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Abstract

Background: Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation, obesity, and
deregulation of total body energy homeostasis. We induced inflammation in adipose and liver tissues in vitro in
order to mimic inflammation in vivo with the aim to identify tissue-specific processes implicated in IR and to find
biomarkers indicative for tissue-specific IR.

Methods: Human adipose and liver tissues were cultured in the absence or presence of LPS and DNA Microarray
Technology was applied for their transcriptome analysis. Gene Ontology (GO), gene functional analysis, and
prediction of genes encoding for secretome were performed using publicly available bioinformatics tools (DAVID,
STRING, SecretomeP). The transcriptome data were validated by proteomics analysis of the inflamed adipose tissue
secretome.

Results: LPS treatment significantly affected 667 and 483 genes in adipose and liver tissues respectively. The GO
analysis revealed that during inflammation adipose tissue, compared to liver tissue, had more significantly
upregulated genes, GO terms, and functional clusters related to inflammation and angiogenesis. The secretome
prediction led to identification of 399 and 236 genes in adipose and liver tissue respectively. The secretomes of
both tissues shared 66 genes and the remaining genes were the differential candidate biomarkers indicative for
inflamed adipose or liver tissue. The transcriptome data of the inflamed adipose tissue secretome showed excellent
correlation with the proteomics data.

Conclusions: The higher number of altered proinflammatory genes, GO processes, and genes encoding for
secretome during inflammation in adipose tissue compared to liver tissue, suggests that adipose tissue is the major
organ contributing to the development of systemic inflammation observed in IR. The identified tissue-specific
functional clusters and biomarkers might be used in a strategy for the development of tissue-targeted treatment of
insulin resistance in patients.
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Background

Adipose tissue is an important metabolic and endocrine
organ that secretes numerous biologically active proteins
(adipokines) such as leptin, adiponectin, many cytokines,
and chemokines [1]. During the development of obesity,
adipose tissue undergoes a switch from being mainly a
metabolic organ towards an organ that shows substan-
tial pro-inflammatory activity, associated with decreased
insulin sensitivity, declined expression of adiponectin
and enhanced production of pro-inflammatory cytokines
and chemokines. These processes are believed to lead to
low-grade inflammation and eventually systemic insulin
resistance (IR) and type 2 diabetes (T2D) [2]. However,
it is not yet understood how the change in the inflamed
adipose tissue transcriptome and secretome leads to the
development of IR. In addition to adipose tissue, the
liver as an important metabolic and endocrine organ
secreting many hormones, chemokines and cytokines, is
also affected in obesity [3,4]. In a fatty liver, inflamma-
tion with activated NF-xB signaling and upregulated
cytokines (IL-6, TNFa, and IL-1B) seems to be a pivotal
event leading to the development of liver insulin resis-
tance and non-alcoholic fatty liver disease (NAFLD)
which both strongly predispose to the development of
systemic IR and T2D. Except for the few proteins
known to be produced and secreted by the liver during
inflammation little is known about other protein factors
which alone or by interacting with the secretome of
inflamed adipose tissue could contribute to the develop-
ment of systemic inflammation and insulin resistance in
humans [5-8].

Lipopolysachcaride (LPS) is a compound of the cell
wall of Gram-negative bacteria which induces inflamma-
tory reactions and upregulates many cytokines and che-
mokines via TLRs. Besides its role in inflammation it
was shown several times that LPS triggers hyperglycemia
and IR in rats and humans [9-12] and induces weight
gain and liver IR in mice [13,14].

In our studies, we aimed to identify molecular pro-
cesses affected during inflammation in human AT and
LT in order to better understand their roles in the
inflammation- related development of IR/T2D in vivo.
Therefore, we challenged human adipose tissue (omen-
tum) and liver tissue slices with LPS and analyzed gene
expression changes by DNA microarray technology and
performed Gene Ontology (GO), gene functional classi-
fication/clustering analysis by means of publicly available
bioinformatics tools: Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) and Search
Tool for the Retrieval of Interacting Genes/Proteins
(STRING).

Additionally, we aimed to compare the secretomes of
adipose and liver tissues during inflammation in order
to better understand how these two organs can
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contribute to the development of systemic inflammation
and IR. The transcriptome data were used to predict
genes encoding for secreted proteins, by means of Secre-
tomeP. The comparative analysis of the predicted secre-
tomes led to the identification of differential candidate
biomarkers for the inflamed adipose tissue and the
inflamed liver tissue. Significantly changed genes
detected in the adipose tissue secretome, but not in the
inflamed liver tissue secretome were considered as the
top candidate biomarkers related to inflammation of
adipose tissue and these transcriptome data were con-
firmed by proteomics analysis of the inflamed adipose
tissue culture medium.

The identified biological processes and biomarkers
indicative for the inflamed adipose tissue or the
inflamed liver tissue might be used for tissue-specific
diagnosis of insulin resistance related to inflammation
and thereby facilitate more targeted treatment of insulin
resistant patients.

Methods

Human liver tissue

Human liver tissue (n = 5) was obtained and prepared
as described previously [15]. The donors of livers were
healthy males aged 16-34 years, with BMI 23.1-27.7.
The information about the medical history was not
available. The research protocols conformed the Hel-
sinki Declaration, were approved by the local Medical
Ethical Committee of the UMCG, and patients gave
written informed consent to participate in the study.

Preparation and incubation of liver slices

Human liver slices were prepared and incubated as
described previously [15]. Liver slices were incubated at
37°C in Williams Medium E in the presence or absence
of 100 pg/ml LPS. 24 h after incubation, slices were fro-
zen in liquid nitrogen and stored at -80°C.

Human adipose tissue

Omentum AT biopsies used for the transcriptome ana-
lysis were obtained from 7 Caucasian women under-
going surgery because of benign gynecological
problems. The women were in general good health,
had no history or symptoms of T2D or inflammatory
diseases. The subjects were aged between 30 and 45
years, with BMI ranging from 23 to 29. The omentum
biopsies were taken at the lower edge of the omentum
using scissors. The omentum AT biopsy used in pro-
teomics experiment was obtained from a healthy
woman aged 59 years, with a BMI of 35.5 The research
protocols conformed the Helsinki Declaration, were
approved by the local Medical Ethical Committee of
the UMCG, and patients gave written informed con-
sent to participate in the study.
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Preparation and incubation of adipose tissue biopsies
The human AT surgical biopsies were processed as
described previously [16]. In our studies AT was cul-
tured in the absence/presence of LPS (100 pg/ml) for 24
hours. After the culture time the fat tissue was snap-fro-
zen in liquid nitrogen and stored in -80°C until further
processing.

RNA isolation

RNA was extracted from adipose tissue using RNeasy
Lipid Tissue Mini Kit (Qiagen, Venlo, The Netherlands)
according to the manufacturer’s instructions. RNA
extraction from human liver slices was performed as
described previously [15]. The RNA concentration was
determined by Nano Drop ND-1000 Spectrophotometer
(Isogen Ijsselstein, The Netherlands). The quality of
total RNA was evaluated by capillary electrophoresis
using an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies, Palo Alto, Calif.).

lllumina Human WG8-v2 Microarray Analysis

The Illumina platform was used for the gene expression
analysis in adipose tissue. Biotin- labeled cRNA was
generated from high-quality total RNA with the Illumina
TotalPrep RNA amplification kit (Ambion). Briefly, 50
ng of total RNA was reversely transcribed with an oligo
(dT) primer containing a T7 promoter. The first- strand
cDNA was used to make the second strand. The puri-
fied second-strand cDNA, along with biotin UTPs, was
subsequently used to generate biotinylated, antisense
RNA of each mRNA in an in vitro transcription reac-
tion. The size distribution profile for the labeled cRNA
samples was evaluated by Bioanalyzer. After RNA label-
ing, 1.5ug of purified, labeled cRNA from each sample
was hybridized at 55°C overnight with a Human-8 v2
expression Illumina Beadchip targeting 22000 tran-
scripts. The beadchip was washed the following day. A
signal was developed during incubation with Streptavi-
din-Cy3, and each chip was scanned with an Illumina
Bead Array Reader.

The preprocessing of Illumina data was performed
using the BeadStudio package with default settings.
The background was subtracted and quantile normali-
zation performed. Probes with “absent” signals in all
samples (lower than or near to background levels)
were removed from further analysis. To identify the
differentially expressed genes in LPS treated samples
versus controls eBayes test was performed and Benja-
mini Hochberg test corrected false discovery rate
(FDR) < 0.05. Probes with fold change > 2 were used
for further analysis. The calculations were performed
in R, a language for statistical computing and graphics
http://www.R-project.org.
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Affymetrix Human Genome U133 Plus 2.0 Array Analysis
The Affymetrix platform (55000 transcripts) was used
for the liver tissue gene expression analysis. Double-
stranded cDNA was synthesized from 1.5 pg total RNA
using the One-Cycle Target Labeling Kit (Affymetrix
Santa Clara, CA), and used as a template for the pre-
paration of biotin-labeled cRNA using the GeneChip
IVT Labeling Kit (Affymetrix Santa Clara, CA). Biotin-
labeled cRNA was fragmented at 1 pg/pl following the
manufacturer’s protocol. After fragmentation, cRNA (10
pg) was hybridized at 45°C for 16 hours to the Human
Genome U133 Plus 2.0 array (Affymetrix, Santa Clara,
CA). Following hybridization, the arrays were washed,
stained with phycoerythrin-streptavidin conjugate
(Molecular Probes, Eugene, OR), and the signals were
amplified by staining the array with biotin-labeled anti-
streptavidin antibody (Vector Laboratories, Burlingame,
CA) followed by phycoerythrin-streptavidin. The arrays
were laser scanned with a GeneChip Scanner 3000 7G
(Affymetrix, Santa Clara, CA) according to the manufac-
turer’s instructions. Data was saved as raw image file
and quantified using GCOS (Affymetrix).

Probe set summarization was performed using the
RMA algorithm. Subsequently, baseline subtraction was
performed setting the baseline to the median of all sam-
ples. To identify the differentially expressed genes in
LPS treated samples versus controls an eBayes test was
performed and Benjamini Hochberg test corrected false
discovery rate (FDR) < 0.05. Probes with fold change >
2 were used for further analysis. The calculations were
performed in R, a language for statistical computing and
graphics http://www.R-project.org.

Gene Functional Classification Analysis

The significant transcriptomes of AT and LT were
uploaded to Database for Annotation, Visualization, and
Integrated Discovery (DAVID) Bioinformatics Resource
where the Gene Functional Classification tool was
applied to generate clusters of functionally related
genes. Additionally, the Functional Annotation Cluster-
ing tool was used to generate clusters of overrepresented
Gene Ontology (GO) terms [17,18]. The HG-U133 Plus
2 and HUMANREF-8 V2 0 R3 11223162A were used as
a background for the GO analysis of liver tissue and adi-
pose tissue respectively. The GO terms after correction
for FDR at p < 0.05 (Benjamini Hochberg) were selected
for further analysis and interpretation.

Gene networks and pathways identification

The significant transcriptomes of adipose and liver tis-
sues were uploaded to Search Tool for the Retrieval of
Interacting Genes/Proteins 8.2 (STRING) where net-
works based on known and predicted protein-protein
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interactions were built and clustered into functional
categories [19].

Secretome prediction

From the significant transcriptome data obtained for
adipose and liver tissues, the secretome prediction was
performed with in-house developed software, which
retrieved the information about the predicted secre-
tomes from SecretomeP [20]. Genes were considered to
belong to the secretome when they encoded for proteins
with a predicted signal peptide (present in proteins that
are secreted via the classical endoplasmic reticulum/
Golgi-dependent pathway) or when their Neuronal Net-
work (NN) score exceeded the value of 0.5, which classi-
fies them as secreted via the non-classical pathway.
Genes encoding for proteins which did not have a signal
peptide nor had the NN-score below 0.5 were consid-
ered as genes encoding for intracellular proteins and
were discarded from the final secretome analysis.

Adipose tissue culture for the quantitative proteomics
analysis

Quantitative secretome analysis was performed by Iso-
tope-Labeled Amino Acid Incorporation Rates (CILAIR)
as described previously [21]. Briefly, 6 g of fat tissue was
used from one patient and divided into six Petri dishes
containing 10 ml of lysine-free M199 medium (reference
number 22340 Lys-free, Invitrogen) to deplete lysine
from other sources (blood in the tissue) and supplemen-
ted with 50 pg/ml gentamicin. The tissue was incubated
for 24 h. After this period, fresh M199 containing 70
mg/liter 13C-labeled lysine (L-[13C6, 14N2]lysine (Invi-
trogen) was added to all dishes for the next 24 hours to
allow incorporation of the label into newly synthesized
proteins, in the absence (3 dishes) or presence (3 dishes)
of LPS (100 pg/ml). CILAIR is based on the incorpora-
tion rate of 13C-labeled lysine in newly synthesized
secreted proteins. If this rate is different between two
conditions for a specific protein the change in expres-
sion of this protein can be calculated by comparing the
heavy/light ratios for the two conditions. After the 24 h
incubation, media were collected and stored at -80°C
until further processing. The sample preparation and
protein identification by liquid chromatography coupled
to mass spectrometry was performed as described pre-
viously [21]. ProteinPilot 2.0 software (Applied Biosys-
tems) was used to analyze the mass spectra using the
UniprotKB/Swiss-Prot database (release 54, January
2008, 276, 256 entries). The settings used in the analysis
were the same as described previously [21].

CILAIR data analysis
The statistical analysis to detect differences in the secre-
tome of LPS-treated vs. control adipose tissue cultures
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was performed with in-house generated software that
was developed using the open source MOLGENIS tool-
box [22]. A two-sided unpaired Student’s t-test was
applied, and multiple testing correction was performed
to control the false discovery rate (FDR) at FDR < 0.05.

The applied criteria for the proteins predicted to be
secreted were the same as described above for the tran-
scriptome data.

Results

Functional gene annotation analysis

The transcriptome data analysis revealed that in adipose
tissue 667 genes were significantly affected (322 were
upregulated and 345 were downregulated) after expo-
sure to LPS. In liver tissue we detected 483 significantly
changed genes (283 were upregulated and 200 were
downregulated). The overlapping significant transcrip-
tome shared by both tissues consisted of 82 transcripts.
The significantly changed genes found in adipose tissue
and liver tissue which were not present on both plat-
forms were discarded from further analysis (47 and 42
respectively). Functional gene annotation analysis of sig-
nificantly upregulated genes in adipose tissue (including
the overlapping genes with the liver tissue significant
transcriptome) led to the identification of functional
groups such as: chemokines; growth and differentiation
of hematopoietic precursors; (anti)apoptosis; modulation
of immune response; T-, B-, leukocytes, and NK-cells
activation, suppression of cytokine signaling (SOCS),
extracellular matrix remodeling, and upregulation of
numerous transporters, (Additional file 1, Table S1).
Within the downregulated gene functional groups we
identified: lysosomal/endosomal system activity, base-
ment membrane components, extracellular matrix com-
ponents, cell adhesion and migration, deoxy-
ribonucleases activity, and detoxification, (Additional file
1, Table S2). A similar analysis was performed for liver
tissue and within the upregulated gene functional
groups we identified: chemokines; matrix remodeling;
(anti)apoptosis; cell adhesion and migration; T- and NK-
cell activity; and breakdown of extracellular matrix/tis-
sue remodeling, (Additional file 1, Table S3). The func-
tional classification of the downregulated genes led to
identification of groups such as: amino acid metabolism,
membrane activity, redox/detoxification reactions, cell
adhesion and mitochondrial functions, (Additional file 1,
Table S4). Additionally, in order to better visualize the
similarities and differences between the adipose tissue
and liver tissue transcriptomes during inflammation we
performed gene functional network reconstruction in
STRING. The identified gene functional clusters such
as: chemokine signaling, matrix remodelling, SOCS sig-
naling, PPARy and others are depicted in Figures 1, 2, 3,
4, and 5: the gene functional clusters identified for the
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Figure 1 The gene functional clusters identified for the significant, overlapping adipose and liver tissue transcriptomes. The
overlapping (shared) upregulated adipose tissue (n = 7) and liver tissue (n = 5) significantly changed transcriptome. The overlapping (shared)
upregulated adipose tissue and liver tissue significantly changed transcriptome. Within the overlapping network we identified functional clusters
related to: (A) (anti)apoptosis/inflammation; (B) mobilization of T-lymphocytes and monocytes; (C) matrix remodelling; (D) T and B cell activation

and functioning; (E) interleukin 7 receptor activity.

significant, overlapping adipose and liver tissue tran-
scriptomes (Figure 1), the significant, upregulated adi-
pose tissue transcriptome (Figure 2), for the significant,
downregulated adipose tissue transcriptome (Figure 3),
the significant, upregulated liver tissue transcriptome
(Figure 4), and the significant, downregulated liver tissue
transcriptome (Figure 5).

Gene Ontology analysis

Additionally, we performed GO ontology analysis. In
adipose tissue we identified more upregulated GO
terms compared to liver tissue (106 vs. 36) and for the
down-regulated GO terms we detected 2 and 19 in
adipose tissue and liver tissue respectively. The signifi-
cantly upregulated GO terms were divided into broad
categories such as “inflammation”, “development”,

“signaling”, “metal ion homeostasis”, ‘secretion” and
“angiogenesis” and within the downregulated GO cate-
gories we distinguished: “extracellular region”, “amino
acid metabolism”, and “polysaccharide binding”. The
GO terms identities within the GO categories are pre-
sented in the Additional file 2, Table S1, Additional
file 2, Table S2, Additional file 2, Table S3, and Addi-
tional file 2, Table S4. Adipose tissue had more upre-
gulated GO terms belonging to “inflammation”,
“development” and “angiogenesis” compared to liver
tissue and had additional terms such as: “signaling”,
“metal ion homeostasis” and “secretion”, (Figure 6; GO
analysis of the significant adipose and liver tissues
transcriptomes). Within the downregulated GO cate-
gories in adipose tissue we detected “extracellular
region while in liver tissue- “amino acid metabolism”
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Figure 2 The gene functional clusters identified for the significant, upregulated adipose tissue transcriptome. The upregulated adipose
tissue network (n = 7) contained 6 functional clusters: (A) regulation of cytokine signaling; (B) cell adhesion & apoptosis; (C) IL-10 signaling; (D)
growth and differentiation of hematopoietic cells; (E) glucocorticoid receptor signaling & acute phase response; (F) plasminogen activation
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and “polysaccharide binding”, (Figure 6; GO analysis of
the significant adipose and liver tissues
transcriptomes).
When analyzing individual genes within the GO cate-
gories, a similar picture emerged -in general a larger
number of genes belonging to the identified GO cate-
gories was altered in adipose tissue compared to liver
tissue (Figure 7 Gene count analysis for the identified
GO categories).

The names and Entrez IDs of genes up- and down-
regulated in both tissues for each GO category are given
in Additional file 3, Table S1, Additional file 3, Table S2.

The differentially expressed genes and secretome
prediction

Subsequent analysis of the significant transcriptome data
was performed in order to select genes predicted to
encode for secreted proteins (the predicted secretome).
The analysis revealed that adipose tissue and liver tissue

share 66 genes predicted to encode for secreted proteins
(46 were upregulated and 20 were downregulated). In
the adipose tissue predicted secretome we identified
additional 333 significantly changed genes encoding for
secreted proteins (138 transcripts were upregulated and
195 -were downregulated) and within the liver tissue
predicted secretome we identified 170 different genes
encoding for secreted proteins (80 were upregulated and
90 were downregulated).

In our studies we were mostly interested in the upre-
gulated genes as they could be the best candidate bio-
markers measurable in human serum. The information
about gene expression of the highest upregulated genes
in adipose and liver tissues is summarized in Table 1.
The presented genes were subdivided in three cate-
gories: the first category contained genes which were
significantly upregulated in both tissues (p < 0.05, FC =
2) as the best candidate biomarkers for the inflamed adi-
pose and liver tissues. The second category contained
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Figure 3 The gene functional clusters identified for the significant, downregulated adipose tissue transcriptome. The downregulated
adipose tissue network(n = 7) had 6 functional clusters: (A) cellular defense against toxic compounds; (B) redox reactions; (C) PPARy signaling;
(D) innate immune system; (E) G-receptor signaling; (F) Wnt-signaling.

\

genes significantly upregulated in adipose tissue (p < upregulated in liver tissue (p < 0.05, FC > 2) and
0.05, FC = 2), but not changed in liver tissue, as the unchanged in adipose tissue (p > 0.05) as the best
best candidate biomarkers for the inflamed adipose tis- source of candidate biomarkers for the inflamed liver
sue. The third category contained genes significantly tissue. The entire list of genes encoding for the
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Figure 4 The gene functional clusters identified for the significant, upregulated liver tissue transcriptome. The liver tissue upregulated
network (n = 5) consisted of 6 clusters: (A) ROS production; (B) innate immune system; (C) extracellular matrix remodelling; (D) JAK-STAT
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predicted inflammatory secretomes of adipose and liver
tissues is given in Additional file 4, Table S1, Additional
file 4, Table S2, Additional file 4, Table S3.

Transcriptomics and proteomics data comparison and
candidate biomarkers identification

In order to validate biomarkers related to inflamed adi-
pose tissue, we performed a similar experiment using a
quantitative proteomics approach (CILAIR), and ana-
lyzed the secreted proteins in the adipose tissue culture
media (secretome). In the CILAIR experiment we identi-
fied 192 proteins with incorporated label in medium of
LPS treated tissue and 209 in medium of untreated adi-
pose tissue. 178 proteins had incorporated label in both
conditions and could thus be compared quantitatively.
The statistical analysis revealed that 23 proteins were
significantly changed in abundance in the secretome by
LPS treatment. Comparison with the gene expression

data for adipose tissue showed excellent correlation
between proteomics and transcriptomics data (Pearson’s
correlation r* = 0.78; Table 2). Within the 23 signifi-
cantly affected proteins we selected those which were
significantly affected by LPS in adipose tissue, on both
gene and protein level, but not changed in the liver tis-
sue transcriptome, and those proteins were considered
as the best candidate biomarkers for inflamed adipose
tissue. We propose: LIF, PTX3, MMP1, SERPINE], and
CX3CL1 as the top candidate biomarkers related to the
inflamed adipose tissue. The results are summarized in
Table 2.

Discussion

In the present study we evoked LPS induced inflamma-
tion in adipose and liver tissues in vitro in order to
mimic IR caused by inflammation in vivo. We aimed to
compare the changes in the inflamed transcriptomes
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Figure 5 The gene functional clusters identified for the significant, downregulated liver tissue transcriptome. The downregulated liver
tissue network (n = 5) contained 7 functional clusters: (A) cell-cell adhesion; (B) leukocytes functioning; (C) amino acids metabolism; (D) redox
reactions; (E) sterol metabolism; (F) amino acids and nucleotide metabolism; (G) cytochrome P450.

and secretomes of both tissues in order to (1) better
understand contribution of the inflamed adipose and
liver tissues to the development of insulin resistance and
(2) to identify candidate biomarkers indicative for tissue
specific inflammation/IR.

The gene functional classification analysis revealed
that both adipose and liver tissue share common
response mechanisms that are activated during inflam-
mation (chemokine signaling, (anti)apoptosis, extracellu-
lar matrix remodelling, adhesion and migration of
different immune cells involved in inflammatory reac-
tions). Although functional clustering led to identifica-
tion of the same functional groups, both tissues had a
different set of genes within one functional group, sug-
gesting tissue-specific inflammatory signaling. The sig-
nificantly upregulated adipose tissue transcriptome
contained additional gene functional categories

belonging to SOCS and several transporters (Additional
file 1, Table S1). The SOCS signaling was shown pre-
viously to be involved in induction of insulin resistance
during acute inflammation in human adipose tissue [23]
and our ex vivo data are in line with these in vivo find-
ings. The analysis of the down regulated functional
groups pointed out towards redox/detoxification pro-
cesses affected in both tissues and mitochondrial func-
tions observed in liver tissue. These processes could
contribute to the enhanced reactive oxygen species
(ROS) production recognized as one of the mechanisms
implicated in the development of IR/T2D [13]. Further-
more, adipose tissue had downregulated genes involved
in the extracellular matrix activity which is involved in
multiple processes including modulation of immune
responses. In liver tissue downregulation of genes
involved in amino acid metabolism and polysaccharide
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Figure 6 GO analysis of the significant adipose and liver
tissues transcriptomes. The number of significantly enriched
upregulated and downregulated GO terms in adipose tissue (AT), n
=7 and liver tissue (LT), n = 5 upon LPS treatment. The GO terms
were categorized into broader GO categories such as: angiogenesis,
secretion, metal ion homeostasis, signaling, development,
inflammation, amino acid (aa) metabolism, and extracellular region.

binding were observed. There are reports about changed
amino acids concentrations in animal models of obesity
and obese humans [24,25], however interpretation of
this ex vivo finding in relation to these reports is not
unequivocal.

The additional network identification for the com-
mon (overlapping) and differential adipose and liver tis-
sue transcriptomes was in line with the data obtained
from the gene functional analysis and distinguished the
common and differential networks. Moreover, several of
these networks were described previously in the litera-
ture for their role in induction of IR thereby supporting
our model system to study the inflammation related
insulin resistance in vivo. For example, in our study we
found upregulated chemokine signaling and matrix
remodelling in both adipose and liver tissues which
were also previously linked to the development of IR in
vivo [26,27]. SOCS signaling is implicated in induction
of IR [28-30] and similarly it was found by us to be
upregulated by LPS in adipose tissue ex vivo. The
decreased PPARY expression in adipose tissue is recog-
nized as one of the events associated with IR and
occurred in our ex vivo studies as well [31,32]. Similarly

Figure 7 Gene count analysis for the identified GO categories.
Number of genes significantly upregulated and downregulated in
adipose tissue (AT), n = 7, and liver tissue (LT), n = 5 within GO
categories (angiogenesis, secretion, metal ion homeostasis, signaling,
development, inflammation, amino acid (aa) metabolism, and
extracellular region).

upregulated Jak-STAT and NFxB signaling identified
previously in IR liver [33] was present in our
experiments.

The GO analysis and gene count revealed that adi-
pose tissue had more LPS-induced upregulated GO
terms and genes related primarily to “inflammation”,
“angiogenesis”, and “development”. Moreover, the pre-
dicted secretome studies showed that the adipose tissue
predicted inflammatory secretome is more abundant
compared to the liver tissue secretome. This observation
indicates that adipose tissue is more active during
inflammation, compared to liver tissue, and supports the
hypothesis that adipose tissue plays the major role in
the development of inflammation-related IR [2].

The reason for different responses of the adipose and
liver tissues could be due to a different expression of
TLR4 and other components involved in signal trans-
duction via TLR4 (LBP, CD14, TREM1), but unfortu-
nately in our studies we can not directly compare
expression values between the adipose tissue and the
liver data (two different DNA microarray platforms were
used). Nevertheless, we observed that the expression
patterns/ratios of all the TLR4 signaling molecules in
both tissues were very similar (data not shown).



Table 1 The most differential predicted secretome of adipose and liver tissues

ACC. NAME4 GENE AT AT p ATavg ATavg ATstd ATstd LT LTp LTavg LTavg LTstd LT std
FC value - LPS + LPS -LPS +LPS FC value -LPS +LPS -LPS +LPS
P01584 INTERLEUKIN 1, BETA IL1B 20 1,18E-06 584,3 11733,8 496,8 32957 100 0O, 0002 9,5 957, 6 17,6 305, 3
P10147 CHEMOKINE (C-C MOTIF) LIGAND 3 CCL3 19.8 2,0E-07 239,3 4732,6 160,7 2239,1 10.7 0,0088 48,7 521, 6 55,4 226, 4
Q96DR8 SMALL BREAST EPITHELIAL MUCIN MUCL1T 174 5,5E-05 36,4 607,9 20,9 759,2 58 0,0008 5,1 30,0 2,3 14, 8
P18510 INTERLEUKIN 1 RECEPTOR ANTAGONIST IL1RN 125 9, 4E-06 16, 6 207, 4 6,3 164,7 6.5 0,0148 118,4 768,3 127,8 11323
pP78556 CHEMOKINE (C-C MOTIF) LIGAND 20 CCL20 114 7,2E-06 1602, 6 182457 1844,3 2070,8 7.5 0,0199 1149,2 8631,9 306,4 1263,2
P16619 CHEMOKINE (C-C MOTIF) LIGAND 3-LIKE 1 CCL3L1 10.7 3, 4E-07 49,7 1715,4 38,6 894, 1 34.5 0,0088 48,7 521, 6 55,4 226, 4
P42830 CHEMOKINE (C-X-C MOTIF) LIGAND 5 CXCL5 78 1,5E-04 7359 5489,8 12158 23853 303 0,0000 13,9 330, 5 1,9 23,3
P35354 PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 2 PTGS2 6.8 5 1E-05 1530,5 10373,9 1772,5 2532,4 7.9 0,0478 39,9 315, 1 3,9 63,5
P13501 CHEMOKINE (C-C MOTIF) LIGAND 5/RANTES CCL5 63 1,4E-06 252,5 1588,3 190,4 458,9 68 0,0002 158 1074,0 17,0 14253
P05120 SERPIN PEPTIDASE INHIBITOR SERPINB2 6 1, 1E-06 1825,8 10909,0 856,7 2503,1 8 0,0022 250 200, 7 37,0 104, 9
P01583 INTERLEUKIN 1, ALPHA ILTA 5.8 4,4E-04 343,2 1979,4 211,1 820,6 4.3 0,0043 7,3 32,1 2,3 4,2
014625 CHEMOKINE (C-X-C MOTIF) LIGAND 11 CXCL11 54 1,3E-03 19,1 102, 5 15,9 63,2 204 0,0269 10,5 214, 6 17,2 1379, 4
P05231 INTERLEUKIN 6 (INTERFERON, BETA 2) IL6 45 2,1E-05 4702,1 21313,8 3820,2 1972,7 17.8 0,0097 40,6 722, 6 52,8 703, 0
P08254 MATRIX METALLOPEPTIDASE 3 MMP3 4 5,5E-04 1333,4 5331,4 1458,8 1982, 5 206 0,0377 12,2 251,5 115,5 725,9
P09038 FIBROBLAST GROWTH FACTOR 2 (BASIC) FGF2 37 7,1E-04 173,4 642, 5 165,2 200,0 3.5 0,0020 13,7 48, 4 55 32,0
P39900 MATRIX METALLOPEPTIDASE 12 (MACROPHAGE MMP12 3.7 1,5E-04 22,1 81,7 8,9 41,1 58 0,0220 19,0 110, 8 31,8 102, 9
ELASTASE)
P09341 CHEMOKINE (C-X-C MOTIF) LIGAND 1 CXCL1 3 1, 0E-03 4666, 1 14183,2 5268, 4 3237,7 23.5 0,0013 70,1 1648, 1 45,5 615, 2
P02778 CHEMOKINE (C-X-C MOTIF) LIGAND 10 CXcCL10 29 1,4E-03 361,5 10457 248,5 461,4 17 0,0431 72,3 1234,9 4543,9 297,8
P80162 CHEMOKINE (C-X-C MOTIF) LIGAND 6 CXCL6 2.8 1,3E-03 2632,1 7420,4 2720,0 1531,1 22 0,0033 20,4 447, 3 49, 8 174, 3
P10144 GRANZYME B GZMB 28 5, 1E-04 31,8 87,9 8,5 38,9 6.1 0,0253 11,9 73,1 7,6 91,3
060462 NEUROPILIN 2 NRP2 26 7, 0E-06 25,0 65, 5 9,0 7,5 26 0,0211 27,9 72,7 4,8 15,3
P10145 INTERLEUKIN 8 IL8 25 2,1E-03 9738,0 23999,7 7532,4 1532,3 6 0,0038 3589 4271,3 480,9 12442
P13500 CHEMOKINE (C-C MOTIF) LIGAND 2 CCL2 23 5 1E-06 5528,4 12745, 4 1561,6 1659,7 3.7 0,0435 726,0 26754 321,4 366,3
P16581 SELECTIN E (ENDOTHELIAL ADHESION MOLECULE 1) SELE 105.1 1, 9E-06 53 558, 7 4,9 191,7 46 06116 6,9 31,4 4,7 31,9
P04141 COLONY STIMULATING FACTOR 2 CSF2 825 1, 7E-07 90 742, 5 12,3 402,4 1,6 0 4180 1,6 2,7 52 2,5
Q9BYE3 LATE CORNIFIED ENVELOPE 3D LCE3D 46 1, 2E-05 -2,7 70,3 4,1 103,9 -7,2 0, 7820 8, 2 7,0 51 6,7
P02763 OROSOMUCQID 1 ORM1 26.6 2, 3E-03 12,4 329, 5 8,8 470,6 1,0 O,7173 4506,7 4609, 2 1108, 8 582 4
014944 EPIREGULIN EREG 25 1, 8E-06 -3,1 17,1 4,0 8,7 -2, 0 0, 8984 2,8 1,3 2,0 4,5
P22894 MATRIX METALLOPEPTIDASE 8 (NEUTROPHIL MMP8 22.2 1, 3E-03 2,3 51,3 57 48, 1 1,5 0, 4560 10, 6 15,9 9,7 18,5
COLLAGENASE)
Q00604 NORRIE DISEASE (PSEUDOGLIOMA) NDP 19.5 3, 8E-07 15,1 295, 4 13,4 165,2 1,3 09185 1,5 1,9 1,6 2,5
P07357 COMPLEMENT COMPONENT 8, ALPHA POLYPEPTIDE C8A 18.6 3, 6E-04 18, 6 345,7 21,4 179, 7 1,6 0,5130 780,6 481, 8 421, 3 165, 0
p78423 FRACTALCINE CX3CL1 64 5, 6E-07 97,1 617, 8 29,9 285,0 99 0, 6235 234 2325 14.3 4319
P01375 TUMOR NECROSIS FACTOR (TNF SUPERFAMILY, TNF 6 3,5E-10 28,8 173, 4 55 30,3 7,6 0,998 7,8 12,8 4,4 7,5
MEMBER 2)
Q9UHDO INTERLEUKIN 19 IL19 56 9, 7E-06 6, 2 34,9 3,0 13,1 1,8 0,5200 -2,0 -3, 4 3,0 4,8
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Table 1 The most differential predicted secretome of adipose and liver tissues (Continued)

P26022  PENTRAXIN-RELATED GENE, RAPIDLY INDUCED BY IL-1 PTX3 4 1,0E-04 992,2 4000,0 614,4 1504,4 2 1 0 6562 7,5 15,5 7,2 7,8
BETA
P03956 MATRIX METALLOPEPTIDASE 1 (INTERSTITIAL MMP1 34 3,0E-04 2662,1 8995 1 3099, 1 1471,0 1,0 0,5981 9284 968, 5 1473,1 441,9
COLLAGENASE)
Q9BY76 ANGIOPOIETIN-LIKE 4 ANGPTL4 32 2,9E-03 83,8 268, 7 45,7 139,2 20 0,590 70,6 137, 9 34,0 156, 1
P19875 CHEMOKINE (C-X-C MOTIF) LIGAND 2 CXCL2 31 7,3E-04 1753,9 5471,3 1121,4 1569,5 1,4 0, 4725 13,7 19,1 53 58
P0O5121 SERPIN PEPTIDASE INHIBITOR/PLASMINOGEN SERPINE1/ 3 6, TE-04 3110,0 9426,1 2165,8 2364,8 1,/ 0,7450 64,6 108, 5 29,1 81,8
ACTIVATOR INHIBITOR TYPE 1) MEMBER 1 pail
P10124 PROTEOGLYCAN 1, SECRETORY GRANULE SRGN 2.7 3,2E-05 3141,4 8426,4 1107,6 2008,1 1,7 1,60000 3,4 3,6 3,0 1,5
Q96RQ9 INTERLEUKIN 4 INDUCED 1 IL411 24 2,4E-03 132,4 318,9 73,6 149,7 -1,6 0,7500 -1,2 -0, 8 3,5 51
QoY5U4 INSULIN INDUCED GENE 2 INSIG2 23 8,504 316,7 722,0 129,6 225,9 ~-1,2 0,880 94,3 79,9 38, 4 11,1
P12643 BONE MORPHOGENETIC PROTEIN 2 BMP2 22 3,4E-04 1131,3 2465,7 472,0 6555 1,7 06915 91,6 158, 3 103, 2 87,3
P02735 SERUM AMYLOID A1 SAA1 22  2,2E-03 3551 778, 1 165,9 246,5 1,1 00,9120 489%,1 51440 564,6 2385
Q07325 CHEMOKINE (C-X-C MOTIF) LIGAND 9 CXCL9 18 5, 5802 207,1 376, 4 231,9 233,9 693 0,0009 33,0 22885 66,7 30905
P19876 CHEMOKINE (C-X-C MOTIF) LIGAND 3 CXCL3 36 9, 6E-03 15,5 56,0 7,9 29,7 206 0,0050 28,1 587, 5 8,9 300, 0
095633 FOLLISTATIN-LIKE 3 (SECRETED GLYCOPROTEIN) FSTL3 1 9, 301 687, 0 665, 4 224, 2 136,2 15.1 0,0036 32,8 495, 5 86,8 378, 1
Q13113 PDZK1 INTERACTING PROTEIN 1 PDZK1IP1 19 2, 3801 43,0 84, 2 25,9 54,7 129 0,0010 13,0 169, 4 51,6 168, 3
QONRD8 DUAL OXIDASE 2 DUOX2 2 3, 5E-01 4,9 2,3 2,9 3,8 5.5 0,0084 77,2 428, 5 49, 2 154, 2
Q8WWX9 SELENOPROTEIN M SELM 16 5 2B03  2336,5 3877,9 840,8 945,4 3.9 0,0025 114,1 4455 37,0 79, 2
094808  GLUTAMINE-FRUCTOSE-6-PHOSPHATE TRANSAMINASE GFPT2 17 1,3804  2797,3 4808, 3 4191 945,3 3.6 0,0019 15,1 54, 6 3,3 2,7
2
P13164  INTERFERON INDUCED TRANSMEMBRANE PROTEIN 1 IFITM1 -1 7, 3801 21341 1986,2 785, 1 682,9 3.5 0,0435 375,2 1318,2 462,2 466,0
(9-27)

P09603 COLONY STIMULATING FACTOR 1 (MACROPHAGE) CSF1 -1.6 3, 0E-02 128, 4 73,4 53,5 28,0 33 0,0056 73,4 242, 7 19,3 118, 7
P12544 GRANZYME A GZMA -4 2, 2801 123, 1 85,7 55,7 25,5 33 0,0215 6,7 21,9 3,6 27,1
P25774 CATHEPSIN S CTSS 14 1, 2E-02 135, 5 194, 8 43,5 31,0 32 0,0168 270,5 881,9 86,8 355,9
P24001 INTERLEUKIN 32 IL32 16 5, OE-06 551,7 888, 2 42,1 121, 3 3 0,0061 2723,6 8331,0 668, 1 472, 2
P31431 SYNDECAN 4 (AMPHIGLYCAN, RYUDOCAN) SDC4 19 1,5E-02  1049,2 1962,3  453,7 796,4 27 0,0111 1141,2 3088,8 160,0 643,0
P03973 SECRETORY LEUKOCYTE PEPTIDASE INHIBITOR SLPI -14 11,0400 1063, 8 755, 9 946, 2 387,2 27 0,0050 15051 4153,1 255,9 660,6
P09237  MATRIX METALLOPEPTIDASE 7 (MATRILYSIN, UTERINE) MMP7 -1.6 4, 2801 7,9 4,5 13,2 15,1 26 0,0244 8,7 22,8 12,3 34,0
Q5VY09 IMMEDIATE EARLY RESPONSE 5 IER5 16 4, 7E-03 471, 5 780, 8 99,5 258,3 25 0,0215 139,5 347,3 79,7 90, 2
075976 CARBOXYPEPTIDASE D CPD 1.3 1, 2E-01 761, 1 1012, 4 282, 7 3150 22 0,0335 54,8 118, 9 47,3 51,3
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Fold change (FC) for the highest and significantly upregulated genes (p < 0.05) upon LPS treatment (+LPS) compared to control (-LPS) in adipose tissue (AT), n = 7 and liver tissue (LT) n = 5 are indicated in bold
and are underlined. FCs for not significantly changed genes in both tissues (p > 0.05) are in italics. Additionally, information about average (avg) gene expression value and it's standard deviation (std) for both AT
and LT is given.
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Table 2 Significantly changed secreted proteins in adipose tissue culture media and the corresponding identified

genes in adipose tissue and liver tissue upon LPS-treatment

NAME SYMBOL AT FC- avg ATLPS  avg AT std AT LPS std AT AT (p val.) FC- LT (p val.)
protein  + protein LPS- + protein LPS- transcriptome  FC- transcriptome
protein protein
Leukemia inhibitory factor LIF 23 6,6 2,9 0, 22 0, 41 (0, 000) 7, 2 (ns) 2.9
Fractalkine CX3CL1 43 4,3 1,0 0, 24 0,10 (0, 000) 6.4 (ns) 9, 9
Tumor necrosis factor TNF 3.8 4,8 1,3 0, 95 0,15 (0, 000) 6 (ns) 1.7
Plasminogen activator SERPINB2 3.1 2,6 0,8 0, 41 0, 05 (0, 000) 6 (0, 002) 8
inhibitor 2
Interleukin-6 IL6 1.6 6,9 4,7 0, 31 0, 07 (0, 000) 4.5 (0, 01) 17.8
Pentraxin-related protein PTX3 19 3,5 1,8 0, 70 0, 14 (0, 000) 4 (ns)2.1
Interstitial collagenase MMP1 17 4,7 2,7 0,16 0,17 (0, 000) 3.4 (ns)-1.1
Tumor necrosis factor- TNFAIP6 5.4 4,8 0,9 0, 95 0, 20 (0, 000) 3.1 (0, 000)17.9
inducible gene 6 protein
Plasminogen activator SERPINE1 17 4.0 2,5 0, 19 0,12 (0, 000) 3 (ns)1.7
inhibitor 1
C-C motif chemokine 2 CcCL2 6.9 6,9 1,0 0,11 0, 10 (0, 000) 2.3 (0, 004) 3.7
CD44 antigen CD44 24 0,3 0, 01 0, 02 (ns) 1.7 (0, 000) 5.8
Insulin-like growth factor- |IGFBP4 -2.5 1,4 3,6 0, 10 0, 26 (ns)-1.1 (ns)1.2
binding protein 4
Adipocyte enhancer-binding AEBP1 -1.4 0,2 0,2 0, 00 0, 01 (ns)-1.2 (ns)1.2
protein 1
Cystatin-C CST3 -3.1 0,8 2,6 0, 06 0,17 (ns)-1.2 (ns) -1.1
Versican core protein VCAN -2 0,1 0,2 0,01 0, 01 (ns)-1.6 (ns) -1.4
Collagen alpha-1(VI) chain COL6A1 -3.3 0,4 1,3 0, 27 0,18 (ns)-1.6 (ns) -1.4
Transforming growth factor- TGFBI -2.5 0,1 0, 00 0, 01 (ns)-1.6 (ns) 1
beta-induced protein ig-h3
Legumain LGMN -3.1 0,9 2,7 0, 06 0,17 (0, 002)-2 (ns) 1.2
Gelsolin GSN -2.5 0,1 0,4 0, 03 0, 02 (0.002)-2 (ns) 1.1
Cathepsin B CTSB -1.2 2,2 2,7 0, 04 0, 04 (ns) -2 (ns) -1.2
Lysozyme C LYz -3.3 0,1 0,3 0, 01 0, 04 (0, 001) -2.5 (ns) -3.3
Alpha-2-macroglobulin A2M -3.3 03 0, 04 0, 06 (0, 000) -3.3 (ns) -1.6

Fold change (FC) for the significantly changed proteins (p < 0.05, FC > 1.2) in adipose tissue (AT) n = 1 and the significantly changed genes (p < 0.05, FC > 2, n
= 7 for adipose tissue and n = 5 for liver tissue (LT)) is represented in bold, p value is given in brackets (..). The insignificantly affected genes (ns) are depicted in
italics. FC was calculated in LPS treated samples (LPS+) compared to control samples (LPS-). Additionally, information about average (avg) value in proteomics
experiment representative for protein expression and its standard deviation (std) are depicted in the table. The top candidate biomarkers related to inflamed

adipose tissue are depicted in bold and underlined.

The predicted secretome analysis

The microarray data analysis of both tissues revealed
that adipose and liver tissues have numerous overlap-
ping LPS-responsive genes which protein products are
predicted to be secreted. Among these genes we identi-
fied several known markers associated with insulin resis-
tance such as IL-6, IL-1B3, IL-8, and PAI 1. Other
proteins known to be upregulated during insulin resis-
tance by adipose tissue [34] such as RANTES, MCP1,
PLAUR, CXCL5, were found in our studies to be upre-
gulated in both adipose- and liver tissues. Additionally,
in both tissues we found genes, previously shown to be
regulated in adipose tissue in relation to insulin resis-
tance: CXCL1, CXCL10, CXCL11, ICAM1, TNFAIP6
[35], FGF2, IL6 [32], and ICAM1, IL-1 [36]. Although
TNFa is known to be involved in the development of
insulin resistance in both adipose tissue and the liver, it

was only significantly upregulated in adipose tissue.
However, we observed that 3 out of 5 livers had upregu-
lated expression of TNFo and previously we showed
that in liver tissue in vitro, TNFo. mRNA level was sig-
nificantly upregulated after 5 hrs while after 24hrs the
TNFa. mRNA level returned to basal values [15,37]. In
order to explain this phenomenon we hypothesized that
the TNFa response after LPS treatment could be related
to number of Kupffer cells (assessed by CD68 expres-
sion) or to the expression of TLR4. Thereby, we looked
at correlations between TNFo expression and both CD
68 and TLR4. There was no correlation between TNFo
expression and CD68, R* = 0.0063 (data not shown).
The correlation between TNFo and TLR4 indicated on
a good positive correlation (R* = 0.4) between these
genes and it could indeed explain the observed differ-
ences (data not shown).
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Furthermore, the comparative analysis of adipose and
liver tissues secretomes in vitro provides a source of
candidate biomarkers related to tissue specific inflam-
mation/insulin resistance. Similarly to Shah et al. [35],
we identified in the inflamed adipose tissue secretome
genes such as: SELE, CD274, ORM1, PLA1A, SLAMF]1,
CX3CL1, OSM, TNF, C190RF59, PTX3, IER3, CCLS,
CXCL2, SERPINE1, BMP2, FAM107A, GPX3. Moreover,
we identified genes of yet unknown functions such as:
C140RF162, C200RF59 or genes implicated in other
than insulin resistance inflammatory diseases: epiregulin,
IL-19 or sarcoglycan [38-40].

The analysis of the predicted secretome of inflamed
liver tissue revealed several significantly changed genes
with a known- and an unknown- relationship to insulin
resistance. Identification of biomarkers indicative for
inflamed liver tissue could be a useful tool in a diagnosis
of NAFLD patients, where the only “golden standard” is
an invasive liver biopsy [41]. Biomarkers previously asso-
ciated with liver diseases and identified in our samples
were among others: ANGPTL3, IGFBP2, SDC4, ILIRN
[7,42]. Examples of other pro-inflammatory proteins
affiliated with inflammation but not liver insulin resis-
tance were cathepsin S [34] or granzyme A [43]. In
future it has to be validated if the other most differen-
tially regulated genes between both tissues such as:
SGCD, LCE3D, EREG, NDP and CXCL9, FSTL3,
PDZK1IP1 could be used as biomarkers related to insu-
lin resistance of adipose or liver tissues respectively.

Comparison of transcriptomics and proteomics data
Finally, the transcriptome data encoding for the adipose
tissue inflammatory secretome was validated and com-
pared with the protein data of the inflamed adipose tis-
sue culture medium. The analysis showed that the
transcriptome data were in line with the proteomics
data, in respect to observed upwards and downwards
fold changes (FC) for genes and their corresponding
protein products. However, the FC derived from the
proteomics experiment cannot be directly compared
with the FC of the transcriptome experiment due to
substantial technical differences between both technolo-
gies. By combination of the comparative transcriptome
analysis and proteomics technology we identified leuke-
mia inhibitory factor (LIF), matrix metalopeptidase-1
(MMP-1), pentraxin related gene product (PTX3), frac-
talkine (CX3CL1), and PAI 1 as the potential set of bio-
markers for the inflamed adipose tissue.

Chronic LIF exposure in cardiomyocytes was linked to
insulin resistance [44], however the role of LIF in induc-
tion of IR in adipose tissue is not known. Proteins of
the matrix metalloproteinase (MMP) family are involved
in the breakdown of extracellular matrix in normal phy-
siological processes, such as embryonic development,
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reproduction, and tissue remodelling, as well as in dis-
ease processes, such as arthritis and metastasis [45-47].
MMP1 was not reported earlier as a biomarker of IR/
T2D and its role in adipose tissue is not known.

Pentraxin related gene (PTX3) plays a role in innate
immunity, inflammation, vascular integrity, fertility,
pregnancy, and also in the central nervous system. The
PTX3 could influence the development of autoimmune
reactions and vascular disorders in humans [48,49].
Recently pentraxin was also associated with obesity and
metabolic syndrome [50,51] and it was shown to be
secreted by adipocytes [52].

Moreover, very recently CX3CL1 (fractalkine) was
proposed as a novel human adipochemokine associated
with T2D in humans [53].

Other proposed by us candidate biomarkers such as
TNFa and SERPINE 1 (PAI) are commonly associated
with inflammation, IR, and T2D and are known to be
secreted by the stromal vascular fraction of adipose tis-
sue [54].

In summary, based on the obtained data we postulate
that during inflammation related to IR the target peripheral
tissues (adipose tissue, liver) secret a set of unique proteins
which could serve as tissue-specific biomarkers related to
the investigated pathology. We believe that our approach
of using multiple biomarkers could result in more specific
diagnosis for a tissue specific insulin resistance related to
inflammation, than the use of single biomarkers.

One of the shortcomings of our study is the use of two
different DNA microarray platforms, since the data used
here were generated in two different laboratories. How-
ever, previous studies comparing human Affymetrix and
[lumina platforms show that the obtained results, using
the same human material, are highly comparable, espe-
cially for genes which are predicted to be differentially
expressed [55]. Furthermore, in our studies we compared
only genes which were significantly affected and present
on both platforms; therefore genes which were not pre-
sent on both platforms were excluded from the analysis
and we did not compare intensities of corresponding
genes since they would be different due to the platform
specific design. Another possible disadvantage of our stu-
dies is application of patients with different gender (the
adipose tissue was obtained form females and the liver
was derived form males), BMI, age, and other anthropo-
metric and biochemical parameters. However, due to lim-
ited access to human tissues we could not control all the
parameters according to the proper experimental design.
Nevertheless, we are confident that the results presented
provide a good basis for future in vivo validation studies.

Conclusions
In summary, our in vitro approach showed that LPS-
induced inflammation in adipose and liver tissues,
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results in upregulation of inflammatory processes and
downregulation of metabolic pathways and redox/detox-
ification reactions. These processes could synergistically
contribute to the deregulation of energy homeostasis
leading to insulin resistance. Furthermore, our study
implies that adipose tissue is more active during inflam-
mation compared to the liver, based on identification of
higher number of GO terms and genes involved in
inflammation and angiogenesis, and a number of genes
predicted to encode for secreted proteins. Whether the
identified tissue-specific molecular pathways and the
identified candidate biomarkers can be used for tissue-
specific diagnosis of insulin resistance in patients awaits
further validated in vivo. We believe that this approach
may facilitate more targeted treatment of insulin
resistance.

Additional material

Additional file 1: Gene functional classification. Table S1. Gene
functional classification-the upregulated adipose tissue
transcriptome. Gene functional classification for the upregulated
transcripts in adipose tissue (n = 7) based on the Database for
Annotation, Visualization, and Integrated Discovery (DAVID). Table S2.
Gene functional classification-the downregulated adipose tissue
transcriptome. Gene functional classification for the downregulated
transcripts in adipose tissue (n = 7) based on the Database for
Annotation, Visualization, and Integrated Discovery (DAVID). Table S3.
Gene functional classification-the upregulated liver tissue
transcriptome. Gene functional classification for the upregulated
transcripts in liver tissue (n = 5) based on the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Table S4. Gene
functional classification-the downregulated liver tissue
transcriptome. Gene functional classification for the downregulated
transcripts in liver tissue (n = 5) based on the Database for Annotation,
Visualization, and Integrated Discovery (DAVID).

Additional file 2: GO analysis. Table S1. GO analysis for the
upregulated adipose tissue transcriptome. The significantly
upregulated GO terms in adipose tissue (n = 7) identified by DAVID. The
GO terms were categorized into broader GO categories such as:
inflammation, development, signaling, metal ion homeostasis, secretion,
and angiogenesis. Table S2. GO analysis for the downregulated
adipose tissue transcriptome. The significantly downregulated GO
terms in adipose tissue (n = 7) identified by DAVID. The GO terms
belonged to GO category extracellular matrix. Table S3. GO analysis for
the upregulated liver tissue transcriptome. The significantly
upregulated GO terms in liver tissue (n = 5) identified by DAVID. The GO
terms were categorized into broader GO categories such as:
inflammation, development, and angiogenesis. Table S4. GO analysis for
the downregulated liver tissue transcriptome. The significantly
downregulated GO terms in liver tissue (n = 5) identified by DAVID. The
GO terms belonged to GO categories: amino acid metabolism and
inflammation/binding.

Additional file 3: Gene count analysis for the identified GO
categories. Table S1. Gene count analysis for the identified GO
categories in the significant adipose tissue transcriptome. The
significantly upregulated (up) and downregulated (down) genes in
adipose tissue (AT), (n = 7) within the defined GO categories
(inflammation, development, signaling, metal ion homeostasis, secretion,
angiogenesis, and extracellular region. Table S2. Gene count analysis
for the identified GO categories in the significant liver tissue
transcriptome. The significantly upregulated (up) and downregulated
(down) genes in liver tissue (LT), (n = 5) within the defined GO
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categories (inflammation, development, signaling, angiogenesis, amino
acid metabolism, and inflammation/binding).

Additional file 4: Secretome prediction. Table S1. The common
(overlapping) adipose tissue and liver tissue predicted secretome.
The common (overlapping) adipose tissue (AT), (n = 7) and liver tissue
(LT), (n = 5) predicted secretome. The presented genes were significantly
changed, p < 0.05 in both tissues. In the last two columns fold changes
(FO) in AT and LT are given. Table S2. The adipose tissue predicted
secretome. The adipose tissue (AT) predicted secretome, (n = 7). Genes
present in AT were significantly changed (p < 0.05, FC > 2) while the
corresponding genes in liver tissue (LT), (n = 5) were not significantly
affected (p > 0.05). Table S3. The liver tissue predicted secretome. The
liver tissue (LT) predicted secretome, n = 5. Genes present in LT were
significantly changed (p < 0.05, FC > 2) while the corresponding genes
in adipose tissue (AT), (n = 7) were not significantly affected (p > 0.05).
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