/newin-
terface/index.html). Genes/SNP combinations with R2

greater than 0.8 were considered to be strongly
correlated.
Odds Ratio
The odds ratio for glioma susceptibility is defined and
calculated as follows. For any pair or triplet of the
above-mentioned risk alleles, define:

n11: number of individuals with the given risk allele
combination in the glioma sample
n12: number of individuals without the risk allele
combination in the glioma sample
n21: number of individuals with the risk allele combi-
nation in the control sample
n22: number of individuals without the risk allele
combination in the control sample

Then the susceptibility odds ratio (OR) is given by

OR =
n11n22
n12n21

(2)

We identified 50 SNP pairs and 88 SNP triplets with
significant odds ratios after ruling out combinations of
SNPs that were within the same chromosome. Statistical
analyses were implemented using R (v2.7) and PLINK
(v1.07) [5]. Combinations with odds ratios greater than
three, along with p-values, are shown in Table 2, which
also shows that SNP combinations from chromosomes 1

and 9 are associated with the highest relative risk. Results
for all possible pair and triplet combinations (including
SNPs within 1 Mb of each other) of the 12 SNPs with OR
> 3 and for which the risk allele occurrence frequency is
> 0.05, can be found in additional file 3.
Identification of Associated Pathways and Genes
Tumor initiation is associated with alterations in physio-
logical processes that involve sets of genes and allelic
variants in any of several such genes, not all revealed in
a single population.
The standard method for identifying altered processes

is a pathway enrichment analysis, which can be carried
out using a single population [6]. In this case, pathways
would be identified by showing that the number of sig-
nificant SNPs/genes occurring in a particular pathway is
above chance expectation. The procedure that we
describe here extends this methodology to multiple
populations. The assignment of a SNP/gene to a parti-
cular pathway using a single population is done using a
significance threshold which is loose enough to allow
multiple assignments from that population, but not
stringent enough for an acceptable FDR in the single
population. The FDR is brought down to an acceptable
level, as described below, when both populations assign
the same gene(s) to the same pathway.
The procedure begins as follows: (1) Identify SNPs

having a p-value < 10-3 in either of the populations. (2)
Identify genes that include these SNPs. (3) Assign the
genes thus obtained to KEGG [7] pathways.
In any given pathway, genes identified by the AGS

SNPs are generally different from those identified by our
TCGA SNPs. Because the p-value is not stringent (p <
0.001), there is a reasonable chance that a number of
SNPs, and therefore pathways, are false positives. We
reduced the likelihood of false positives by determining
whether, for a given pathway, the number of genes that
are common to the two datasets is greater than expected
by chance. In a particular pathway, if n1 genes are iden-
tified by TCGA data, and n2 by AGS (all at nominal p <
0.001), we calculate the hypergeometric probability of
finding at least n genes (the observed number) common
to the two sets. If we set an FDR = 0.05, we eliminate
all pathways for which the hypergeometric probability
exceeds 0.05 divided by the number of pathways to
which genes were assigned.

Results
Significant SNP candidates
Wrensch et al. [1] screened the Adult Glioma Study
(AGS) population using p = 10-6 and inferred 13 SNPs,
3 of which were confirmed in the Mayo Clinic popula-
tion at a multiple hypothesis corrected p-value of 0.0038
(0.05/13). In a similar fashion, we validated 4 of these
13 SNPs in the TCGA dataset: rs2736100 at
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Table 1 Concordant SNPs recovered from TCGA and AGS data, and associated genes

SNP chr gene location left_gene right_gene Genes correlated with SNP (R2) AGS (P1) TCGA (P2) FDR

rs2736100+ 5 TERT 5p15.33 SLC6A18 CLPTM1L NA 5.30E-13 2.66E-04 7.38E-09

rs1412829*+ 9 CDKN2A/B 9p21.3 LOC100130239 LOC729983 CDKN2A(1.0);
CDKN2B(1.0);
C9orf53(0.87)

3.40E-08 3.26E-03 1.27E-03

rs2157719 9 CDKN2A/B 9p21.3 LOC100130239 LOC729983 CDKN2A(0.97);
CDKN2B(0.97);
C9orf53(0.93);
RP11-145E5.4(0.97);
LOC100130239(0.97)

6.10E-08 8.00E-03 5.40E-03

rs1063192+ 9 CDKN2A/B 9p21.3 CDKN2A LOC100130239 CDKN2A(0.97);
CDKN2B(0.97);
C9orf53(0.93);
RP11-145E5.4(0.97);
LOC100130239(0.97)

9.20E-08 8.31E-03 7.95E-03

rs4977756+ 9 CDKN2A/B 9p21.3 LOC100130239 LOC729983 CDKN2A(0.97);
CDKN2B(0.97);
C9orf53(0.93);
RP11-145E5.4(0.97);
LOC100130239(0.97)

4.20E-07 1.12E-02 3.90E-02

rs7530361 1 SLC35A3 1p21.2 LOC730081 HIAT1 SLC35A3(1.0);
CCDC76(0.95);
HIAT1(1.0);
LRRC39(0.95);
SASS6(1.0);
BRI3P1(0.95);
LOC730081(1.0)

6.50E-07 2.19E-06 4.29E-05

rs501700 1 HIAT1 1p21.2 SLC35A3 SASS6 DBT(0.95);
RTCD1(0.89);
SLC35A3(1.0);
CCDC76(0.95);
HIAT1(1.0);
LRRC39(0.94);
SASS6(1.0);
BRI3P1(0.94);
LOC730081(1.0)

7.10E-07 5.99E-06 9.72E-05

rs1920116 3 LRRC31 3q26.2 LRRIQ4 KRT18P43 MYNN(0.89);
LRRC31(1);
ARPM1(0.85);
KRT18P43(1)
LRRC34(1)

1.40E-06 2.88E-03 2.81E-02

rs506044 1 SASS6 1p21.2 SASS6 LRRC39 DBT(1.0);
RTCD1(0.89);
SLC35A3(0.95);
CCDC76(1.0);
HIAT1(1.0);
LRRC39(1.0);
SASS6(1.0);
BRI3P1(0.95);
LOC730081(0.94)

2.10E-06 2.45E-06 1.57E-04

rs640030 1 SASS6 1p21.2 HIAT1 CCDC76 DBT(1.0);
RTCD1(0.89);
SLC35A3(0.95);
CCDC76(1.0);
HIAT1(1.0);
LRRC39(1.0);
SASS6(1.0);
BRI3P1(0.95);
LOC730081(0.94)

2.40E-06 2.57E-06 1.86E-04
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chromosome 5p15.33, rs1412829 at 9p21.3, and
rs7530361 and rs501700 at 1p21.2 (Table 1, boldface).
The last two SNPs are reported as validations for the
first time. The above confirmation-based method of cor-
rection used for multiple hypotheses is an approxima-
tion which gives primacy to one of the populations. The
difficulty can be illustrated by first screening on the
TCGA data set rather than on the AGS dataset. Using p
= 10-6, two SNPs are found for the TCGA screen:
rs11840214 in gene EFNB2 at 13q33 (p = 1.08 × 10-7)

and rs1909486 at 8q24 (p = 4.3 × 10-7), and neither of
these can be confirmed on the AGS population.
Joint rather than sequential analysis of data from two

or more populations can increase the power to detect
genetic associations [8]. In particular, using equation (1)
in Methods, we identified 12 SNPs (Table 1), confirmed
by AGS and TCGA at an FDR < 0.05, one of which was
previously confirmed by Wrensch et al. [1] and Shete et
al. [2]. Of the 11 remaining SNPs, 4 have been reported
by Shete et al., and the remaining 7 SNPs are reported

Table 2 Pairwise and triplet SNP combinations with odds ratios greater than 3

SNP Combinations +RISK ALLELE Freq OReq2 p-value

*rs1412829 (1.58) #rs7530361 (1.89) 11 5.45E-02 3.31 3.58E-07

*rs1412829 (1.58) #rs501700 (1.90) 11 5.51E-02 3.09 1.95E-06

*rs1412829 (1.58) #rs506044 (1.96) 11 5.47E-02 3.23 5.15E-07

*rs1412829 (1.58) #rs640030 (1.95) 11 5.42E-02 3.28 4.30E-07

*rs1412829 (1.58) #rs687513 (1.93) 11 5.52E-02 3.18 7.32E-07

*rs2157719 (1.49) #rs7530361 (1.89) 11 5.51E-02 3.2 6.83E-07

*rs2157719 (1.49) #rs506044 (1.96) 11 5.54E-02 3.12 9.64E-07

*rs2157719 (1.49) #rs640030 (1.95) 11 5.49E-02 3.16 8.12E-07

*rs2157719 (1.49) #rs687513 (1.93) 11 5.59E-02 3.07 1.35E-06

*rs1063192 (1.42) #rs7530361 (1.89) 11 5.60E-02 3.12 1.13E-06

*rs1063192 (1.42) #rs506044 (1.96) 11 5.63E-02 3.05 1.60E-06

*rs1063192 (1.42) #rs640030 (1.95) 11 5.59E-02 3.08 1.35E-06

*rs4977756 (1.60) #rs7530361 (1.89) 11 5.35E-02 4.28 3.14E-10

*rs4977756 (1.60) #rs501700 (1.90) 11 5.44E-02 4.17 5.57E-10

*rs4977756 (1.60) #rs506044 (1.96) 11 5.36E-02 4.18 4.46E-10

*rs4977756 (1.60) #rs640030 (1.95) 11 5.31E-02 4.24 3.66E-10

*rs4977756 (1.60) #rs687513 (1.93) 11 5.41E-02 4.1 6.86E-10

rs2736100 (0.63) #rs7530361 (1.89) rs1920116 (0.68) 212 5.01E-02 4.3 5.02E-10

rs11823971 (1.45) *rs1412829 (1.58) #rs7530361 (1.89) 211 5.21E-02 3.04 5.05E-06

rs11823971 (1.45) *rs1412829 (1.58) #rs506044 (1.96) 211 5.26E-02 3.01 4.67E-06

Numbers in parenthesis are single SNP odds ratios. Last column is the Wald test p-value for the odds ratio of the combination. This is an unadjusted p-value,
with an 0.05 multiple testing adjusted threshold of p = .05/(50+88) = 3.6 × 10-4. Freq denotes the combined frequency of the given combination in the case and
control populations as a whole.

+ Denotes alleles in which significant shifts occur. 11 denotes significant shift in the minor alleles for both SNPs. 212 denotes significant shifts in major, minor
major; 211, significant shifts in major, minor, minor.

# denotes SNP on chromosome 1

* denotes SNP on chromosome 9 in gene CDKN2A/2B.

Table 1 Concordant SNPs recovered from TCGA and AGS data, and associated genes (Continued)

rs687513 1 SASS6 1p21.2 SASS6 LRRC39 DBT(0.95);
RTCD1(0.90);
SLC35A3(0.94);
CCDC76(1.0);
HIAT1(1.0);
LRRC39(1.0);
SASS6(1.0);
BRI3P1(0.95);
LOC730081(0.90)

2.90E-06 3.91E-06 3.03E-04

rs3779505 7 ITGB8 7p15.3 MACC1 LOC100130234 ITGB8(1.0) 3.00E-06 5.67E-04 1.35E-02

Concordant SNPs (FDR < 0.05) recovered from TCGA (n = 97) and AGS data (n = 692), and associated genes. The blue boldface indicates the genes that are
known to be cancer-associated.

+ reported by Shete et, al.

* reported by Wrensch et, al. and validated on Mayo Clinic population

FDR: Bonferroni corrected False Discovery Rate = 3 × 105P12 (eq. 1)
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for the first time here. The 12 SNPs are distributed over
five genomic regions, including chromsomes 5q15.33,
9q21.3, 1p21.2, 3q26.2 and 7p15.3. Two of these,
5q15.33 and 9q21.3, have been reported in previous stu-
dies [1,2]. The 12 SNPs are in strong linkage disequili-
brium with 25 genes, 8 of which are known to be
associated with cancer (indicated in boldface in Table
1). An additional SNP of interest is rs12341266 at 9q32,
which has an FDR of 0.06 and is in the glioma asso-
ciated gene, RGS3 (Additional file 2).
Odds ratio for combinatory SNPs
The analysis of TCGA and AGS identifies 12 SNPs, 7 of
which have not been previously reported. One of the
implications of identifying these additional SNPs is that
the number of associated gene groups that can be used
to estimate the odds ratio increases combinatorially.
Consequently we can expect higher prognostic reliability
for individuals possessing a combination of risk alleles,
although at some loss of population coverage. We con-
sider here all combinations of two and three SNPs,
while constraining our choices to SNPs that are more
than a mega-base (Mb) apart, in order to minimize
redundant (disequilibrated) information. Specifically, the
12 SNPs are divided into 5 groups based on their chro-
mosomal locations. Chromosome 1 has 5 SNPs clus-
tered together within 1 Mb, and chromosome 9 has 4
SNPs within 1 Mb around genes CDKN2A, 2B. The

remaining 3 SNPs are located on chromosomes 3, 5,
and 7.

Genes Identified by Conserved Pathway Analysis
We identified 49 pathways (Additional file 4) that con-
tain genes associated with loosely defined AGS or
TCGA SNPs (p-value < 0.001). 13 of them meet the
hypergeometric test at a p-value of 0.001 (an FDR of
0.05 divided by 49), i.e. pathways that are relevant to
both populations. Each of the 13 pathways has one com-
mon gene from the two groups (Table 3). Five genes,
FHIT, GABRG3, PRKG1, DCC, and ITGB8, occurred in
more than one of these pathways.

Discussion
Genes strongly correlated with SNP candidates
Eight of the 25 genes we identified are known to be can-
cer-associated. These include TERT [1,9,10], SLC6A18
[9], CLPTM1L [9,10], CDKN2A/B [1,11,12], SASS6 [13],
ITGB8 [14], and MACC1 [15] (Table 1). Five of the
genes, TERT, SLC6A18, CLPTM1L, and CDKN2A/B,
have previously been shown to be associated with
glioma by other GWA studies.
Our combined GWA/pathway analysis predicts four

additional genes that are identified in the literature as
cancer-related. We therefore predict 29 glioma-asso-
ciated genes, 12 of them known from previous studies

Table 3 Pathways that contain significant SNPs (p < 10-3) inferred from both AGS and TCGA samples

PATHWAY* AGS_SNP GENE TCGA_SNP GENE

Purine metabolism (p = 3.50E-04)**

Small cell lung cancer (p = 4.35E-04) **

Non-small cell lung cancer (p = 2.6E-04) ** rs7617530 FHIT rs13059601 FHIT

Neuroactive ligand-receptor interaction (p = 8.00E-04) ** rs1011455 GABRG3

rs4887546 GABRG3

rs1011456 GABRG3 rs12904325 GABRG3

Vascular smooth muscle contraction (p = 3.48E-04) **

Gap junction (p = 1.30E-04) ** rs4400745 PRKG1

Long-term depression (p = 6.95E-04) **

Olfactory transduction (p = 3.47E-04) ** rs4466778 PRKG1 rs1922139 PRKG1

Axon guidance (p = 3.91E-04) ** rs11082983 DCC

Pathways in cancer (p = 2.13E-03) rs11872471 DCC

Colorectal cancer (p = 8.69E-05) ** rs1145245 DCC rs12604940 DCC

Focal adhesion (p = 1.95E-03)

ECM-receptor interaction (p = 8.69E-04) **

Cell adhesion molecules (CAMs) (p = 1.74E-04) ** rs3779505 ITGB8

Regulation of actin cytoskeleton (p = 1.56E-03) rs2301727 ITGB8

Hypertrophic cardiomyopathy (HCM) (p = 1.22E-03) rs3807936 ITGB8

Arrhythmogenic right ventricular cardiomyopathy (ARVC) (p = 9.12E-04) **

Dilated cardiomyopathy (p = 1.04E-03) rs2158250 ITGB8 rs3779505 ITGB8

* p = Probability of the gene overlap in two independent populations. Multiple testing adjusted threshold of p = .05/49 = 10-3

** Pathways with p < 10-3
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to be cancer-related. It is useful to evaluate the prob-
ability that as many as 12 cancer-related genes in a set
of 29 would be found by chance. If we use the fraction
of OMIM genes that are cancer-related as an estimate
of the background frequency of cancer genes in the dis-
ease gene population, the probability that 29 genes
include 12 cancer-associated genes by chance is 1.4 ×
10-6. The fraction of OMIM genes that are cancer-
related is 0.1 (750 cancer-associated genes in 7381
OMIM genes).
Each of the 8 cancer-related genes listed above plays

one or more key roles in processes known to be altered
during tumor initiation and development [16]. For
example, MACC1 is a growth pathway regulator influen-
cing angiogenesis and processes related to metastasis
[15]; CDKN2A is a well-studied cell cycle regulator [12]
and a known tumor suppressor whose loss results in a
diminished ability to regulate growth and predisposition
to cancer [11]; ITGB8 has been implicated in activities
related to metastasis, including adhesion and migration
[14]; and the telomerase enzyme (TERT) is linked to
unlimited replication [1]. It is worth noting that
CDKN2A, 2B are in strong linkage disequilibrium with
rs1412829 at 9p21.3, which has now been identified in 3
independent studies and should therefore be considered
an unusually high confidence cancer gene marker.

Aberrant processes
As noted in the Background, the identification of dis-
ease-associated SNPs by GWA studies tends to have low
concordance when different populations are compared.
An example is the above-mentioned verification in the
Mayo Clinic population of only 3 out of the 13 SNPs
identified in the AGS population. Our own results iden-
tified 12 SNPs based on a meta-analysis of TCGA and
AGS. These include 5 of 14 glioma-associated SNPs that
had already been verified by at least 2 other studies.
There are many reasons for this, including possible dif-
ferences in ethnicity and other less obvious stratifiers,
and differences in sample size and background popula-
tions. We believe, however, that an additional reason of
an entirely different nature is present which, roughly
stated, is that different genes contribute to the same
phenotype.
Recent evidence based in clinical epidemiology, com-

putational genomics and various model systems [17-21]
suggests that disease phenotypes emerge from dysfunc-
tion of one or more components of a functionally coher-
ent gene module. Importantly, the dysfunctions (such as
mutations in a gene or its promoter, post-translational
modifications, multiple copy number variations, translo-
cations) need not be the same, nor need they be in the
same gene, in different individuals with the same disease
phenotype. Since alterations in different genes in the

same functional module (e.g. a pathway) can lead to the
same dysfunction, low reproducibility rates in GWA stu-
dies – aimed at identifying DNA loci having inherited
alterations that predispose to complex disorders – are
not surprising. We might, however, expect greater con-
cordance between populations if aberrant functional
modules of genes were compared.
In fact we do find that some SNPs not invariant across

populations appear in pathways that are invariant, sug-
gesting that the SNPs, however different, are linked to
genes that contribute to the same biological process,
and that population discordance of SNPs can be par-
tially resolved by evaluating processes rather than genes.
Among the 406 AGS SNPs having p-value < 0.001, only
3% (12 out of 406) are invariant; i.e. have significant
fused p-values. This contrasts with 19% of the non-
invariant SNPs (75 out of the remaining 394) being in
one of the 13 invariant pathways. In addition, as noted
above, five genes, each appearing in two or more of
these pathways, are invariant across the two populations.
ITGB8 was obtained by GWA study and discussed

briefly above. Each of the other 4 genes also affects pro-
cesses involved in cancer progression. More specifically,
each has either been previously associated with cancer
(DCC in the Online Mendelian Inheritance in Man
(OMIM) [22]; FHIT and DCC in the Genome Associa-
tion Database (GAD) [23]), or belongs to a gene family
that has been previously associated with some form of
cancer (the Kinase gene PRKG1, and the GABA receptor
subunit gene GABRG3).
(a) FHIT (the fragile histidine triad gene) is believed to

be a tumor suppressor, consistent with its deletion in a
number of tumor types [24], including primary brain
tumors [25].
(b) The crucial role of dysregulated signalling path-

ways in cancer development, and the frequent therapeu-
tic targeting of kinases, makes association with the
cyclic GMP-dependent protein kinase PRKG1 a plausi-
ble finding. This appears to be the first time this parti-
cular kinase has been associated with human cancer.
(c) DCC, the deleted colorectal carcinoma gene, has

(as its name implies) been well studied and has been
implicated in a number of cancers in addition to color-
ectal cancer [26]. DCC is an axon guidance receptor
that responds to netrin-1 [27], and is a component of a
pathway implicated in the regulation of angiogenesis,
cell survival, apoptosis, and cell positioning and migra-
tion [28], all of which adds to the biological plausibility
of this finding.
(d) The GABA-A receptor gene family encodes the

major inhibitory neurotransmitter receptors in the cen-
tral nervous system; changes in GABA-A receptor func-
tion have been implicated in diseases as diverse as
alcoholism, epilepsy, schizophrenia, autism and
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Alzheimer’s disease. Over 19 different subunit genes
code for the pentameric GABA-A receptors, pharmaco-
logically distinct forms of inhibitory neurotransmitter
receptors that change their expression levels either dur-
ing development or in disease [29]. Because of this com-
plexity, elucidating molecular details of its role in many
diseases is slow. The ligand GABA may be involved in
metastatic prostate cancer [30], making association with
aberrant forms of the receptor plausible, and the recep-
tor itself has in fact been implicated in prostate cancer
[31], and at least one of its subunits has been found to
stimulate the development of pancreatic cancer [32].
This brief context, and the fact that glioma is also a dis-
ease of the brain, suggest that the association we find is
biologically plausible.
In fact the finding that all 4 genes are plausibly asso-

ciated with cancer may itself be significant. If we use the
conservative estimate that two of the four (FHIT and
DCC) are taken as cancer-associated because of their
inclusion in GAD, we obtain 0.0015 as the probability of
chance occurrence. We therefore expect that although
the procedure we outline is perhaps more heuristic than
rigorous, it yields highly suggestive candidates, which
should be of interest to glioma researchers.

Odds ratios
It is evident that the greater the number of risk allele
candidates, the greater the chance of identifying a
potentially predisposed individual if all such genes are
assayed. In addition, however, increasing knowledge of
risk alleles affects not just the chance of identification,
but the reliability, which will also increase to some
extent. The reason for this is related to the chance of
observing a combination of risk alleles in the same indi-
vidual, and the fact that the number of combinations
grows as a 2r, where r is the number of known risk
alleles. As an example we calculated the odds for all
doublet and triplet combinations for the 12 SNPs
obtained by a meta-analysis of the AGS and TCGA
populations, and list those with odds ratio > 3 in Table
S3. Perhaps the most interesting result is the extremely
high odds ratio (OR = 5) associated with the two alleles
rs1412829 and rs4977756, both of which are in a cyclin
dependent kinase.

Conclusion
In this paper we demonstrate that a meta-analysis of
SNP data from TCGA which have not been previously
analyzed, together with data from the Adult Glioma
Study, identify 12 glioma-associated SNPs which repre-
sent 5 genomic regions – 5p15.33, 9p21.3, 1p21.2,
3q26.2 and 7p15.3 – three of these not previously
reported. Of the 12 SNPs identified in this study, 5 have
been previously reported and verified by other studies

[1,2], while the remaining 7 are novel candidates. Eight
genes known to be cancer-associated are included in, or
are in strong linkage disequilibrium with, one or more
of these SNPs. An additional 4 genes (PRKG1, FHIT,
GABRG3 and DCC ) are identified by a combined path-
way enrichment GWA analysis. In all we obtain 29
genes, of which 12 are known to be cancer related.
We have shown that the greatest relative risk occurs

when risk alleles are present on chromosomes 1 and 9.
Finally based on an analysis of the processes in which
candidate genes are involved, we suggest that processes
rather than genes are the most informative way to com-
pare different populations, and have shown that such
comparisons reduce discordance by approximately 19%.

Additional material

Additional file 1: Table S1. We divided the glioma samples from TCGA
into 2 independent samples (P1 and P2), conducting a GWA analysis on
each using the same i-control population. If the use of a single control
created bias, we’d expect overlapping results. In fact the results are quite
different.

Additional file 2: Table S2. The top 406 SNPs reported by Wrensch et
al, (2009) with their AGS pvalues (P1), TCGA pvalues (P2), and Stoufer’s
combined pvalues(P12).

Additional file 3: Table S3. Pairwise and triplet SNP combinations with
odds ratios greater than 3. Combinations of 12 Confirmed Glioma
associated SNPs.

Additional file 4: Table S4. KEGG pathways with SNPs (p < 0.001) from
both AGS and TCGA studies. Boldface denotes pathways with significant
genes that are common to both populations.
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