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Abstract

Background: Copy number variation (CNV) is essential to understand the pathology of many complex diseases at
the DNA level. Affymetrix SNP arrays, which are widely used for CNV studies, significantly depend on accurate copy
number (CN) estimation. Nevertheless, CN estimation may be biased by several factors, including cross-hybridization
and training sample batch, as well as genomic waves of intensities induced by sequence-dependent hybridization
rate and amplification efficiency. Since many available algorithms only address one or two of the three factors, a
high false discovery rate (FDR) often results when identifying CNV. Therefore, we have developed a new CNV
detection pipeline which is based on hybridization and amplification rate correction (CNVhac).

Methods: CNVhac first estimates the allelic concentrations (ACs) of target sequences by using the sample
independent parameters trained through physicochemical hybridization law. Then the raw CN is estimated by
taking the ratio of AC to the corresponding average AC from a reference sample set for one specific site. Finally, a
hidden Markov model (HMM) segmentation process is implemented to detect CNV regions.

Results: Based on public HapMap data, the results show that CNVhac effectively smoothes the genomic waves and
facilitates more accurate raw CN estimates compared to other methods. Moreover, CNVhac alleviates, to a certain
extent, the sample dependence of inference and makes CNV calling with appreciable low FDRs.

Conclusion: CNVhac is an effective approach to address the common difficulties in SNP array analysis, and the
working principles of CNVhac can be easily extended to other platforms.
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Background
Copy number variations (CNVs) play an essential role
in facilitating human diseases susceptibility [1,2] and
have been shown to be one potential source of miss-
ing heritability of complex diseases [3]. Together with
genome-wide association studies (GWAS), CNVs are
predicted to be compelling in deciphering the path-
ology of human diseases [4]. SNP arrays have been
widely used for CNV studies, and tremendous data
have been generated [5-7]. Although high throughput
sequencing technologies are emerging and have been
applied to genetic variation (including CNV) studies,
the cost of a sequencing-based approach is still higher
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reproduction in any medium, provided the or
than traditional SNP arrays, especially in library con-
struction [8]. In addition, various studies have shown
that the sequencing data are not sensitive to break-
point detection [9-11]. Moreover, sequencing tech-
nologies have poor mutation detection capability
when the sequencing coverage (read depth) is rela-
tively low [12]. Thus, at their current stage of devel-
opment, we believe that sequencing technologies are
complementary, not substitute, tools of SNP arrays.
Therefore, in this article, we aim to develop a new
and more accurate CNV detection pipeline that
avoids the common difficulties in SNP array analysis.
High quality CNV calls for accurate estimation of

raw copy numbers and requires that statistical models
be optimized [6]. Although many methods have been
developed for CNV calling from array-based data
[7,13-16], their accuracies are still far from satisfactory
by the high incidence of false discovery rates (FDRs)
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[5,17-19]. The high FDRs of these methods mainly
arise from (1) cross-hybridization of probes [20], (2)
genomic waves of intensities [21-23] and (3) sample
dependence of outputs [24-26].
Cross-hybridization between probes and off-target

sequences is a longstanding problem in microarray ana-
lysis [27-30]. Therefore, most previous methods have
typically ignored cross-hybridization and focused on tak-
ing mean or median intensities of probes as the esti-
mated raw CNs [15,31]. However, such estimated CNs
hardly reflect the true allelic concentrations (ACs) of tar-
get sequences, and some studies [6,7,20] have shown
that cross-hybridization, if not considered, can lead to
large bias. To circumvent this problem, one prior investi-
gation used PICR (probe intensity composite representa-
tion) to model the hybridization and cross-hybridization
based on the underlying physicochemical principle of
DNA/DNA duplex formation in array experiments,
and then removed the effect of cross-hybridization and
accurately estimated AC at a given SNP site through a
statistical method [20]. Other similar models were also
reported [28,32].
In addition to cross-hybridization, Maris et al. have

stated that “whole-genome microarrays with large-insert
clones designed to determine DNA copy number often
show variation in hybridization intensity that is related
to the genomic position of the clones.” [22] These ‘gen-
omic waves’ have been observed in SNP arrays [21-23].
Genomic waves are shown to be correlated with GC-
content [21,23] and may stem from the amplification of
DNA fragments [33]. In the preprocessing of arrays,
DNA samples are first digested with restriction enzymes,
such as Nsp, and then ligated with adapters before amp-
lification. However, owing to differences in amplification
efficiencies of fragments, the PCR procedure can bring
in artifacts which may give rise to genomic waves [33].
Presence of the waves will hamper detection of aberra-
tions [23] and introduce hundreds of potentially con-
founding CNV artifacts that can obscure bona fide
variants [33]. To solve this difficulty, a computational
approach via fitting regression models with GC-content
included as a predictor variable was proposed by [22],
and this approach have improved the accuracy of CNV
detection.
Finally, it has long been known that different sample

batches can lead to inconsistent results, even if data are
collected by the same lab [24-26]. Owing to this effect,
statistical power in meta-analysis of multiple samples
may be significantly reduced [34]. Almost all existing
algorithms require multiple samples for training because
of the numerous parameters, while different training
sample batches can lead to different parameter estima-
tion. The inconsistencies may be incurred by this
sample-dependent parameter estimation. The effect has
also been shown to be correlated with differences in
batch sizes and the extent of homogeneity of samples in
each batch. Hence, samples with high homogeneity are
suggested to be placed into the same training batch [26].
Several other methods to adjust this batch effect have
also been proposed, such as [25,35,36].
To the best of our knowledge, existing methods only

address one or two of the three factors discussed above.
In this study, we developed a novel CNV detection pipe-
line based on hybridization and amplification rate correc-
tion (CNVhaca) to accurately detect CNVs for Affymetrix
SNP array. In contrast to previous methods, CNVhac
takes into account all three factors by proper modeling
of cross-hybridization, smoothing genomic waves and
alleviating sample batch dependence of parameter esti-
mation, thus significantly improving the accuracy of
CNV detection. Starting from dozens of basic constants
concerning binding affinity, which can be well trained
from one single array and are quite stable between arrays,
CNVhac is able to get the binding affinity between all
probes and sequences without suffering from sample
batch dependence. Then CNVhac applies the PICR
method [20] to address the effect of cross-hybridization.
Finally, since we have found that the relative amplifica-
tion efficiencies between different fragments are fairly
stable from one array to another, a simple adjustment
approach is proposed to smooth the genomic waves.
Based on the accurate raw CN estimates, a hidden Mar-
kov model (HMM) is also proposed to detect breakpoints
along the genome. The implementation of CNVhac with
public datasets shows that our method does enhance the
power of both raw CN estimation and CNV calling.
Methods
Dataset
Dataset I. ‘The International HapMap project’ [37]
mapped 270 samples (30 YRI trios, 30 CEU trios, 45
CHB and 45 JPT individuals) to Affymetrix SNP 6.0
array to identify and catalog genetic similarities and var-
iants in human beings. The raw SNP 6.0 dataset (http://
www.affymetrix.com/support/technical/sample_data/
genomewide_snp6_data.affx) is applied in this paper.
Dataset II. Conrad et al. recently used the ultra-high-

resolution NimbleGen tiling arrays (42 M probes) to
identify CNVs for HapMap samples [38]. The identified
CNVs were then filtered by two other technologies (Agi-
lent and Illumina). Finally, over 5000 regions that were
cross-platform verified as CNV in at least one of the
HapMap individuals of dataset I were selected [38] and
referenced as benchmark in this article to assess the
power of CNV calling in comparison with other algo-
rithms. We have not performed any experimental re-
search by ourselves, and both dataset I and II are

http://www.affymetrix.com/support/technical/sample_data/genomewide_snp6_data.affx
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downloaded from public databases. Therefore, there is
no ethical approval problem in this study.

Estimation of raw CNs
The problems usually confronted in the estimation of
raw CNs are discussed in the background section. Array
intensities not only rely on ACs of target sequences, but
also probe binding affinities. Based on [20], we model
hybridization and cross-hybridization with dozens of
probe-independent parameters, which can be accurately
estimated from single array and are consistent between
arrays [39]. Another simple adjustment is proposed to
calibrate the various amplification efficiencies.

Modeling hybridization and cross-hybridization
Considering one probe in a certain SNP probeset, we
have the basic model [39,40]:

I ¼ Is þ Ibg þ ε; ð1Þ

where I, Is and Ibg stand respectively for probe inten-
sity, specific hybridization intensity caused by target
sequences and background nonspecific binding intensity,
and E is the measurement error. Is has been further mod-
eled by Langmuir-like adsorption principle, and Equa-
tion (1) can be rewritten as:

I ¼ Is þ Ibg þ ε ¼ N
1þ exp Eð Þ þ Ibg þ ε; ð2Þ

where N is AC of the target sequences, and E denotes
specific binding free energy which can be modeled by
position-dependent nearest-neighbor (PDNN) [39,40]:

E ¼
X24

i¼1

ωiλ bi;biþ1ð Þ; ð3Þ

where ωi is a weight factor which is dependent on the
position of consecutive bases along the oligonucleotides,
bi is the i-th nucleotide of probe sequence, and λ is the
stacking energy of the pair of nearest-neighbors along
the probe. With λ(bi, bi + 1) and ωi known as basic con-
stants which hardly change between arrays [39], N can
be easily estimated by regression.
However, the model ignores cross-hybridization. There

are two alleles (allele A and allele B) in the genome for a
certain single polymorphic locus. For high sequence
similarity, each allele has a high possibility of binding to
the probe which is designed to interrogate the other al-
lele. This cross-hybridization may bring bias when esti-
mating the AC of target sequences (See [20] and
Additional file 1). Therefore, we go one step further to
improve the model by assuming that Is follows an addi-
tive model of IsA and IsB. Their meanings are clear: the
contribution of allele A and B target sequences,
respectively, to probe intensity. Both IsA and IsB can be
modeled by Equation (2); thus our proposed model is

I ¼ NA

1þ exp EAð Þ þ
NB

1þ exp EBð Þ þ Ibg þ ε; ð4Þ

where NA and NB are ACs for allele A and B, respect-
ively, and EA and EB denote binding free energy. With
quite a few probes in one probeset, the ordinary least
squares (OLS) method yields unbiased estimates of NA

and NB. The summation of NA and NB gives the total
concentration N (See [20] and Additional file 1). For the
nonpolymorphic probe with only one allele, N can be
straightforwardly obtained from Equation (2).

Normalization between arrays
In order to eliminate the systematic bias between arrays
which may arise from the different library preparation
conditions of the experimental process, we use the fol-
lowing transformation:

N
0
mk ¼ Nmk :αm; ð5Þ

where Nmk is the total concentration for array m at
locus k, and αm ¼ 2=median Nmk ; k ¼ 1; 2; . . . ;Kð Þ is
the normalization factor for array m (K= the total num-
ber of loci from one array).

Calibration for amplification efficiency

We have found that N
0
mk are fairly stable from one array

to another, except for CNV regions for one certain locus
k (see Additional file 1); therefore, a simple adjustment
approach is proposed to calibrate the various amplifica-
tion efficiencies:

N̂ mk ¼ N
0
mk � γk; ð6Þ

where γk ¼ 2=median N
0
mk ;m ¼ 1;2; . . . ;M

� �
is the ad-

justment factor for each locus k (M is the total number of
reference samples). In order to estimate the adjustment
factor γk , a pool of reference samples is needed. In the
case–control assay pattern, the control arrays are treated
as the reference pool. In this article, the HapMap samples
from dataset I are used to estimate γk . CNVhac takes N̂ mk

as the estimated raw CN for locus k in array m.

CNV calling
CNVhac implements a HMM-based algorithm to call
CNVs. HMM methods have previously been successfully
applied to other studies [13,41,42], and the main idea of
our algorithm is similar to them. In our implementation
of the HMM, the hidden state is the true CN ({0, 1, 2, 3
or >=4}) of each locus along the genome, and the observed
state is our estimated raw CN N̂ mk . For each locus, the
emission probabilities are estimated from a normal
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distribution with true CN as mean. The transition prob-
ability of jumping out from normal state is presumed to
be low, whereas jumping back to a normal CN or transi-
tioning within the same state is relatively high. Further-
more, the distance between neighboring loci is correlated
with transition probability [13]. Given the initial emission
and transition probabilities, the Viterbi algorithm [43] is
used to decode the hidden states. Then, the parameters
can be updated iteratively until converging. A more
detailed description of this method can be found in Add-
itional file 1.

Results
The pipeline of CNVhac mainly consists of two major
steps. The preprocessing step first estimates the raw CNs
N̂ mk , and, second, the CNV calling step then searches for
breakpoints through a HMM model. In this section, we
compare CNVhac with two widely used raw CN estima-
tion methods, CRMA_v2 (‘Copy-number estimation using
Robust Multichip Analysis’ [6]) and cn.FARMS (‘factor
analysis for robust microarray summarization’ [7]), to
evaluate the accuracy of estimated raw CN N̂ mk. CRMA_v2
is an extension of CRMA [44] for estimating raw CNs for
downstream analyses. cn.FARMS presents a probabilistic
latent variable model for summarizing probes to obtain
raw CN estimates. Both CRMA_v2 and cn.FARMS out-
perform other studies on raw CN estimation [6,7]. Mean-
while, to assess the performance of CNV calling, we
compare CNVhac with another popular approach known
as Birdsuite [13], which is asserted to be the best for CNV
inference with Affymetrix SNP arrays [5]. Because Bird-
suite does not estimate raw CNs, it is not considered in
the comparison on raw CN estimation.

Raw CN estimation on HapMap CEU samples
We assess the performance of raw CN estimation from
two aspects: the accuracy in classifying the sex of
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Figure 1 ROC curves of the sex classification for CNVhac, CRMA_v2 a
Right: Top-left corner of ROC curves. CNVhac performs better than CRMA_v
HapMap individuals and the amplitude of genomic wavi-
ness. Females have two copies of X chromosome, while
males only one; therefore, the CN of X chromosome can
naturally be used as the benchmark to evaluate the
power of the raw CN estimates to differentiate between
one or two copies. We collected the same 59 CEU par-
ents in Dataset I to do this classification task as [7].
Children were excluded to avoid inherited biases. The
sample of female founder NA12145 was also removed
on the basis of its low true CN level [44]. All the loci in
the pseudoautosomal regions (PAR1 and PAR2), seg-
mental duplications (http://humanparalogy.gs.washing-
ton.edu/build36) and CNV regions [38] in chromosome
X were excluded owing to CN contamination. Finally,
83121 polymorphic and nonpolymorphic loci were kept
which gives 4904139 (=83121 × 59) single locus classifi-
cation tasks. The receiver operating characteristic (ROC)
curve is introduced to assess the performance of differ-
ent methods. The horizontal axis of the ROC curve
represents the false positive rate (the fraction of males
classified as females), while the vertical axis stands for
the true positive rate (the fraction of females classified
as females). Figure 1 shows the ROC for CNVhac,
CRMA_v2 and cn.FARMS, respectively. The areas under
ROC curve (AUCs) of CNVhac, CRMA_v2 and cn.
FARMS are 0.9684, 0.9603 and 0.9627, respectively. We
see that CNVhac outperforms CRMA_v2 and cn.FARMS
when distinguishing males from females based on the
estimated raw CNs.
The better result of sex classification by CNVhac may

be attributed to better control of genomic waviness. To
assess the waviness, we investigated the estimated raw
CNs of chromosome X used above. The three sets of
raw CNs were separately scaled to the same median. For
females, the median is set as 2 and for males 1. Figure 2
shows an example of dissimilar genomic wave patterns
for one female CEU founder, NA06985. The fluctuation
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Figure 2 Genomic wave patterns on a segment of Chromosome X of one CEU female founder, NA06985, for (a) cn.FARMS, (b)
CRMA_v2 and (c) CNVhac. CNVhac has the smallest amplitude of estimated raw CNs.
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of raw CNs is obvious in cn.FARMS, with somewhat less
fluctuation in CRMA_v2. However, the waves are
smoothed most effectively by CNVhac compared to the
other methods. Figure 3 shows the density of raw CNs
for female CEU founders and male founders, respect-
ively. More precisely, we computed the variance of raw
CNs. For females, the variances of cn.FARMS,
CRMA_v2 and CNVhac are 0.2118, 0.1225 and 0.1112.
For males, the variances are 0.2597, 0.0336 and 0.0289.
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Figure 3 Density of raw CNs estimated by different methods for (a) m
X. Raw CNs are scaled to the same median (for males 1 and females 2). CN
FARMS (F test, all p-values are< 2e-16).
For both females and males, CNVhac has the smallest
variance (F test, all p-values are< 2e-16). This result im-
plies that CNVhac can smooth the fluctuation through
one simple, but effective, method.

CNV calling on HapMap samples
The cross-platform verified regions in dataset II are
defined as true CNVs to assess the power of CNV detec-
tion for CNVhac and Birdsuite on the 269 samples from
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Vhac shows significantly smaller variance than CRMA_v2 and cn.
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dataset I (NA19012 is missing in the result of [38]). We
filtered out those verified regions having fewer than 5
probes designed in Affymertix SNP 6.0 array, resulting
in 1381 verified regions for our evaluation. Each sample
has a different number of CNVs annotated in the 1381
selected regions [38]. In total, we have 49662 true CNVs
annotated in the 1381 regions across the 269 samples.
We assessed the performance of each algorithm by cal-
culating the ratio of the predicted CNVs, which are sup-
ported by true CNVs to all the predicted CNVs along
the genome (precision), and the fraction of true CNVs,
which are predicted by this algorithm (recall). The con-
cordance principle for predicted and true CNVs is that
more than 50% of either region is covered by the other.
When calculating the precision and recall, we summed
up all 269 samples. Through the default parameter set-
tings, the precision and recall of Birdsuite are 40.01%
(19337/48333) and 38.94% (19337/49662), while the
counterparts of CNVhac are 43.45% (5828/13412) and
11.74% (5828/49662). Compared to Birdsuite, CNVhac
has a higher precision, but a lower recall. Note that the
results of Birdsuite contain a set of predefined common
CNVs provided by another study [45], whereas CNVhac
identifies CNVs without a source of predefined common
CNVs. In GWAS analyses, false discoveries are inclined
to occur when identifying rare CNVs [7]. Therefore, in
the assessment of CNV calling power here, we removed
the predefined common CNVs [45] from both the pre-
dicted and true CNVs. Altogether we have 22043 true
CNVs across the 269 samples this time. The 1-precision
versus recall curve which is similar to ROC is introduced
to show the performance. A curve more in the upper-
Figure 4 1-precision versus recall curves for CNV detection on
269 HapMap samples. A curve that is located more toward the
upper-left corner indicates better performance. Note: FDR is 1-
precision. Compared to Birdsuite, CNVhac shows an appreciably
lower FDR when calling CNVs.
left corner indicates better performance. Figure 4 shows
the 1-precision versus recall curve of CNV calling for all
269 HapMap samples in Dataset I. At comparable levels
of recall, we see that CNVhac gives higher precision
than Birdsuite. A higher precision means a lower false
discovery rate (FDR). The result implies that our method
calls CNVs with a lower FDR.

Sample batch dependence of CNV calling
As described in the Background section, different para-
meters trained from different sample batches may cause
an in-consistent inference. To evaluate the sample batch
dependence of CNV calling of CNVhac, we compare it
with Bird-suite. In CNVhac, estimating adjustment fac-
tor γk is the only step requiring a batch of samples. In
Section 3.2, all 270 HapMap samples were used to esti-
mate γk . Here, we divided the 270 samples into 3 groups
and then treated them as different pools of reference
samples. Each group consisted of 90 samples. (The dif-
ferent choice of samples in each group can be found in
Additional file 2). Adjustment factor γk can be estimated
within each group, respectively. With the different γk,

raw CN estimates N̂ mk change, as well as the CNV call-
ing. For a specific sample Si, three sets of CNV regions
can be detected through different γk . We assess the
batch dependence by computing the ratio of intersection
regions to union. For Birdsuite, 3 groups were created
by the same way. Next, sample Si was put to the other
two groups which do not contain it. Hence, one can also
obtain three sets of identified CNVs. We chose 6 indivi-
duals (2 CEU, 2 YRI, 1JPT and 1CHB) to call CNVs
based on different groups. Table 1 displays the ratio of
intersection to union, respectively, under default param-
eter setting. From this, we see that CNVhac shows sig-
nificantly higher ratios than Birdsuite (p-value = 6.5e-3
by Wilcoxon rank-sum test). This indicates that CNVhac
alleviates the sample batch dependence of CNV calling
to a certain extent.
Table 1 Results of CNV calling based on different training
sample batches for CNVhac and Birdsuite

Birdsuite CNVhac

G1} G2 G3 I} U† Ratio{ G1 G2 G3 I U Ratio

NA12156 17 19 21 14 22 0.64 15 17 18 15 17 0.88

NA12878 22 21 19 15 28 0.54 29 26 24 20 33 0.61

NA18507 19 15 20 10 23 0.43 16 20 20 15 21 0.71

NA18517 20 21 21 14 25 0.56 21 21 18 16 23 0.7

NA18555 16 16 15 11 20 0.55 16 14 17 11 18 0.61

NA18956 13 12 16 9 16 0.6 20 21 24 16 24 0.67

}The number of predicted CNVs using group 1 for parameter training.
}The number of CNVs in intersection set of “G1”, “G2” and “G3”.
†The number of CNVs in union set of “G1”, “G2” and “G3”.
{The ratio of intersection to union.
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Discussion
For years, the array-based technologies have been widely
used for exploring CNV events. However, the inherent
noise of microarray data may lead to high FDR when
making inferences. In array experiments, hybridization is
highly correlated with the sequence constitutions
[27,28,30,32,39,40,46]. The binding affinities of probes
can be subject to large variability by the various
sequences. Most previous algorithms attempt to model
the binding affinity through statistical or empirical
methods [41,44], which need multiple samples for train-
ing parameters. However, such multiple samples may
lead to another problem: sample dependence of outputs
[26]. The various choices of training samples may result
in different estimated parameters, leading, in turn, to in-
compatible results. All the algorithms which need mul-
tiple training samples have a possibility encountering
this effect. Consequently, strategies based on single-
array processing are preferred. Up to now, however, few
single-array approaches have been presented. CRMA_v2
is a single-array preprocessing method for SNP array
analysis. However, the raw CNs estimated by CRMA_v2
exhibit a wavy pattern, and thus may not be accurate
enough for downstream CNV identification.
Motivated by addressing the cross-hybridization of

probes, genomic waves of intensities and sample de-
pendence of parameter estimation, we propose in this
article a single-array preprocessing method, termed
CNVhac, to estimate more accurate raw CNs. Based on
the previous PICR method [20], we model the
hybridization and cross-hybridization of probes through
physicochemical law. Wan et al. have shown that the
PICR model can address the cross-hybridization effect
very well [20]. The genomic wave patterns of signal in-
tensities are hypothesized to reflect the various amplifi-
cation efficiencies of DNA fragments in the PCR process
[33]. However, based on the diversity of sheared frag-
ments and complicated PCR procedures, it is difficult to
estimate the accurate amplification rate for each locus.
Instead, we smooth the genomic waves by estimating an
adjustment factor for each locus since we have found
that the estimated CNs show a fairly stable pattern be-
tween loci (see Additional file 1). Compared to
CRMA_v2 and cn.FARMS, this simple calibration
method effectively reduces the amplitude of waviness.
Note that the reduction of waviness is not simply a com-
pression of variance in that CNVhac provides more ac-
curate raw CN estimates which can well differentiate
between one or two copies. Moreover, the number of
parameters needed to estimate target concentration N̂ mk

in CNVhac is much fewer than prior statistical models
and can be estimated from one single array quite stably
[39]. This property avoids the sample dependence of
parameter estimation. Compared to one popular CNV
detection method known as Birdsuite [5,13], CNVhac,
indeed, alleviates the sample dependence of CNV calling
more effectively. However, CNVhac needs a pool of
reference samples to estimate γk for calibrating amplifi-
cation efficiency. In the case–control assay pattern, the
control samples are treated as the reference pool. While
the dataset contains only case samples, anonymous nor-
mal samples, e.g., HapMap samples, can be used as the
reference pool. Because of the different experimental
conditions, the anonymous normal samples may bring
sample-dependent bias for γk . Actually, CNVhac cannot
address this kind of sample dependence.
CNVs have attracted much attention in recent years

because they are assumed to play a significant role in
causing human disease [1,4]. Especially, some recent
studies and reviews have shown that rare CNVs contrib-
ute much more to neuropsychiatric disorders than pre-
viously thought [2,47-51]. However, the mechanism
underlying the influence of CNVs on human pheno-
types is still not well understood. Furthermore, even a
small fraction of false discoveries may introduce misun-
derstanding in the downstream association studies.
Therefore, CNV calling methods are strongly de-sired
to control the FDR [7]. On the basis of raw CN esti-
mates with cross-hybridization and amplification rate
correction, CNVhac can identify rare CNVs with a
lower FDR compared to the powerful Birdsuite method.
This result implies that CNVhac can accurately identify
CNVs, especially rare CNVs, for downstream associ-
ation studies.
Since CNVhac is a single-array based strategy, the run-

ning time could be reduced by executing CNVhac on
multiple processors in parallel when analyzing a large set
of samples. Also, since parameters are consistent be-
tween arrays, there is no need to reprocess the early data
when new samples are hybridized.
Conclusion
Cross-hybridization and different amplification efficien-
cies of probes are the common difficulties in microarray
analysis. Most studies attempt to solve the problem by
training numerous model parameters from a large data-
set, but this might incur inconsistent results. Moreover,
the statistical power of this methodology may be signifi-
cantly reduced when the training dataset is not big
enough. In this article, we first addressed cross-
hybridization problem through physico-chemical law
and then proposed a simple adjustment for the various
amplification rates. Our method, CNVhac, avoids com-
plicated statistical models which need many samples for
training. By comparing CNVhac with other methods, we
have established that our simple process is effective and
suitable for all Affymetrix SNP array types with similar
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design standards. Finally, the working principle of
CNVhac can be easily extended to other platforms, such
as Illumina and Agilent arrays.

Endnotes
CNVhaca: The algorithm is implemented in R and C++

and is available at http://www.math.pku.edu.cn/teachers/
dengmh/CNVhac.

Additional files

Additional file 1: Supplementary Materials. It contains details of
modeling hybridization, cross-hybridization and HMM, as well as one
figure explaining stable total concentrations between arrays [52].

Additional file 2: Constitution of different reference groups.
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