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Abstract

Background: We explored the imputation performance of the program IMPUTE in an admixed sample from Mexico
City. The following issues were evaluated: (a) the impact of different reference panels (HapMap vs. 1000 Genomes)
on imputation; (b) potential differences in imputation performance between single-step vs. two-step (phasing and
imputation) approaches; (c) the effect of different posterior genotype probability thresholds on imputation
performance and (d) imputation performance in common vs. rare markers.

Methods: The sample from Mexico City comprised 1,310 individuals genotyped with the Affymetrix 5.0 array. We
randomly masked 5% of the markers directly genotyped on chromosome 12 (n = 1,046) and compared the imputed
genotypes with the microarray genotype calls. Imputation was carried out with the program IMPUTE. The
concordance rates between the imputed and observed genotypes were used as a measure of imputation accuracy
and the proportion of non-missing genotypes as a measure of imputation efficacy.

Results: The single-step imputation approach produced slightly higher concordance rates than the two-step
strategy (99.1% vs. 98.4% when using the HapMap phase II combined panel), but at the expense of a lower
proportion of non-missing genotypes (85.5% vs. 90.1%). The 1,000 Genomes reference sample produced similar
concordance rates to the HapMap phase II panel (98.4% for both datasets, using the two-step strategy). However,
the 1000 Genomes reference sample increased substantially the proportion of non-missing genotypes (94.7% vs.
90.1%). Rare variants (<1%) had lower imputation accuracy and efficacy than common markers.

Conclusions: The program IMPUTE had an excellent imputation performance for common alleles in an admixed sample
from Mexico City, which has primarily Native American (62%) and European (33%) contributions. Genotype concordances
were higher than 98.4% using all the imputation strategies, in spite of the fact that no Native American samples are
present in the HapMap and 1000 Genomes reference panels. The best balance of imputation accuracy and efficiency was
obtained with the 1,000 Genomes panel. Rare variants were not captured effectively by any of the available panels,
emphasizing the need to be cautious in the interpretation of association results for imputed rare variants.
Background
Genome-wide association studies (GWAS) are a con-
venient and powerful tool for the identification of com-
mon genetic variants associated with complex diseases
[1-5]. In recent years, high-density GWAS have proven
successful in identifying loci predisposing to a variety of
complex diseases, e.g., type 1 and type 2 diabetes,
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obesity, inflammatory bowel disease, prostate cancer and
breast cancer [5,6]. The recent successes of GWAS have
mainly been possible due to the rapid advancement in
high-throughput SNP genotyping technologies (e.g.,
Affymetrix and Illumina platforms), which assay a large
number of SNPs (between 100,000 and 2,500,000) across
the human genome [7-9]. However, despite recent
improvements, the coverage of most of the genotyping
platforms remains relatively inadequate, in comparison
with the total number of SNPs described in the genome.
Furthermore, rare variants are typically not included in
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these genotyping arrays and a fraction of the typed SNPs
are eliminated from further analyses, due to genotyping
problems, leading to the loss of statistical power in asso-
ciation studies [10-13].
To overcome the aforementioned limitations of GWAS

genotyping platforms, a variety of imputation methods
have been developed. These methods infer missing or
untyped SNP genotypes based on the genotypes at
nearby typed SNPs, using the pattern of linkage disequi-
librium (LD) observed in reference samples. Imputation
methods have been extensively used to predict the geno-
types of untyped markers by combining reference panels
of individuals genotyped at a dense set of SNPs with a
study sample genotyped at a subset of the SNPs [14,15].
The main challenge of imputation, however, lies in the
selection of an appropriate reference panel relevant for
the study populations. Although this is straightforward
in samples with ancestry matching that of the available
reference panels (e.g., European or East Asian ancestry),
this is not the case for samples that are not well repre-
sented in the reference panels (e.g. Native American
samples or admixed samples). One of the proposed solu-
tions to the latter scenario is to include mixtures of the
available reference panels for imputation. It has been
described that this strategy results in good imputation
accuracy [16].
The application of imputation methods is cost effective,

increases the power and coverage of the study, facilitates
meta-analysis, enables combination of data across multiple
genotyping platforms, and aids in replication of significant
findings [15,17,18]. Several imputation methods are cur-
rently available, based on different statistical models. Com-
monly used imputation programs are IMPUTE [19,20],
MACH [21], BEAGLE [22], fastPHASE [23] and PLINK
[24]. The relative performance of these programs has been
assessed in various studies [19,25-29].
In the present study, we employed the HapMap and

the recently available 1000 Genomes reference panels to
evaluate the performance of the imputation program IM-
PUTE in an admixed sample from Mexico City. The fol-
lowing issues were evaluated in this project: (a) the
impact of different reference panels (HapMap and 1000
Genomes) on imputation; (b) potential differences in im-
putation performance between single-step vs. two-step
(phasing and imputation) approaches; (c) the impact of
different posterior genotype probability thresholds on
imputation performance and (d) imputation performance
in common vs. rare markers.

Methods
Study participants and Genotyping
A total of 1,310 individuals from Mexico City (967 with
type 2 diabetes and 343 with normal glucose tolerance)
were analyzed in this study. Informed consent was
obtained from each participant, and the research was
approved by the ethical research boards of the Medical
Center ‘Siglo XXI’ and the University of Toronto.
Genotyping of the sample was then carried out in the
microarray analysis facility located in the Centre for
Applied Genomics (Toronto, ON, Canada), using the
Affymetrix Genome-wide Human SNP array 5.0
(Affymetrix, Santa Clara, CA, USA), and following stand-
ard protocols. Further details about participant recruit-
ment and quality control measures can be found
elsewhere [30].
Reference panels for imputation
The following reference panels were used for the present
study:

(a)HapMap phase II combined sample, which includes
up to 4 million SNPs typed in 269 individuals
belonging to East Asian/European/West African
ancestry,

(b)HapMap phase II combined sample along with the
HapMap phase III Mexican-American LA sample
(MXL), which was genotyped for about 1.4 million
SNPs, and the

(c)1000 Genomes phase I sample (June 2011 release),
which comprises >37 million autosomal SNPs typed
in 1,094 individuals from populations around the
world (more information is available at http://
www.1000genomes.org/).
Imputation using IMPUTE
The program IMPUTE v2 [19,20] was employed for im-
putation of untyped markers using the following strategies:
1/ Phasing and imputation in a single analytical step using
the HapMap phase II combined reference dataset (single-
step strategy), 2/ Phasing and imputation in a single ana-
lytical step using the HapMap phase II combined + Hap-
Map phase III Mexican-American reference datasets
(single-step strategy), 3/ Phasing the study sample first and
performing imputation using the HapMap Phase II com-
bined reference dataset (two-step strategy), and 4/ Phasing
the study sample first and performing imputation using
the 1000 Genomes Phase I (June 2011 release) combined
reference panel (two-step strategy).
In order to evaluate the performance of the imput-

ation, we randomly masked 5% of the markers directly
genotyped on chromosome 12 (n = 1,046) and compared
the imputed genotypes with the Affymetrix genome-wide
Human SNP array 5.0 genotype calls. For the single-step
strategy, chromosome 12 was divided into chunks of
15 Mb length (chunk size specified using the -int op-
tion). Each chunk was then directly imputed with the
following settings: buffer = 250 kb, k = 40, iter = 30, bur-
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nin = 10, Ne = 11418, using the said reference panels. The
–buffer option helps to avoid edge effects when imputing
in relatively small chunks. For analysis using the two-
step strategy, chromosome 12 was broken into smaller
chunks of ~5 Mb each, and we also used a buffer region
of 250 kb. Phasing of GWAS data in each chunk was
subsequently performed to produce the best-guess hap-
lotypes (using –phase and –include_buffer_in_output
flags with IMPUTE v2’s settings: k = 80, iter = 30, bur-
nin = 10, Ne = 11500). Imputation from the best-guess
haplotypes was then carried out, for each chunk, using
the aforementioned reference panels. The differences in
imputation settings between the one-step and two-step
approaches (e.g. chunk size, k-parameters) are primarily
due to the fact that the imputations were done at differ-
ent times.

Evaluation of imputation performance
We report the concordance rate between the imputed and
observed genotypes for the masked SNPs as a measure of
imputation accuracy and the proportion of non-missing
genotypes under a given posterior probability threshold as
a measure of the imputation efficacy. The program Gtool
(http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.
html) was used for this purpose, using the default poster-
ior probability threshold value of 0.9 to export the IM-
PUTE data to PLINK format. With this threshold,
imputed genotypes with posterior probabilities< 0.9 were
labeled as missing genotypes. Then, the PLINK’s –merge
command along with –merge-mode 7 command was used
to evaluate the genotype concordance. We also used
PLINK to obtain information on the proportion of non-
missing genotypes for each of the four imputation
strategies.
We also evaluated the imputation performance (ac-

curacy and efficacy) at different posterior probability
threshold values (0.8, 0.7, 0.6 and 0.5), in addition to
the default threshold value of 0.9. This analysis was
carried out only for the two-step imputation method
based on the HapMap phase II combined reference
sample.
Table 1 Concordance rate and proportion of non-missing gen
chromosome 12 markers in the studied reference panels

Reference Panel IMPUTE Version

HapMap phase
II combined

Version 2 (Single-step)

HapMap phase II
combined+MXL

Version 2 (Single-step)

HapMap phase II combined Version 2 (Two-steps: Phasing & Im

1,000 Genomes Phase I
(June 2011 release)

Version 2 (Two-steps: Phasing & Im
Finally, we explored the effect of allele frequency on
imputation performance. The marker INFO scores based
on the two-step imputation method using the HapMap
phase II combined and the 1000 Genomes (June 2011 re-
lease) reference panels were compared for different allele
frequency categories, grouping markers in 5% bins. INFO
scores are used to measure imputation quality for each
marker, with a value of 1 indicating that there is no un-
certainty in the imputed genotypes and a value of 0 indi-
cating that there is complete uncertainty in the
genotypes [14]. Histograms were generated to show the
distribution of the INFO scores for each bin and the dis-
tribution of the differences in INFO scores, and we esti-
mated the correlation between the INFO scores for the
two imputation approaches. We also did a more detailed
analysis of imputation accuracy and efficacy for markers
in the following allele frequency categories: <1%, 1–5%
and 45–50%, using the two-step imputation method and
the 1000 Genomes reference panel.

Results
The concordance rates and the proportion of non-miss-
ing genotypes obtained with the four imputation strat-
egies evaluated in this study are shown in Table 1. For
this analysis, imputed genotypes with posterior probabil-
ities lower than 0.9 were defined as missing genotypes.
The concordance rate was used as a measure of the im-
putation accuracy and the proportion of non-missing
genotypes as a measure of imputation efficacy. The con-
cordance rate was consistently high (>98%) for all the
imputation strategies, but there were differences between
methods in imputation efficacy. Using the single-step
strategy produced slightly higher concordance rates than
the two-step strategy (e.g. 99.1% vs. 98.4% when using
the HapMap phase II combined reference sample, re-
spectively), but at the expense of a lower proportion of
non-missing genotypes (85.5% vs. 90.1%, respectively).
The inclusion of the HapMap phase III Mexican American
sample as a reference sample, in addition to the HapMap
phase II combined sample, produced a marginal improve-
ment both in concordance rate and proportion of non-
otypes (using a posterior probability threshold of 0.9) for

Concordance rate
(%)

Proportion of
non-missing
genotypes (%)

99.09 85.5

99.37 85.9

putation) 98.40 90.1

putation) 98.44 94.7
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missing genotypes (99.4% vs. 99.1% for concordance, and
85.9% vs. 85.5% for the proportion of non-missing geno-
types, using the single-step approach). For the two-step ap-
proach, using the 1,000 Genomes reference sample did not
alter the concordance rate with respect to the HapMap
phase II combined sample (98.4% for both datasets). How-
ever, the use of the 1000 Genomes panel produced a sub-
stantial increase in the proportion of non-missing
genotypes (94.7% vs. 90.1%, respectively).
Figure 1 illustrates the concordance rates and the pro-

portion of non-missing genotypes obtained using various
posterior probability thresholds. This analysis provides
an indication of how the selection of genotype confi-
dence thresholds affects the accuracy and efficacy of the
imputations. We restricted this evaluation to the two-
step protocol using the HapMap phase II combined sam-
ple. As expected, lowering the posterior probability
thresholds resulted in progressively reduced concordance
rates and higher proportions of non-missing genotypes.
Using a threshold of 0.9, the concordance rate was 98.4%
and the proportion of non-missing genotypes 90.1%.
Using a much less conservative threshold of 0.5, the con-
cordance rate was still quite high (95.5%) and the pro-
portion of non-missing genotypes went up to 99.6%.
Figure 2 depicts the average marker INFO scores for

different allele frequency bins, using the two-step imput-
ation methods based on the HapMap phase II combined
and the 1000 Genomes phase I (June 2011 release) refer-
ence panels. This figure provides information about im-
putation quality across the allele frequency spectrum,
based on the two reference panels. The average INFO
scores obtained for the 1000 Genomes panel are substan-
tially higher, irrespective of the allele frequencies, than
the HapMap phase II combined panel. It is also evident
in the plot that rare variants (frequencies< 5%) have
Figure 1 Proportion of non-missing genotypes versus concordance ra
was performed for the HapMap phase II combined reference sample based
considerably lower INFO scores than common variants.
In addition to average imputation qualities, it is also rele-
vant to explore the distribution of INFO scores in each
frequency bin. This is depicted in Figures 3A (for the
HapMap Phase II combined reference sample) and 3B
(for the 1000 Genomes phase I panel). These Figures
show that for most frequency bins, the majority of the
untyped SNPs have INFO scores higher than 0.9, with
decreasing proportions of markers in the lower INFO
score categories. However, for rare markers, particularly
those with frequencies< 1%, the distribution is consider-
ably wider, and the mode of the distribution does not
correspond to the INFO score> 0.9, but to lower INFO
score values. Additionally, the plots also demonstrate
that using the 1000 Genomes sample as a reference sam-
ple shifts the distributions to the right in all the fre-
quency bin categories. Markers imputed using the 1000
Genomes reference sample tend to have INFO scores
higher than those imputed using the HapMap Phase II
combined reference panel for all the frequency bins. This
is also evident in Figure 4, which shows a histogram
showing the distribution of the differences in INFO
scores between the two-step imputation methods based
on the 1000 Genomes Phase I and the HapMap Phase II
combined reference samples. The correlation between
the INFO scores of the two-step imputation methods
based on the 1000 Genomes Phase I and the HapMap
Phase II combined reference samples is shown in Fig-
ure 5. The INFO scores are highly correlated (r2 = 0.82):
imputed markers with low INFO scores using the Hap-
Map phase II combined panel also exhibit low INFO
scores employing the 1000 Genomes phase I panel, al-
though as described before, markers imputed with the
1000 Genomes panel showed higher INFO scores relative
to those imputed with the HapMap sample.
tes using different posterior probability thresholds. This analysis
on the two-step imputation method.
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We compared in more detail the imputation accuracy
and efficacy for markers in the following allele frequency
categories: <1%, 1–5% and 45–50%, using the two-step
imputation method and the 1000 Genomes reference
panel. For this analysis, instead of using the overall im-
putation concordance based on the three possible geno-
types, we focused our attention on the concordance and
missingness rates for the heterozygotes. The reason for
employing this strategy is that an analysis based on over-
all imputation concordance may give misleading results
for rare markers: the overall concordance rate may be
high for these markers, but the concordance rates for
heterozygotes and minor allele homozygotes may be
much lower than the overall concordance rates. For the
imputed markers in the 45–50% allele frequency bin,
using a posterior probability threshold of 0.9, the con-
cordance rate for the heterozygotes was 97.5% and the
proportion of non-missing genotypes 90.2%. For the
markers in the 1–5% bin, the concordance rate dropped
to 85.4% and the proportion of non-missing genotypes to
85.1%. For rare markers (<1%), the drop was even more
pronounced: the concordance rate was only 60.6% and
the proportion of non-missing genotypes was 78.1%.
The results described above are based on markers

located on chromosome 12. In order to evaluate the
generalizability of these results, we also masked 5% of
genotyped markers on chromosome 22, and on the HLA
region, which spans approximately 5 megabases on
chromosome 6 and has been under selective pressure in
different population groups [31-33]. These analyses were
carried out with the two-step imputation method using
the HapMap and 1000 Genomes reference panels. For
chromosome 22, using the HapMap reference panel, the
concordance rate was 97.6%, and the proportion of non-
missing genotypes 83.2%, and using the 1000 Genomes
reference panel, the concordance rate was 97.3% and the
proportion of non-missing genotypes 89.9%. For the
HLA region, using the HapMap reference panel the con-
cordance rate was 99.35% and the proportion of non-
missing genotypes 97.4%, and with the 1000 Genomes
reference panel the concordance rate was 99.5% and the
proportion of non-missing genotypes 99.05%.

Discussion
In recent years, imputation has become a key tool in the
success of genome-wide association studies. Genotype
imputation has proven to increase the power of genetic
association studies, by boosting the number of SNPs to
be tested for association and facilitating the detection of
rare variants in addition to common variants
[14,19,34,35]. Furthermore, imputation aids in fine-map-
ping studies of the disease-associated region thus in-
creasing the chance of identifying additional candidate
SNPs [36]. Finally, genotype imputation enables meta-
analysis that combines results across studies based on
different genotyping platforms [37,38]. This approach
has been effective in identifying novel associations in dif-
ferent traits [39-44].
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Figure 3 Histogram showing the distribution of INFO scores within each allele frequency bin. For the two-step imputation method based
on the HapMap phase II combined reference panel. For the two-step imputation method based on the 1000 Genomes phase I (June 2011
release) reference panel.
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However, an important concern with respect to imput-
ation lies in the selection of an appropriate reference
panel. Most of the GWAS to date have been conducted
in populations well represented by the available reference
panels (e.g. European or East Asian populations), and
used only one relevant reference population during the
imputation process [6,43,45-47]. However, for popula-
tions that are phylogenetically distant from the samples
present in the reference panels, the selection of a suitable
reference panel for imputation becomes less clear. In this
situation, differences in the pattern of LD between the
study and reference populations may affect imputation
accuracy. Different approaches have been suggested for
this particular scenario. For example, Huang et al. [16]
explored imputation accuracy in the samples of the
HGDP-CEPH panel, which is a worldwide collection of
individuals from different locations, using the HapMap II
reference panels. The authors found that for most of the
studied samples, mixtures from at least two HapMap
reference samples maximized imputation accuracy [16].
Another study showed that using tag SNPs from all the
HapMap reference populations combined captured com-
mon variation in African American, Latino and Hawaiian
samples more effectively than tag SNPs obtained from
the individual HapMap reference samples [48]. This
‘cosmopolitan’ approach to imputation, combining refer-
ence haplotypes from all the reference populations avail-
able, is the strategy currently recommended by the most
widely used imputation packages, such as IMPUTE
[19,20] and MACH [21].
African American and Hispanic/Latino populations

have unique challenges for imputation. These popula-
tions are the result of recent admixture between contin-
ental groups (primarily European, Native American and
West African populations) and admixture proportions
show substantial geographic variation [49-51]. Several
studies have evaluated imputation performance in re-
cently admixed populations. In a recent GWAS of coron-
ary heart disease and its risk factors in a large African
American sample [52], a high imputation concordance
(95.6%) was obtained when SNPs were imputed using a
combined reference panel of haplotypes from the Hap-
Map phase II CEU and YRI panels. In another study in
African Americans [53], the highest imputation yield and
coverage were attained using the two HapMap reference
panels (CEU and YRI) separately and then merging the
results. Another approach for imputation in African
American populations has been recently suggested by
Paşaniuc et al. (2011) [54]. This strategy, termed ‘local
ancestry aware imputation’, uses local ancestry to guide
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the choice of reference haplotypes for imputation and
shows marginal improvement in imputation accuracy in
the admixed sample. However, this approach will be
more difficult to implement in Hispanic/Latino popula-
tions, due to the lack of reference data for the relevant
Native American parental populations, which is key to
obtain accurate estimates of local ancestry. In the study
by Huang et al. (2009), using combinations of two
(European and East Asian) or three HapMap reference
samples (East Asian, European and West African) pro-
duced the highest imputation accuracies (>95%) for
two Native American samples (Pima and Maya) and a
sample from Colombia [16]. A recent study [55]
showed that, when performing imputation in a Hispanic
sample from San Francisco with the program IMPUTE
y = 0.5387x + 0.4633
R² = 0.8179
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Figure 5 Correlation between the INFO scores for the two-step
imputation method based on HapMap phase II combined and
the 1000 Genomes phase I reference panels.
v2 and the HapMap II reference panel, using local
haplotype weights based on a coalescent method pro-
vided lower error rates (7.8%) than using no weighting
(8.9%), or a global weighting method based on empir-
ical estimates of ancestry (9.0%) [56]. It is important to
note that most of the aforementioned studies have used
the HapMap II panel as the reference dataset for im-
putation. However, the recent progress of the 1000
Genomes project (http://www.1000genomes.org/) has
provided the scientific community with much more
complete reference panels, both in terms of the number
of markers and the number of populations. Importantly,
the reference databases are updated on a regular basis.
For this reason, it is currently recommended to per-
form the imputation in two stages: pre-phasing the
study genotypes to estimate haplotypes, and then im-
puting untyped genotypes in a separate run. This sub-
stantially reduces imputation time with respect to
single-step approaches at the expense of a small loss in
accuracy. An important advantage of this approach is
that, as new reference data become available, it is only
necessary to repeat the imputation step.
In this study, we evaluated the imputation perform-

ance of the widely used program IMPUTE in an
admixed sample from Mexico City using different im-
putation strategies (single-step vs. two-step imput-
ation) and reference panels (HapMap and 1000
Genomes). We have previously described that this sam-
ple primarily has Native American (62%) and European
contributions (33%), with a low proportion of African
ancestry (5%) [30]. Importantly, there are no Native
American reference samples in the HapMap or 1000
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Genomes datasets, so it is of relevance to test the rela-
tive imputation performance of these reference panels
in the Mexican sample. In an analysis of imputed mar-
kers on chromosome 12, we observed that for this sam-
ple there are only minor differences in imputation
accuracy between the single-step and two-step
approaches (Table 1). The concordance rate of the sin-
gle-step approach is only slightly higher than that of
the two-step approach (99.1% vs. 98.4% when using the
HapMap phase II combined reference sample, respect-
ively). In contrast, the imputation efficacy (i.e. propor-
tion of non-missing genotypes) was higher for the two-
step than the single-step imputation approach (90.1%
vs. 85.5%, respectively). Therefore, our study confirms
the two-step approach as the preferable imputation
strategy, because it provides flexibility and faster im-
putation times, while providing an overly similar im-
putation performance to the single-step approach.
As expected, we observed that adding the HapMap

Phase III Mexican American sample from LA to the
HapMap Phase II combined reference sample there were
marginal increases in both accuracy (99.4% vs. 99.1%)
and efficacy (85.9% vs. 85.5%) (Table 1). We also antici-
pated to find that reducing the posterior probability
thresholds when calling the imputed genotypes would re-
sult on lower imputation accuracy and higher propor-
tions of non-missing genotypes. The reductions observed
in imputation accuracy were relatively minor, from 98.4%
with a posterior probability threshold of 0.9 to 95.5%
with a threshold of 0.5 (Figure 1). This relatively small
reduction in overall imputation accuracy is primarily due
to the fact that most genotypes have very high posterior
probabilities. Therefore, adding the relatively small per-
centage of genotypes with lower posterior probabilities
(and lower concordance rates) does not produce a major
shift in overall imputation accuracy. Of all masked mar-
kers on chromosome 12, 61.5% had INFO scores higher
than 0.9, 15.4% had INFO scores between 0.8 and 0.9,
6.5% had INFO scores between 0.7 and 0.8, 6.2% had
info scores between 0.6 and 0.7, 3.8% had INFO scores
between 0.5 and 0.6, and 6.7% INFO scores lower than
0.5 (see also discussion below about the relationship of
imputation efficacy and accuracy and allele frequency).
We also examined the potential improvement in im-

putation performance obtained with the recently avail-
able 1000 Genomes panel (June 2011 release), with
respect to the HapMap panel, using the two-step imput-
ation protocol. The 1000 Genomes panel is a much more
comprehensive and powerful resource for imputation,
comprising more than 37 million autosomal SNPs
present in 1,094 individuals from different populations
around the world. Here, we show that for the Mexican
sample the major improvement associated with the use
of the 1000 Genomes reference panel is the substantial
increase in imputation efficacy, in addition to the larger
number of imputed markers (Table 1). Genotype concor-
dances were similar for both reference datasets (around
98.4%). However, imputations with the 1000 Genomes
panel resulted in 94.7% of non-missing genotypes
(employing a posterior probabiity threshold of 0.9), in
comparison with 90.1% for the HapMap phase II com-
bined panel (using the same threshold). When the mar-
ker INFO scores are plotted for different allele frequency
bins, either as an average (Figure 2) or as histograms of
the individual scores (Figures 3A and 3B), it is evident
that the confidence of the genotype calls is higher with
the 1000 Genomes panel for all allele frequency categor-
ies. There is a high correlation between the INFO scores
obtained with the 1000 Genomes and HapMap phase II
reference panels (Figure 5), but the former are systemat-
ically higher than the latter (Figure 4).
The results described above are based on an analysis of

markers on chromosome 12. An analysis of markers on
chromosome 22 gives consistent results: The concord-
ance rates using the HapMap phase II and 1000 Gen-
omes reference panels are very similar (97.6% vs. 97.3%,
respectively), but the proportion of non-missing geno-
types is lower with the HapMap reference panel than
with the 1000 Genomes panel (83.2%, and 89.9%, re-
spectively). Interestingly, in the HLA region on chromo-
some 6, which spans approximately 5 megabases (29–
34 Mb) and has shown signatures of natural selection in
previous studies (31–33), both the imputation accuracy
(concordance) and the imputation efficacy (proportion of
non-missing genotypes) were higher than those observed
for chromosomes 12 and 22. When analyzing locus an-
cestry with a panel of Ancestry Informative Markers in
the sample from Mexico City (data not shown), we
observed that in a broad region of chromosome 6, in-
cluding the HLA loci, there was an excess of European
ancestry with respect to the rest of the genome, in both
type 2 diabetes patients and controls. This may be a po-
tential explanation for the increased imputation accuracy
and efficacy identified in the HLA region (i.e. both refer-
ence panels, HapMap and 1000 Genomes, have a good
representation of European populations, but Native
American populations are not well represented in these
panels).
The imputation performance of the 1000 Genomes

reference panel for rare variants is substantially better
than that of the HapMap phase II panel. However, the
average imputation confidence (INFO score) is consider-
ably lower for rare variants than for common variants
(Figures 2 and 3), irrespective of the reference panel. The
rare alleles (<1%) present in the Mexican sample are not
properly captured by any of the reference panels, in spite
of the inclusion in the 1000 Genomes panel of dense
data from another sample of Mexican ancestry from LA.
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This is also evident in a more detailed comparison of im-
putation accuracy and efficacy for heterozygotes in the
following allele frequency categories: <1%, 1–5% and
45–50%. For common variants (45–50%), the imputation
accuracy and efficacy were very high (>97% concordance
and >90% non-missing genotypes). However, for rare
variants (<1%), the proportion of missing genotypes was
quite high (> 21%), and importantly, even for the geno-
types with high posterior probabilities (>0.9), there was
a large proportion of discordant calls (>39%). It is im-
portant to note that our analyses were based on markers
from a commercial microarray (in order to minimize
genotyping errors, the program PLINK was used to
merge the genotype calls obtained with two genotyping
algorithms: BRLMM-P and Birdseed), and it is not clear
to which extent these findings can be extrapolated to
other scenarios (e.g. sequencing data). However, our
results highlight the need to be cautious with the inter-
pretation of the results for rare variants in GWAS in
Hispanic samples.

Conclusions
We show that the program IMPUTE has an excellent
imputation performance for common markers in an
admixed sample from Mexico City, which has primarily
Native American (62%) and European (33%) contribu-
tions. Genotype concordances for randomly masked
markers are higher than 98.4% using different imputation
strategies, in spite of the fact that no Native American
samples are present in the HapMap and 1000 Genomes
reference panels. In this sample, the best balance of im-
putation accuracy and efficiency was obtained with the
1,000 Genomes panel (genotype concordance 98.4% and
proportion of non-missing genotypes 94.7%). However,
not unexpectedly, rare variants (frequencies <1%) are
not captured efficiently by any of the available panels.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SK carried out the imputations with the program IMPUTE, analyzed the
imputation results and wrote the manuscript. AVS, JP, JEP, JKR and MC
recruited participants in Mexico City and coordinated the extraction of DNA.
EJP coordinated the genotyping of the samples, conceived the study, and
helped to draft the manuscript. All authors read and approved the final
manuscript

Acknowledgements
We thank all the individuals who participated in the study. In Canada this
work was supported by the Canadian Institutes of Health Research
(Operating Grant and Early Investigator Award to EJP), the Banting and Best
Diabetes Centre (New Investigator Award to EJP and Postdoctoral Fellowship
to SK), the Canada Foundation for Innovation and the Ontario Innovation
Trust (EJP). In Mexico this research was supported by CONACYT SALUD-2005-
C02-14412, Proyectos Estrategicos, Apoyo Financiero Fundacion IMSS and
Fundacion Gonzalo Rio Arronte. MC is a recipient of a Fundacion IMSS
Scholarship, Mexico. We would like to acknowledge Dr. Shovonlal Roy for
helping us in generating the figures.
Author details
1Department of Anthropology, University of Toronto at Mississauga, 3359
Mississauga Road North, Mississauga, ON, Canada. 2Unidad de Investigacion
Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional
Siglo XXI, IMSS, Av. Cuauhtemoc 330, Col. DoctoresC.P. 06720, Mexico City,
Mexico. 3Unidad de Investigacion en Epidemiologia Clinica, Hospital General
Regional 1, Dr Carlos McGregor, IMSS, Mexico City, Mexico. 4Fundacion IMSS,
Mexico City, Mexico.

Received: 2 December 2011 Accepted: 5 April 2012
Published: 1 May 2012

References
1. Kruglyak L: Prospects for whole-genome linkage disequilibrium mapping

of common disease genes. Nat Genet 1999, 22:139–144.
2. Sebastiani P, Timofeev N, Dworkis DA, Perls TT, Steinberg MH: Genome-

wide association studies and the genetic dissection of complex traits. Am
J Hematol 2009, 84:504–515.

3. Kruglyak L: The road to genome-wide association studies. Nat Rev Genet
2008, 9:314–318.

4. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP,
Hirschhorn JN: Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nat Rev Genet 2008, 9:356–369.

5. Frazer KA, Murray SS, Schork NJ, Topol EJ: Human genetic variation and its
contribution to complex traits. Nat Rev Genet 2009, 10:241–251.

6. The Wellcome Trust Case Control Consortium: Genome-wide association
study of 14,000 cases of seven common diseases and 3,000 shared
controls. Nature 2007, 447:661–678.

7. Tsuchihashi Z, Dracopoli NC: Progress in high throughput SNP genotyping
methods. Pharmacogenomics J 2002, 2:103–110.

8. Low YL, Wedrén S, Liu J: High-throughput genomic technology in
research and clinical management of breast cancer. Evolving landscape of
genetic epidemiological studies. Breast Cancer Res 2006, 8:209.

9. Ku CS, Kasiman K, Chia KS: High-Throughput Single Nucleotide
Polymorphisms Genotyping Technologies. In: Encyclopedia of Life Sciences
(ELS). Edited by John Wiley & Sons, Ltd. Chichester, 2009, http://www.els.net
[doi: 10.1002/9780470015902.a0021631].

10. Wang WY, Barratt BJ, Clayton DG, Todd JA: Genome-wide association
studies: theoretical and practical concerns. Nat Rev Genet 2005, 6:109–118.

11. Barrett JC, Cardon LR: Evaluating coverage of genome-wide association
studies. Nat Genet 2006, 38:659–662.

12. Pe'er I, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ: Evaluating
and improving power in whole-genome association studies using fixed
marker sets. Nat Genet 2006, 38:663–667.

13. Donnelly P: Progress and challenges in genome-wide association studies
in humans. Nature 2008, 456:728–731.

14. Marchini J, Howie B: Genotype imputation for genome-wide association
studies. Nat Rev Genet 2010, 11:499–511.

15. Li Y, Willer C, Sanna S, Abecasis G: Genotype Imputation. Annu Rev
Genomics Hum Genet 2009, 10:387–406.

16. Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P:
Genotype-imputation accuracy across worldwide human populations.
Am J Hum Genet 2009, 84(2):235–250.

17. Anderson CA, Pettersson FH, Barrett JC: Evaluating the effects of
imputation on the power, coverage, and cost efficiency of genome-wide
SNP platforms. Am J Hum Genet 2008, 83:112–119.

18. Almeida MA, Oliveira PS, Pereira TV, Krieger JE, Pereira AC: An empirical
evaluation of imputation accuracy for association statistics reveals
increased type-I error rates in genome-wide associations. BMC Genet
2011, 12:10.

19. Marchini J, Howie B, Myers S, McVean G, Donnelly P: A new multipoint
method for genome-wide association studies by imputation of
genotypes. Nat Genet 2007, 39:906–913.

20. Howie BN, Donnelly P, Marchini J: A flexible and accurate genotype
imputation method for the next generation of genome-wide association
studies. Plos Genet 2009, 5(6):e1000529.

21. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR: MaCH: using sequence and
genotype data to estimate haplotypes and unobserved genotypes. Genet
Epidemiol 2010, 34:816–834.

22. Browning SR, Browning BL: Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of

http://dx.doi.org/10.1002/9780470015902.a0021631


Krithika et al. BMC Medical Genomics 2012, 5:12 Page 10 of 11
http://www.biomedcentral.com/1755-8794/5/1/12
localized haplotype clustering. Am J Hum Genet 2007, 81:1084–1097.
23. Scheet P, Stephens M: A fast and flexible statistical model for large-scale

population genotype data: applications to inferring missing genotypes
and haplotypic phase. Am J Hum Genet 2006, 78:629–644.

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,
Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum
Genet 2007, 81:559–575.

25. Pei YF, Li J, Zhang L, Papasian CJ, Deng HW: Analyses and comparison of
accuracy of different genotype imputation methods. PLoS One 2008, 3
(10):e3551.

26. Browning SR: Missing data imputation and haplotype phase inference for
genome-wide association studies. Hum Genet 2008, 124(5):439–450.

27. Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A: A
comprehensive evaluation of SNP genotype imputation. Hum Genet 2009,
125(2):163–171.

28. Hao K, Chudin E, McElwee J, Schadt EE: Accuracy of genome-wide
imputation of untyped markers and impacts on statistical power for
association studies. BMC Genet 2009, 10:27.

29. Pei YF, Zhang L, Li J, Deng HW: Analyses and comparison of imputation-
based association methods. PLoS One 2010, 5(5):e10827.

30. Parra EJ, Below JE, Krithika S, Valladares A, Barta JL, Cox NJ, Hanis CL, Wacher
N, Garcia-Mena J, Hu P, Shriver MD: Diabetes Genetics Replication and
Meta-analysis (DIAGRAM) Consortium, Kumate J, McKeigue PM,
Escobedo J, Cruz M: Genome-wide association study of type 2 diabetes
in a sample from Mexico City and a meta-analysis of a Mexican-
American sample from Starr County, Texas. Diabetologia 2011, 54(8):
2038–2046.

31. Bhatia G, Patterson N, Pasaniuc B, Zaitlen N, Genovese G, Pollack S, Mallick S,
Myers S, Tandon A, Spencer C, Palmer CD, Adeyemo AA, Akylbekova EL,
Cupples LA, Divers J, Fornage M, Kao WH, Lange L, Li M, Musani S,
Mychaleckyj JC, Ogunniyi A, Papanicolaou G, Rotimi CN, Rotter JI, Ruczinski I,
Salako B, Siscovick DS, Tayo BO, Yang Q, et al: Genome-wide comparison of
African-ancestry populations from CARe and other cohorts reveals
signals of natural selection. Am J Hum Genet 2011, 89(3):368–381.

32. Buhler S, Sanchez-Mazas A: HLA DNA sequence variation among human
populations: molecular signatures of demographic and selective events.
PLoS One 2011, 6(2):e14643.

33. Albrechtsen A, Moltke I, Nielsen R: Natural selection and the distribution of
identity-by-descent in the human genome. Genetics 2010, 186(1):295–308.

34. Guan Y, Stephens M: Practical issues in imputation-based association
mapping. PLoS Genet 2008, 4(12):e1000279.

35. Spencer CC, Su Z, Donnelly P, Marchini J: Designing genome-wide
association studies: sample size, power, imputation, and the choice of
genotyping chip. PLoS Genet 2009, 5(5):e1000477.

36. Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W,
Knouff CW, Yuan X, Waeber G, Vollenweider P, Preisig M, Wareham NJ, Zhao
JH, Loos RJ, Barroso I, Khaw KT, Grundy S, Barter P, Mahley R, Kesaniemi A,
McPherson R, Vincent JB, Strauss J, Kennedy JL, Farmer A, McGuffin P, Day R,
Matthews K, Bakke P, et al: Wellcome Trust Case Control Consortium,
Mooser V, Francks C, Marchini J: Meta-analysis and imputation refines
the association of 15q25 with smoking quantity. Nat Genet 2010, 42
(5):436–40.

37. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF:
Practical aspects of imputation-driven meta-analysis of genome-wide
association studies. Hum Mol Genet 2008, 17(R2):R122–128.

38. Zeggini E, Ioannidis JP: Meta-analysis in genome-wide association studies.
Pharmacogenomics 2009, 10(2):191–201.

39. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, Downes K,
Barrett JC, Healy BC, Mychaleckyj JC, Warram JH, Todd JA: Meta-analysis of
genome-wide association study data identifies additional type 1
diabetes risk loci. Nat Genet 2008, 40(12):1399–1401.

40. De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L,
Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MS
Genetics Consortium, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines
JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C,
McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer
SJ, et al: Meta-analysis of genome scans and replication identify CD6,
IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet
2009, 41(7):776–782.
41. Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, Howarth K, Spain
SL, Broderick P, Domingo E, Farrington S, Prendergast JG, Pittman AM,
Theodoratou E, Smith CG, Olver B, Walther A, Barnetson RA, Churchman M,
Jaeger EE, Penegar S, Barclay E, Martin L, Gorman M, Mager R, Johnstone E,
Midgley R, Niittymäki I, Tuupanen S, Colley J, Idziaszczyk S, et al: Meta-
analysis of three genome-wide association studies identifies
susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and
20q13.33. Nat Genet 2010, 42(11):973–977.

42. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V,
Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C,
Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P,
Brice A, Gasser T, Singleton AB, Wood NW: Imputation of sequence
variants for identification of genetic risks for Parkinson's disease: a meta-
analysis of genome-wide association studies. Lancet 2011, 377(9766):
641–649.

43. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, Petrie
JR, Travers ME, Bouatia-Naji N, Dimas AS, Nica A, Wheeler E, Chen H, Voight
BF, Taneera J, Kanoni S, Peden JF, Turrini F, Gustafsson S, Zabena C, Almgren
P, Barker DJ, Barnes D, Dennison EM, Eriksson JG, Eriksson P, Eury E,
Folkersen L, Fox CS, Frayling TM, et al: Genome-wide association identifies
nine common variants associated with fasting proinsulin levels and
provides new insights into the pathophysiology of type 2 diabetes.
Diabetes 2011, 60(10):2624-2634.

44. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI,
Abecasis GR, Almgren P, Andersen G, Ardlie K, Boström KB, Bergman RN,
Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ,
Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM,
Freathy RM, Gianniny L, Grallert H, Grarup N, et al: Meta-analysis of genome-
wide association data and large-scale replication identifies additional
susceptibility loci for type 2 diabetes. Nat Genet 2008, 40(5):638–645.

45. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR,
Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ,
Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG,
Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins
L, Xiang F, Saramies J, et al: A genome-wide association study of type 2
diabetes in Finns detects multiple susceptibility variants. Science 2007,
316(5829):1341–1345.

46. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH,
Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D,
Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish
CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou X, et al:
Meta-analysis of genome-wide association studies identifies common
variants associated with blood pressure variation in east Asians. Nat
Genet 2011, 43(6):531–8.

47. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang JY, Oh JH, Kim DJ,
Kim NH, Kim S, Hong EJ, Kim JH, Min H, Kim Y, Zhang R, Jia W, Okada Y,
Takahashi A, Kubo M, Tanaka T, Kamatani N, Matsuda K, Consortium MAGIC,
Park T, Oh B, Kimm K, Kang D, Shin C, Cho NH, et al: Large-scale genome-
wide association studies in East Asians identify new genetic loci
influencing metabolic traits. Nat Genet 2011, 43(10):990–995.

48. de Bakker PI, Burtt NP, Graham RR, Guiducci C, Yelensky R, Drake JA,
Bersaglieri T, Penney KL, Butler J, Young S, Onofrio RC, Lyon HN, Stram DO,
Haiman CA, Freedman ML, Zhu X, Cooper R, Groop L, Kolonel LN,
Henderson BE, Daly MJ, Hirschhorn JN, Altshuler D: Transferability of tag
SNPs in genetic association studies in multiple populations. Nat Genet
2006, 38(11):1298–1303.

49. Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R, Forrester T,
Allison DB, Deka R, Ferrell RE, Shriver MD: Estimating African American
admixture proportions by use of population-specific alleles. Am J Hum
Genet 1998, 63(6):1839–1851.

50. Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C, Poletti G, Mazzotti G,
Hill K, Hurtado AM, Camrena B, Nicolini H, Klitz W, Barrantes R, Molina JA,
Freimer NB, Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Dipierri JE,
Alfaro EL, Bailliet G, Bianchi NO, Llop E, Rothhammer F, Excoffier L, Ruiz-
Linares A: Geographic patterns of genome admixture in Latin American
Mestizos. PLoS Genet 2008, 4(3):e1000037.

51. Galanter JM, Fernandez-Lopez JC, Gignoux CR, Barnholtz-Sloan J, Fernandez-
Rozadilla C, Via M, Hidalgo-Miranda A, Contreras AV, Figueroa LU, Raska P,
Jimenez-Sanchez G, Silva Zolezzi I, Torres M, Ponte CR, Ruiz Y, Salas A,
Nguyen E, Eng C, Borjas L, Zabala W, Barreto G, Rondón González F, Ibarra A,



Krithika et al. BMC Medical Genomics 2012, 5:12 Page 11 of 11
http://www.biomedcentral.com/1755-8794/5/1/12
Taboada P, Porras L, Moreno F, Bigham A, Gutierrez G, Brutsaert T, León-
Velarde F, et al: for the LACE Consortium. Development of a Panel of
Genome-Wide Ancestry Informative Markers to Study Admixture
Throughout the Americas. PLoS Genet 2012, 8(3):1002554.

52. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ, Bennett F,
Bowden DW, Chakravarti A, Dreisbach A, Farlow DN, Folsom AR, Fornage M,
Forrester T, Fox E, Haiman CA, Hartiala J, Harris TB, Hazen SL, Heckbert SR,
Henderson BE, Hirschhorn JN, Keating BJ, Kritchevsky SB, Larkin E, Li M,
Rudock ME, McKenzie CA, Meigs JB, Meng YA, et al: Genome-wide
association study of coronary heart disease and its risk factors in 8,090
African Americans: the NHLBI CARe Project. PLoS Genet 2011, 7(2):
e1001300.

53. Shriner D, Adeyemo A, Chen G, Rotimi CN: Practical considerations for
imputation of untyped markers in admixed populations. Genet Epidemiol
2010, 34(3):258–265.

54. Paşaniuc B, Zaitlen N, Lettre G, Chen GK, Tandon A, Kao WH, Ruczinski I,
Fornage M, Siscovick DS, Zhu X, Larkin E, Lange LA, Cupples LA, Yang Q,
Akylbekova EL, Musani SK, Divers J, Mychaleckyj J, Li M, Papanicolaou GJ,
Millikan RC, Ambrosone CB, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler
RG, Nyante SJ, Bandera EV, Ingles SA, et al: Enhanced statistical tests for
GWAS in admixed populations: assessment using African Americans
from CARe and a Breast Cancer Consortium. PLoS Genet 2011, 7(4):
e1001371.

55. Paşaniuc B, Avinery R, Gur T, Skibola CF, Bracci PM, Halperin E: A generic
coalescent-based framework for the selection of a reference panel for
imputation. Genet Epidemiol 2010, 34(8):773–782.

56. Egyud MR, Gajdos ZK, Butler JL, Tischfield S, Le Marchand L, Kolonel LN,
Haiman CA, Henderson BE, Hirschhorn JN: Use of weighted reference
panels based on empirical estimates of ancestry for capturing untyped
variation. Hum Genet 2009, 125(3):295–303.

doi:10.1186/1755-8794-5-12
Cite this article as: Krithika et al.: Evaluation of the imputation
performance of the program IMPUTE in an admixed sample from
Mexico City using several model designs. BMC Medical Genomics 2012
5:12.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study participants and Genotyping
	Reference panels for imputation
	Imputation using IMPUTE
	Evaluation of imputation performance

	Results
	link_Tab1
	link_Fig1
	Discussion
	link_Fig2
	link_Fig3
	link_Fig4
	link_Fig5
	Conclusions
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56

