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Abstract

remains difficult.

normalization algorithm.
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Background: Epigenetic alteration of gene expression is a common event in human cancer. DNA methylation is a
well-known epigenetic process, but verifying the exact nature of epigenetic changes associated with cancer

Methods: We profiled the methylome of human gastric cancer tissue at 50-bp resolution using a methylated DNA
enrichment technique (methylated CpG island recovery assay) in combination with a genome analyzer and a new

Results: We were able to gain a comprehensive view of promoters with various CpG densities, including CpG
Islands (CGls), transcript bodies, and various repeat classes. We found that gastric cancer was associated with
hypermethylation of 5" CGIs and the 5-end of coding exons as well as hypomethylation of repeat elements, such
as short interspersed nuclear elements and the composite element SVA. Hypermethylation of 5" CGls was
significantly correlated with downregulation of associated genes, such as those in the HOX and histone gene
families. We also discovered long-range epigenetic silencing (LRES) regions in gastric cancer tissue and identified
several hypermethylated genes (MDM2, DYRK2, and LYZ) within these regions. The methylation status of CGls and
gene annotation elements in metastatic lymph nodes was intermediate between normal and cancerous tissue,
indicating that methylation of specific genes is gradually increased in cancerous tissue.

Conclusions: Our findings will provide valuable data for future analysis of CpG methylation patterns, useful
markers for the diagnosis of stomach cancer, as well as a new analysis method for clinical epigenomics

Background

Gastric cancer is the second leading cause of cancer
deaths worldwide after lung cancer, resulting in more
than 800,000 deaths worldwide every year [1]. The cur-
rent 5-year survival rate of individuals diagnosed with
gastric cancer is only 20-30%, with this low rate being
attributable to the fact that most cases are already in an
advanced stage when diagnosed. As in all cancers, early
detection remains the most promising approach for
improving the survival rate. Hence, understanding the
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cause of tumorigenesis in human gastric tissue is
essential.

Infection with H. pylori is a well-established and com-
mon cause of gastric cancer. However, alterations in var-
ious genetic factors are also important in increasing
gastric cancer risk. It is well known that chromosomal
instability originating from genetic factors such as micro-
satellite instability as well as KRAS and p53 mutations
result in the development of tumors. Several genomic
studies have identified germline mutations in specific
genes [2-4] and disease susceptible loci [5,6] for gastric
cancer. Recent studies comparing gastric cancer and nor-
mal tissue have identified a number of genetic markers,
including diagnostic markers [NF2[7], INHBA[8], SERP4
[9]], prognostic markers [CD9[10], CDHI17[11], PDCD6
[12]], and gastric cancer-associated genes [MUCI13[9],
CLDN1[13], Ki67 and CD34[14]]. In addition, epigenetic
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mechanisms such as DNA methylation and histone mod-
ifications have been found to be important in regulating
the expression of genes involved in the biology and dis-
ease of the gastrointestinal tract [15].

DNA methylation plays an essential role in eukaryotes
and is associated with a number of key mechanisms
including genomic imprinting, X chromosome inactiva-
tion, aging, and carcinogenesis. Alteration of DNA
methylation in the genome is found in almost all types
of cancer and can lead to changes in gene expression,
such as over-expression of oncogenes and silencing of
tumor suppressor genes during cancer development
[16]. Several studies have shown that accumulation of
genetic and epigenetic alterations in gastric precancer-
ous lesions may affect a large number of targets, such as
DNA repair system components, tumor suppressors,
oncogenes, cell cycle regulators, growth factors, and
adhesion molecules [17-20]. However, these studies have
been primarily focused on a few candidate genes or cov-
ered only a portion of the whole genome. Thus, acces-
sing a global view of the epigenetic changes associated
with cancer development has been difficult. In particu-
lar, understanding DNA methylation changes in the
intragenic regions, CpG islands, intergenic regions, and
repeat sequences remains limited. Consequently, there is
great interest in genome-wide analysis of aberrant DNA
methylation in these regions.

For comprehensive genome-scale profiling of DNA
methylation in embryogenesis and carcinogenesis, high-
resolution whole genome sequencing methods such as
BS-seq [21-24], MeDIP-seq [25,26], and MethylCap-seq
[27-29] have been developed. Despite the rapid develop-
ment of sequencing-based mapping technology, there is
still a lack of comparative research, which is critical for
clinical epigenomics studies, including those focused on
cancer. Unlike microarray-based approaches, sequencing
data are produced in a format that is not amenable to
differential analysis, and the analysis workflow has not
been standardized. Hence, computationally inexpensive
normalization methods are needed to handle the com-
putational burden of processing large-size, high-resolu-
tion sequencing data.

Here, we introduced a normalization algorithm, which
takes into account the sample-specific total read density,
the spatial distribution of CpG loci, and background
sequencing bias. We then created a comprehensive
whole-genome methylome of normal gastric tissue, gas-
tric cancer tissue, and metastatic lymph nodes using the
MethylCap-seq method and obtained detailed informa-
tion on its perturbation during carcinogenesis and metas-
tasis. This is readily applicable to a comparative analysis
of methylomes and other types of epigenomic data, and it
has particular implications for clinical epigenomics.

Page 2 of 15

Methods

Gastric tissue samples

We obtained three snap-frozen gastric tumors and
matched normal gastric tissue from Seoul National Uni-
versity College of Medicine for methylome study. Addi-
tionally, twenty-eight matched pairs of normal and
tumor stomach tissues were obtained for further confir-
mation. All samples were obtained by endoscopic resec-
tion during examination of the patients who gave
informed consent.

Methylated DNA recovery assay (MIRA)

Genomic DNA from 25 mg of gastric tissue was purified
by using DNeasy Blood & Tissue Kit (Qiagen, Valencia,
CA). Genomic DNA samples from 3 individuals were
pooled at the same concentration. MIRA was carried
out as previously described [30-32]. Briefly, GST-tagged
MBD2b and His-tagged MBD3L1 proteins were pre-
pared as described. 15 ug of genomic DNA was frag-
mented to 100 ~ 500 bp by sonication and incubated
with 28 ug of purified GST-MBD2b protein, 28 ug of
His-MBD3L1 protein and 7 ug of J]M110 Bacterial DNA
for 6 hours. 30 ul of MagneGST beads (Promega, Madi-
son, WI) preblocked with 7 ug of JM110 bacterial RNA
were added and incubated at 4°C with rotating for 45
minutes in final 600 ul of MIRA binding reaction mix-
ture. Beads were washed three times with 1 ml of wash-
ing buffer, and methylated fragments were eluted by
incubation at RT for 5 minutes and then 56°C for 30
minutes with 30 ul of TE containing RNase A (100 ug,
Qiagen) and Proteinase K (15 ug, Qiagen). Eluted DNA
fragments were further purified by using Qiaquick PCR
purification kits (Qiagen).

lllumina Genome Analyzer sequencing

We used 10 ng of eluted DNA for Illumina Genome
Analyzer sequencing. Following ligation of a pair of
Solexa adaptors, ligation products with the maximum
insert size of 200 bp were gel purified on 2% agarose
and subjected to PCR amplification. Cluster generation
and 36 cycles of sequencing were performed following
the manufacturer’s instructions. We sequenced 120 ul of
adaptor-ligated, size-fractionated DNA (2 ~ 4 pM) on
the Illumina Genome Analyzer. Sequence tags were
mapped to the human genome (UCSC hgl8 database
based on NCBI Build 36.1 assembly) using the Solexa
Analysis Pipeline (version 0.3.0). Sequenced reads of 34
bp (excluding the first and last nucleotide) that passed
quality control filters were used.

Data processing and MES calculation
We extended the 3" end of the 34-bp reads by 200 bp to
cover DNA fragments bound by the MBD proteins. The
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readout was converted to browser extensible data (BED)
files for visualization in the UCSC genome browser
http://genome.ucsc.edu/. We counted overlapping
sequence tags at 50 bp resolution. To find enriched
genomic regions, the number of mapped reads in a slid-
ing window of 1 kb was compared to the total number
of reads or the background number of reads in the gen-
ome. As such, MES was calculated in two ways; one is
as the log2 of (target read count/target size)/(total read
count/genome size) and floored to zero, the other is as
the log2 of (target read count/target size)/(background
read count/background size) and floored to zero. To
adjust for background sequencing bias, MESbg was cal-
culated in the same manner for input sequencing with-
out affinity purification and subtracted from MES.

Genomic positions of CGls, promoters, transcript bodies,
CDSs, and repetitive elements

All genomic positions of CGIs, transcripts and repeat
elements were downloaded from the UCSC genome
browser. A total of 27,639 CGIs (except randomly
located CGls) were predicted by the following criteria:
GC content of 50% or greater, length greater than 200
bp, and ratio greater than 0.6 of observed number of
CpG dinucleotides to the expected number [33]. The
NCBI mRNA reference sequences collection (RefSeq
from release version 46; March 11, 2011) was used for
identifying transcription units with the defined tran-
scription start, end sites and CDS start, end sites. For
promoters, we used the region 500 bp upstream ~ 500
bp downstream of the transcription start site. We
obtained ~ 5 million repeat locations that had been
determined by the RepeatMasker program based on the
RepBase library of repeats.

Methylation level of genomic elements

The methylation level of a CGI, promoter, gene-body,
and repeat element was estimated by means of MES
overlapping each element. MES = 0 was used to define
unmethylated elements. To measure hypermethylation
or hypomethylation in cancer, we calculated the differ-
ential MESs as (Cancer MES - Normal MES). Differen-
tial MES > 1.0 was used as a threshold. To understand
the functions of selected genes, we used the ontology
classification of genes through the DAVID Functional
Annotation Clustering tool http://david.abcc.ncifcrf.gov/.

Gene expression analysis

The microarray product used in this study was Codelink
Human Whole Genome 55 K chip (GE Healthcare,
USA). All experimental procedures including cRNA tar-
get preparation, hybridization, post-hybridization dye
coupling were performed using vendor recommended
protocols. The result files were imported into

Page 3 of 15

GeneSpring GX 7.3 (Agilent Technologies, USA) for fil-
tering and basic statistical analysis. Among 55 K genes
on the microarray, only the genes with present flags in
at least 50% of samples were selected for subsequent
analysis. The microarray data were deposited at the
GEO http://www.ncbi.nlm.nih.gov/geo/ (accession num-
ber GSE33651).

MIRA and real-time qPCR

MIRA was performed on four additional individual sam-
ples. DNA was purified from the supernatant and moni-
tored by real-time qPCR using Roche 480 machine. The
sequences of used primers are presented in Additional
file 1: Table S1.

Bisulfite treatment, methylation-specific PCR and
pyrosequencing

We isolated the genomic DNA from individual sample
by using a Qiagen DNeasy Tissue Kit (Qiagen). Bisulfite
treatment was carried out using the EZ DNA methyla-
tion gold kit (Zymo research) according to the manufac-
turer’s instructions. Bisulfite-treated DNA was stored at
-80°C until further use. The primers used for MSP were
designed using Methprimer [34], and are shown in
Additional file 1: Table S1. PCR was performed with
HotStarTaq Polymerase (Qiagen) and included an initial
incubation at 95°C for 15 min, followed by 40 cycles of
95°C for 1 min, 59°C for 1 min and 72°C for 40 sec, fol-
lowed by one cycle of 72°C for 10 minutes. MSP pro-
ducts were separated on 2% agarose gels and visualized
by ETBR staining. The pyrosequencing reactions were
automatically performed with a PSQ 96 system (Pyrose-
quencing AB) according to the manufacturer’s instruc-
tions. Briefly, the biotinylated PCR product (50 ul) was
purified by using streptavidin-sepharose beads (Amer-
sham Biosciences). The purified product was loaded into
the reagent cartridge with the enzyme, substrate and
dNTP included in the PSQ96 SNP Reagent Kit (Pyrose-
quencing AB). The sequencing primers for pyrosequen-
cing are shown in Additional file 1: Table S1.

Results

Processing of MIRA-seq methylome data

We purified the methylated DNA enriched through
MIRA (methylated CpG island recovery assay) and
sequenced the DNA using next-generation sequencing.
DNA methylation levels were determined using sequen-
cing read counts of the corresponding regions, at 50 bp
intervals, as described under Methods. We created DNA
methylation maps for both normal and cancerous gastric
tissues. For each sample, we obtained about 10 million
sequence reads (Additional file 1: Table S2). Each
methylome contained ~140 million CpG reads, covering
~48% of all genomic CpG sites excluding centromeres
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(Additional file 1: Table S3). The average coverage of
CpG reads in each methylome was 4.5X. In support of
the high sensitivity of MIRA, genomic segments con-
taining only one CpG had higher read counts than those
with no CpG (p value = 0), suggesting that single CpG
changes could be resolved using MIRA. The average
sequence reads increased in proportion to the number
of CpGs within a 50-bp interval, and in fact, MIRA cov-
erage was not low, even for regions of low CpG density
(Additional file 2: Figure S1). Taken together, these
results show that MIRA was successful in recovering a
sufficient fraction of methylated regions. As for the
accuracy of MIRA, ~99% of MIRA-captured fragments
had at least one CpG site within their sequence, indicat-
ing a low false detection rate.

To measure enrichment of local methylation signals,
we calculated methylation enrichment scores (MESs) by
obtaining a read count in a given region and then per-
forming normalization to control for the total read
count (MESt) in the sample (global normalization) or
the local read count (MESI) in a user-defined surround-
ing region (local normalization) (see Methods). This
enables a direct comparison of independent samples
with different read density. We then carried out a loga-
rithmic transformation of the derived score. Along with
having other mathematical merits, this provides the ben-
efit of variance stabilization, particularly for high read
counts, which are often coupled with high technical var-
iations that may introduce significant bias in the data.

We assessed the statistical significance of the MES in
two ways. Randomized MESs were generated numeri-
cally by permuting the genomic positions of our
sequence reads. The background MES (MESbg) was
experimentally obtained by sequencing the normal gen-
ome without affinity purification. As expected, the real
data yielded markedly higher enrichment scores (Addi-
tional file 2: Figure S2). Notably, MESbg was higher
than MES from randomized genomes, an indication that
background sequences alone can create enrichment,
probably due to chromatin accessibility and amplifica-
tion bias. Consistent with recent reports [35], this illus-
trates the need for a proper calibration for inherent
sequencing bias. Therefore, we normalized our MES
with MESbg.

To find the optimal condition for normalization, we
compared the statistical fitness of various normalization
methods. Tag distribution along the genome can be
modeled by the Poisson distribution [36,37]. The good-
ness of fit was tested using the Kolmogorov-Smirnov
test. In this test, a low D statistic indicates a good fit.
While the Poisson model outperformed the Gaussian
overall, the MES showed a better fit than raw read
counts (Additional file 2: Figure S3), illustrating the rare
event nature of the log-scaled read count measure. The
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normalized MESI calibrated by control sequencing
(MESbg) yielded even better results than normalized
MESt calibrated by control sequencing (MESbg).

Global and chromosomal views of DNA methylation
After confirming the best method for scoring genome-
wide methylation levels at 50-bp intervals, we first
examined the chromosomal methylation patterns of nor-
mal samples. The average MES calculated for each chro-
mosome suggested that CpG-rich and gene-rich
chromosomes tend to be highly methylated (Figure 1A).
The methylation levels of chromosomes with large
amounts of long interspersed nuclear elements (LINEs)
were relatively low (e.g., chromosome 4). Interestingly,
the quantity of short interspersed nuclear elements
(SINEs) was proportional to the chromosome methyla-
tion pattern. This is likely caused by the fact that SINEs
are typically clustered in gene-rich regions. Sex chromo-
somes were globally hypomethylated with lower CpG
density and higher repeat content than autosomes. Since
we used the tissues taken from a male in this experi-
ment, the global hypomethylation of the X chromosome
observed is not associated with X inactivation. Chromo-
some-wide views recapitulated high CpG density and
high methylation around gene-rich (see black bars at the
bottom) and CGI-rich regions (see blue bars at the top)
(Figure 1B). In contrast, low CpG density and low
methylation were observed around gene-poor regions
that were rich in long-range repeats (> 1 kb) (see red
bars at the top). The average MES suggests that the
methylation level of CGIs is considerably higher than
that of genic regions or repeats (Figure 1B).

Generally, CGIs tend to remain methylation free in
normal tissue. To analyze the high methylation patterns
of CGIs, we checked the average MES distribution and
found a slightly bimodal pattern (Figure 1C). About 66%
(11,376/17,284) of CGIs in the left peak overlapped with
a promoter (1 kb by our definition). In contrast, 13%
(1,386/10,357) of CGIs in the right peak overlapped
with a promoter, suggesting that most promoter-asso-
ciated CGIs are unmethylated. In contrast to promoter-
related CGls, promoter-independent CGIs were heavily
methylated (Figure 1C). Although most CGI-positive
promoters were not methylated, CGI-negative promo-
ters showed relatively high methylation levels (Figure
1D). We also checked the methylation level of promo-
ters by CpG density as previously defined [38] (Addi-
tional file 3: Table S4). The methylation pattern of
promoters was inversely related to CpG density (Addi-
tional file 2: Figure S4). On the other hand, CGI-con-
taining gene bodies had higher methylation levels than
those without CGIs (Figure 1D).

Next, we analyzed methylation enrichment patterns at
various annotated genomic elements to explore regions
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Figure 1 Methylation patterns of normal gastric tissue. (A) Chromosome-wide average MES is shown as a function of the average CpG
density, gene density (the number of genes per Mb), LINE quantity (the length of LINE per Mb), and SINE quantity (the length of SINE per Mb)
for each chromosome. (B) For chromosome 22, the average CpG density (shaded gray) and MES (black curve) were obtained in 1-Mb sliding
windows. The positions of transcribed genes (black bars at the bottom), CG islands (blue bars at the top), and long repeats (> 1 kb; red bars on
the top) are compared against the backdrop of DNA methylation and CpG density (left). The average MES for CGls, gene bodies, and repeats
(right). (O) The distribution of gene bodies and CGI MES (left). The average MES for promoter-associated and promoter-independent CGls is
shown to the right. (D) The average MES for promoter subgroups, based on the existence of CGl (left). (E) Basic information on intergenic,
exonic, and intronic regions, according to length, CpG number, and mapped reads (left). The distribution of intergenic, exonic, and intronic MESs
is shown to the right. (F) Basic information on the upstream 1-kb region, 5" UTR exons, coding exons, 3" UTR exons, and downstream 1-kb region
according to length, CpG number, and mapped reads (left). The distribution of the MES for each element is shown to the right.
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that were preferentially methylated. Genic regions
occupy about 40% of human genome, but about 53% of
the total reads is within this region, with the majority of
reads being located in the intronic region (Table 1).
Although a significant proportion of methylated frag-
ments fall within intronic regions, the ratio of mapped
reads to the length of exons is considerably higher than
that for introns, suggesting that exons are more highly
methylated than introns (Figure 1E). Within gene-asso-
ciated regions, the enrichment of coding exons is even
higher than that of other regions as previously reported
(Figure 1F and Table 2) [39]. This strongly suggests that
methylation plays a role in exon regulation.

Changes in DNA methylation patterns associated with
gastric cancer

When the average chromosomal MES of the cancer
methylome was compared to that of control tissue, we
found that all chromosomes in the cancer tissue tended
to be hypomethylated (Additional file 2: Figure S5).
With chromosome-wide views, CGI-rich regions were
found to be specifically hypermethylated, while repeat-
rich regions were widely hypomethylated (Figure 2A;
Additional file 2: Figure S6). To analyze methylation
changes in genomic elements, we aligned each element
at the start and end sites and then obtained the average
MES at each respective position. Strikingly, we detected
hypermethylation in the upstream region, particularly
from 500 bp upstream to the transcription start site
(Figure 2B). This is in accordance with the hypermethy-
lation of promoter regions frequently observed in
cancer.

The region centered at the transcription start site
showed completely different patterns depending on the
presence of a CGI, reflecting the low methylation status
of CGI-containing promoters (Figure 2C). We also
found that, in cancerous tissue, remarkable hypermethy-
lation of CGI-containing promoters occurs and that the
density of CpGs is crucial for the increase in DNA
methylation (Figure 2C). To further analyze whether 5’
regions of genes were hypermethylated similarly to gene
promoters, we checked the methylation pattern of the
first exons. Interestingly, we found that the first exon
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was hypermethylated only when it was the 5’-end of a
coding exon, but not when it was a 5 UTR exon (Figure
2D). These regions also contained high CpG density.
Therefore, CGIs at the upstream regions of genes, the
promoter, and the coding start appear to be the major
targets of DNA hypermethylation in cancer.

Methylation pattern of CpG islands

To explore the correlation between the location of CGIs
and DNA methylation, we subgrouped CGIs according
to their position within the genome. Specifically, they
were categorized as 5’ (located between 1 kb upstream
and the coding start site of a gene), intragenic (intra-
genic CGIs outside the 5" end), and intergenic (located
in non-genic region) (Additional file 1: Table S5).
Although CpG density was similar among the three
groups, non-5" CGIs (intragenic and intergenic CGIs)
were significantly more methylated than 5" CGIs (Addi-
tional file 2: Figure S7). We further compared the aver-
age MES of subgrouped CGIs and found the
methylation of all CGIs was generally increased. How-
ever, the relative differential MES suggested that the
change in methylation in 5" CGIs was significantly
greater than that for other CGIs (Figure 3A), reflecting
the important roles of 5° CGIs in cancer. The extent of
5" CGI hypermethylation significantly correlated with
the overlap of the transcription start site (Figure 3B).

To explore the functions of genes undergoing differen-
tial methylation at 5 CGls, we selected genes with
highly differential CGI MESs (differential MES > 1). We
then performed gene ontology (GO) analysis to gain
insight into the mechanisms responsible in cancer
(Table 3). When the genes were clustered into various
GO categories, we found that HOX gene clusters and
nucleosome assembly-related gene clusters were targets
for hypermethylation, while apoptosis-related gene clus-
ters were targets for hypomethylation. Interestingly, our
finding that HOX gene clusters were preferential targets
for DNA methylation is consistent with a previous
report [40]. In addition, gene plots confirmed that
hypermethylation was CGI-specific in cancer (Additional
file 2: Figure S8). To estimate the changes in expression
patterns caused by hypermethylation of 5" CGIs, we

Table 1 Human genome and normal sample information of genic and intergenic region

Human Genome Information

Normal Sample Information Relative Enrichment Ratio

Functional Category Length (bp) Ratio # of CpG Ratio Reads Ratio vs. length vs. CpG Count
Genic 1,184,139,094 39.46 13,262,253 47.09 20,854,434 53.25 1.35 1.13
Exon 68,035,894 227 1,808,089 6.42 4,350,405 1.1 4.90 1.73
Intron 1,122,817,725 3741 11,613,113 4123 17,358,273 4432 1.18 1.07
Intergenic 1,816,976,186 60.54 14,901,610 5291 18,310,273 46.75 0.77 0.88
Human Genome 3,001,115,280 100 28,163,863 100 39,164,707 100 1.00 1.00
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Table 2 Human genome and normal sample information of gene annotated regions

Human Genome Information

Normal Sample Information Relative Enrichment Ratio

Functional Category Length (bp) Ratio # of CpG Ratio Reads Ratio vs. length vs. CpG Count
Upstream 1 kb 24,468,069 0.82 937,748 333 535,593 137 1.68 041
5'UTR Exons 8,436,529 0.28 411,563 1.46 292,654 0.75 2.66 0.51
Coding Exons 33,384,619 1.11 1,077,913 383 3,448,755 8.81 792 2.30
3'UTR Exons 28,387,978 0.95 378,012 134 806,832 2.06 218 1.53
Downstream 1 kb 23,136,263 0.77 340,866 1.21 551,071 141 1.83 1.16
Human Genome 3,001,115,280 100 28,163,863 100 39,164,707 100 1.00 1.00

performed a functional analysis of gene expression data
obtained from ¢cDNA microarray experiments. Hyper-
methylation of 5" CGIs was significantly correlated with
downregulation of genes (p = 0.03) (Figure 3C; Addi-
tional file 3: Table S6 and S7). This indicates that silen-
cing of genes by methylation can be directly affected by
the degree of CpG density and 5" CGI hypermethylation.
We analyzed the DNA methylation status of genes with
hypermethylated 5° CGIs and downregulated expression
patterns. Among these was the gene encoding histone

H2B type 3-B (HIST3H2BB). Analysis of HIST3H2BB
promoter methylation using methylation-specific PCR
revealed that most cancer patients (8/10, 80%) exhibited
increased methylation in the promoter region (Figure
3D).

DNA methylation of repetitive elements

DNA hypomethylation of repetitive elements is a com-
mon feature of cancer. The methylation status of indivi-
dual repetitive elements such as Alu, LINE-1, and Sat2
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is a major target of global DNA methylation studies.
However, a comprehensive view of the methylation sta-
tus of all repetitive elements is currently unavailable.
We first checked the methylation status of various repe-
titive elements to verify the changes in each repetitive
element in cancer. When we compared the DNA methy-
lation levels in normal and cancerous tissue, striking
changes were observed in the distribution of repeat
methylation in the cancerous tissue (Figure 4A).

In addition to the hypomethylation patterns of the
SINE and LINE, a significant reduction in methylation

was found in SVA (SINE-VNTR-Alus), satellites, and
LTR. This is consistent with previous reports about
cancer-specific hypomethylation [41]. Alu elements
are the most abundant class of repetitive elements in
the human genome, with these elements having over
one million copies and spanning over 30 lineages.
AluS and AluY elements, which are younger subfami-
lies, were significantly hypomethylated when compared
with older subfamilies, as previously reported [42]
(Figure 4B). SVA elements, which have been exten-
sively mobilized in the human genome, consist of a
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Table 3 Functional annotation clustering of genes with hypermethylated 5'CGls

Annotation Cluster 1 Enrichment Score: 3.27 Count P_Value
GOTERM_BP_FAT nucleosome assembly 1 3.90E-04
GOTERM_BP_FAT chromatin assembly 1M 5.20E-04
GOTERM_BP_FAT protein-DNA complex assembly 1 7 40E-04

Annotation Cluster 2 Enrichment Score: 2.92 Count P_Value

INTERPRO Histone core 8 6.80E-04
SP_PIR_KEYWORDS nucleosome core 8 8.60E-04
GOTERM_CC_FAT nucleosome 8 3.10E-03
Annotation Cluster 3 Enrichment Score: 2.16 Count P_Value
INTERPRO Homeobox, conserved site 17 5.10E-03
INTERPRO Homeobox 17 5.70E-03
SP_PIR_KEYWORDS Homeobox 17 5.80E-03
INTERPRO Homeodomain-related 17 6.40E-03
SMART HOX 17 1.40E-02

Annotation Cluster 4 Enrichment Score: 2.02 Count P_Value
PIR_SUPERFAMILY brain-expressed X-linked protein 3 9.10E-03
PIR_SUPERFAMILY PIRSFO08633:BEX 3 9.10E-03

INTERPRO Brain expressed X-linked like protein 3 1.00E-02

Annotation Cluster 5 Enrichment Score: 1.97 Count P_Value

PIR_SUPERFAMILY PIRSF00205 1:histone H3 3 9.10E-03
INTERPRO Histone H3 3 1.00E-02
SMART H3 3 1.30E-02

Annotation Cluster 6 Enrichment Score: 1.78 Count P_Value

UP_SEQ_FEATURE domain:Helix-loop-helix motif 10 1.20E-02
INTERPRO Basic helix-loop-helix dimerisation region bHLH 10 1.40E-02
SMART HLH 10 2.60E-02

Annotation Cluster 7 Enrichment Score: 1.77 Count P_Value
GOTERM_CC_FAT focal adhesion 9 1.30E-02
GOTERM_CC_FAT cell-substrate adherens junction 9 1.60E-02
GOTERM_CC_FAT cell-substrate junction 9 2.20E-02

Annotation Cluster 8 Enrichment Score: 1.55 Count P_Value
GOTERM_BP_FAT regulation of B cell proliferation 5 1.20E-02
GOTERM_BP_FAT positive regulation of B cell activation 5 2.20E-02
GOTERM_BP_FAT regulation of B cell activation 5 8.40E-02

Annotation Cluster 9 Enrichment Score: 1.55 Count P_Value
PIR_SUPERFAMILY PIRSF500606:homeotic protein Hox D4 3 9.10E-03
SP_PIR_KEYWORDS embryo 3 3.30E-02
PIR_SUPERFAMILY PIRSF002612:homeotic protein Hox A5/D4 3 3.70E-02

INTERPRO Homeobox protein, antennapedia type 3 5.90E-02

Annotation Cluster 10 Enrichment Score: 1.38 Count P_Value
GOTERM_MF_FAT substrate specific channel activity 21 3.40E-02
GOTERM_MF_FAT channel activity 21 460E-02
GOTERM_MF_FAT passive transmembrane transporter activity 21 4.70E-02

combination of sequences derived from other retroele- we analyzed the methylation of repetitive elements

ments [43].

based on their genomic location (i.e., promoter, gene

To understand if a correlation may exist between the  body, or intergenic), even though it is unclear if repeti-
degree of methylation changes and genomic location, tive elements participate in regulating gene expression
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(Figure 4C). We found that methylation changes were
higher in gene-associated repetitive elements than in
gene-independent repetitive elements. This suggests
that a correlation exists between methylation changes
in repetitive elements and the expression of adjacent

genes.

Long-range epigenetic silencing (LRES) in gastric cancer

Large chromosomal regions can usually be suppressed
in cancer cells, as seen by hypermethylation of neighbor-
ing CpG islands and downregulation of most genes
within the region. To determine whether LRES occurs
in gastric cancer, we identified large-scale genomic
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regions where methylation enrichment encompasses
multiple genes. Interestingly, we found a high degree of
hypermethylation around the 12q14 site, even though
there were few CGIs and genes with abundant repeats
(Figure 5A).

The LRES region around the 12ql4 site spanned
about 2.7 Mb and harbored about 21 genes. Among
these genes was MDAM?2, which encodes a protein that is
considered to be a negative regulator of p53 and a
major regulator of cancer development. Promoters of
genes in this LRES region displayed tumor-specific
hypermethylation (p = 0.03, t-test) (Figure 5B). To
determine whether genes in this LRES region show con-
cordant gene silencing, we re-analyzed publicly available
expression datasets (GSE27342) for differential gene
expression in clinical samples. Consistent with pre-
viously reported expression patterns of LRES regions,
the public data for this LRES region showed common
gene suppression (p = 0.05, t-test) (Figure 5C).

To determine if the hypermethylation pattern of genes
within this LRES region is commonly present in gastric
cancer, we examined the methylation enrichment fre-
quency of selected genes (Figure 5D). The methylation
enrichment levels of cancer samples were over 2-fold
higher than that of normal samples. However, one of
the patients showed a low methylation level at several
target sites (Additional file 2: Figure S9). Because the
amplification of this region frequently occurs in many
cancers, we examined the amplification frequency of
several genes within these regions using real-time PCR.
Intriguingly, we detected amplification of MDM?2 (Addi-
tional file 2: Figure S10), suggesting that an interaction
exists between DNA methylation and gene amplification.
To examine the generality of MDM?2 methylation, we
used pyrosequencing to analyze the methylation level of
a specific locus in an upstream region of MDM?2. We
analyzed MDM?2 methylation in normal and cancer tis-
sue samples from other 28 gastric cancer patients. Out
of 28 independent samples, most patients showed higher
MDM?2 methylation (Figure 5E), while four samples
showed decreased levels of methylation, along with gene
amplification (Additional file 2: Figure S11). Therefore,
the MDM?2-containing region appears to be hyper-
methylated in cancer in general, but our results suggest
that gene amplification in this region interferes with
methylation. Therefore, except for cases with gene
amplification, LRES across 12q14 appears to be a dis-
tinct epigenetic pattern associated with gastric cancer.

Methylation patterns in metastatic lymph nodes

In gastric cancer, lymph node metastasis is one of the
major prognostic factors and an important indicator of
tumor aggressiveness. Many studies have been con-
ducted to analyze the expression profiles for and
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epigenetic changes in specific genes, but comprehensive
data for whole-genome alterations in DNA methylation
remain scarce. Similar to cancerous tissue, metastatic
lymph nodes showed hypermethylation at the region
centered at the transcription start site only in CGI-con-
taining promoters (Figure 6). GO analysis revealed that
several clustered groups of genes with highly differential
CGI MES (differential MES > 1) in 5" CGIs overlapped
with cancer genes, such as HOX family and histone
family genes, even if there was little difference in ranks
(Additional file 1: Table S8). After considering all these
data, we conclude that the methylation pattern of meta-
static lymph nodes is considerably similar to that of the
cancer of origin.

Discussion

Here we demonstrate a comprehensive methylation map
of human gastric tissue at high resolution. Our data pro-
vide a global view of a mammalian methylome, along
with several intriguing findings, some of which are novel
and worth further investigation. First, we found that
hypermethylation of CGIs in promoters is an important
epigenetic feature that dictates gene expression changes
in cancer. Second, hypermethylation of the 5-end of
coding exons arises in cancer and appears to play an
important role in cancer progression. Third, cancer-
induced methylation changes in younger repetitive ele-
ments and LRES have potential clinical implications in
terms of early detection and therapeutic design.

Among the genes analyzed in this study was MDAM?2,
which encodes an important negative regulator of p53.
MDM?2 and p53 are known to regulate one another
through a feedback loop [44]. MDM?2 overexpression is
frequently detected in many human cancers, suggesting
that MDM?2 overexpression may be one of the common
features of tumorigenesis. In this study, we showed that
the upstream region of MDM?2 is hypermethylated in
most cancer samples. We also found that, in some can-
cer samples, hypomethylation occurred along with
MDM?2 amplification at the same site, suggesting that
there is major dysregulation of the MDM2-mediated
pathway at both the genetic and epigenetic levels. This
appears to cause aberrant early tumor cell development
and subsequently cancer.

HOX genes cluster on chromosomes 2, 7, 12, and 17,
and they are frequently inactivated by CpG hypermethy-
lation in several cancers [40,45,46]. Accordingly, we
found that many HOX genes were hypermethylated,
indicating that HOX gene clusters may be general tar-
gets of epigenetic alterations during tumorigenesis.
However, hypomethylation of a few HOX genes was also
detected in gastric cancer. Therefore, the methylation of
HOX genes may be regulated in a tissue-specific manner
in cancer. In addition, the regulation of HOX expression
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is significantly correlated with histone modifications and
interaction with Polycomb group genes [47,48]. Our
data point to another possible mode of regulating HOX
gene expression— DNA hypermethylation of the promo-
ter region of histone genes such as H2B. Further investi-
gation of histone genes might offer new insights for
cancer studies.

DNA hypomethylation of repetitive elements as a
major contributor to genome size is one of common
features in cancer and the methylation changes in SINE,
LINE, or LTR-retrotransposon with possess transcrip-
tional activity are critical for cellular functions. A num-
ber of SINEs close to CpG islands retain a high
proportion of CpG sites and frequently hypomethylated
in cancer. Because younger Alu elements are usually
closer to active chromatin regions [49], the hypomethy-
lation of them has more biological significance than that
of older Alu elements. Additionally, these hypomethyla-
tion of repeat elements, such as Alu and LINE1 might
also affect the inactivation of X chromosome [50].

The findings in this study are based on an intuitive and
efficient normalization method for comparative analysis.
Unlike bisulfite sequencing, MIRA and MeDIP simulate
the in vivo behavior of methyl-CpG binding domain
(MBD) proteins, which recognize both the methylation
level and concentration of individual CpG sites [38]. For
example, it has been shown that MBD binding is not suf-
ficient for gene repression at low CpG densities, even
when individual sites are highly methylated. In this case,
the common practice is to use MeDIP or MIRA outputs
as measures for the functional consequences of methyla-
tion of all CpGs in a given region [26,30,32,38,51-53].
However, a few studies have attempted to use the spatial
density of CpGs to normalize the experimental readout
of MeDIP-chip [25,54]. Therefore, the MES normaliza-
tion used here provides several advantages over other
methods. First, using logarithmic transformation, we can
scale down raw read counts four orders of magnitude to
obtain MESs. This provides mathematical benefits such

as variance stabilization. Second, MES normalization
allows us to use the correct background distribution. As
a probability function for the number of events in a given
time interval, a Poisson distribution can be used to assess
the statistical significance of read counts in a given geno-
mic interval. However, we found that our MES index,
particularly when normalized with local methods rather
than raw read counts, better illustrates the nature of the
Poisson event. Third and most importantly, it enables
comparative analysis of independent samples. In the nor-
malization step, direct subtraction of MESbg proves to be
an efficient correction method for background
sequencing.

Although the methods used here have clear advan-
tages, the biological and technical limitations of these
methods should also be mentioned. Since our methods
are based on affinity purification, methylation changes
and karyotypic alterations cannot be distinguished.
However, this can be overcome by comparing normal
and cancer genomes following measurement of back-
ground enrichment. Thus, this comparative analysis
scheme should be of value for future clinical epige-
nomics investigations.

Conclusions

We have generated high resolution genome-wide map of
human gastric cancer by MIRA-seq, and have found that
5 CGIs and the 5-end of coding exons are hypermethy-
lated. Hypermethylation of 5" CGIs was significantly cor-
related with downregulation of associated genes. We
found novel long-range epigenetic silencing (LRES)
regions and identified several hypermethylated genes
(MDM2, DYRK2, and LYZ) within these regions. The
methylation status of metastatic lymph nodes was inter-
mediate between normal and cancerous tissue, indicat-
ing that methylation is gradually increased in
tumorigenesis. Our method is readily applicable to a
comparative analysis of methylomes and other types of
epigenomic data.
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