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Abstract

Background: Transcriptomic studies in clinical research are essential tools for deciphering the functional elements
of the genome and unraveling underlying disease mechanisms. Various technologies have been developed to
deduce and quantify the transcriptome including hybridization and sequencing-based approaches. Recently, high
density exon microarrays have been successfully employed for detecting differentially expressed genes and
alternative splicing events for biomarker discovery and disease diagnostics. The field of transcriptomics is currently
being revolutionized by high throughput DNA sequencing methodologies to map, characterize, and quantify the
transcriptome.

Methods: In an effort to understand the merits and limitations of each of these tools, we undertook a study of the
transcriptome in sickle cell disease, a monogenic disease comparing the Affymetrix Human Exon 1.0 ST microarray
(Exon array) and Illumina’s deep sequencing technology (RNA-seq) on whole blood clinical specimens.

Results: Analysis indicated a strong concordance (R = 0.64) between Exon array and RNA-seq data at both gene
level and exon level transcript expression. The magnitude of differential expression was found to be generally
higher in RNA-seq than in the Exon microarrays. We also demonstrate for the first time the ability of RNA-seq
technology to discover novel transcript variants and differential expression in previously unannotated genomic
regions in sickle cell disease. In addition to detecting expression level changes, RNA-seq technology was also able
to identify sequence variation in the expressed transcripts.

Conclusions: Our findings suggest that microarrays remain useful and accurate for transcriptomic analysis of clinical
samples with low input requirements, while RNA-seq technology complements and extends microarray
measurements for novel discoveries.
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Background
With the completion of the human genome project, the
monitoring of changes in the entire human transcrip-
tome is an increasingly attractive method for dissecting
the molecular basis of disease processes [1,2]. In this re-
gard, the ability to utilize a patient’s transcriptome to de-
tect the onset of disease, monitor its progression, and
even to suggest treatment modalities with the highest
probability of success would greatly enhance the quality
of medical care and treatment [3-6]. Peripheral whole
blood is a nucleic acid-rich and inflammatory cell-rich
information reservoir. Analytical methodologies to de-
tect transcriptomic changes in these cells may reveal
novel biomarkers for disease diagnosis and treatment.
Until recently, high throughput microarray technolo-

gies have been the method of choice in clinical studies
with limited amounts of RNA from blood samples,
biopsy specimens, or enriched cell populations, to obtain
gene expression profiles. The high density Affymetrix
Human Exon 1.0 ST array (Exon array) with 1.2 million
probesets targeting every known and predicted exon in
the entire genome has been successfully employed in
clinical investigations for obtaining gene expression pro-
files and associated alternative splicing events in disease
processes [7-9]. Despite these successes, inherent limita-
tions in the dynamic range of arrays and the lack of
complete coverage for detecting alternative splicing
events have constrained the application of this
technology.
With the advent of next-generation sequencing tech-

nologies, RNA-seq has emerged as a powerful tool for
transcriptome analysis [10-12]. By mapping millions of
RNA-seq reads to individual transcripts, estimation of
expression levels of individual exons and whole tran-
scripts can be performed. It is likely that the microarray-
based (analog) gene-expression profiling technology will
be replaced by digital sequencing based gene-expression
profiling (RNA-seq) [8,13,14]. The purported advantages
of RNA-seq include generation of expression data for in-
dividual annotated genes with nearly unlimited dynamic
range; ability to comprehensively detect novel transcripts
and mRNA variants resulting from alternative promoter
usages, splicing, polyadenylation and sequence variation;
and lowered background. However, the technology also
brings with it new issues such as the requirement for
large amounts of starting material, cumbersome library
preparation; novel systematic biases during sample prep-
aration and sequencing that must be accounted for when
analyzing the data. Additionally, data processing of mul-
tireads and splice junctions have been problematic when
mapping the sequences back to a genome.
Considering the merits and limitations of each of the

technologies, we undertook the current study using
complex whole blood specimens from patients with
sickle cell disease (SCD) and matched healthy controls
to address the following major questions:
(1). How do the technologies compare with regard to

sensitivity, specificity, and variability of gene expression
data? (2). Do the differentially expressed transcripts and
alternatively spliced exons in SCD correlate well be-
tween RNA-seq and Exon arrays? (3). Does the abun-
dant expression of globin transcripts in SCD interfere
with RNA-seq analysis? (4). Are we able to discover
novel differentially expressed transcripts in SCD using
RNA-seq? (5). Can we detect sequence variants in the
expressed transcripts?
Although previous comparative studies [15,16] have

reported the advantages of RNA-Seq and microarrays, to
our knowledge, our study is the first to use a human
monogenic disease model to compare RNA-Seq and
microarrays. We report here our observations on the
SCD transcriptome from RNA-seq and Exon arrays with
the belief that our findings will be useful to clinical
investigators in choosing the appropriate genomic tech-
nique for understanding molecular mechanism of dis-
eases for diagnosis and the development of novel
therapeutics.

Methods
Subjects
The study was approved by the National Institute of
Diabetes and Digestive and Kidney Diseases institutional
review board (NIH protocol 03-CC-0015) and written
informed consents were obtained from study partici-
pants. Patients selected for this study included patients
(n = 6) with sickle cell disease of mean age 41.6 ± 10.1
and the control group (n = 4) of self-identified African
American subjects of mean age 42.2 ± 8.9, without sickle
cell disease. The biosamples were collected in steady
state condition and none of the individuals was receiving
anti-platelet medication.

Isolation of RNA from whole blood specimens
Blood specimens (2.5 ml) collected in PAXgene™ tubes
from each subject were incubated at room temperature
for 4 h for RNA stabilization and then stored at− 80 °C.
RNA was extracted from whole blood using the PAXgene™
Blood RNA System Kit following the manufacturer's
guidelines. Briefly, samples were removed from −80 °C
and incubated at room temperature for 2 hours to ensure
complete lysis. Following lysis, the tubes were centri-
fuged for 10 min at 5,000 × g the supernatant was dis-
carded and 500 μL of RNase-free water added to the
pellet. The tube was vortexed thoroughly to re-suspend
the pellet, centrifuged for 10 min at 5000 × g and the
entire supernatant was discarded. The pellet was re-
suspended in 360 μL of buffer BR1 by vortexing and fur-
ther purification of RNA was done following the
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manufacturer's protocol with on-column DNase diges-
tion. Quality of the purified RNA from was verified on
an AgilentW 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA); RNA concentrations were determined using a
NanoDropW ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE).
Total RNA from six SCD patients and four healthy

controls were used for detailed analysis on RNA-seq and
exon array platforms. Data analysis was carried out on 6
SCD and 3 healthy controls after removing a control
sample which was identified to be an outlier based on
principal component analysis (PCA) of the transformed
data from RNA-seq.

Depletion of globin transcripts
Globin mRNA was depleted from a portion of each total
RNA sample isolated from PAXgene tubes using the
GLOBINclear™-Human kit (Ambion, Austin, TX). In
brief 2 μg of total RNA from human whole blood was
mixed with a biotinylated Capture Oligo Mix in
hybridization buffer. The mixture was incubated for 15
minutes to allow the biotinylated oligonucleotides to
hybridize with the globin mRNA species. Streptavidin
magnetic beads were then added, to capture the globin
mRNA and the magnetic beads were then pulled to the
side of the tube with a magnet and the RNA, depleted of
the globin mRNA, was transferred to a fresh tube. The
RNA was further purified using a rapid magnetic bead-
based purification method [17].

Preparation of biotinylated cDNA targets for exon array
hybridizations in GCAS
50 ng RNA samples were amplified using the WT-Ovation™
Pico RNA Amplification System (NuGEN, San Carlos, CA)
in a 3 step process as recommended by the manufac-
turer. All processes were performed in an automated
manner using the genechip array station (GCAS). In
brief, first strand cDNA was prepared using a unique
first strand DNA/RNA chimeric primer mix and reverse
transcriptase. In the second step, DNA/RNA Heterodu-
plex Double Stranded cDNA was generated which
serves as the substrate for SPIA amplification - a linear
isothermal DNA amplification process developed by
NuGEN. RNase H degrades the RNA in the DNA/RNA
heteroduplex at the 5´ end of the first cDNA strand ex-
posing part of the unique priming site for the initiation
of the next round of cDNA synthesis. The process of
SPIA DNA/RNA primer binding, DNA replication,
strand displacement and RNA cleavage is repeated,
resulting in rapid accumulation of SPIA cDNA. Follow-
ing amplification and purification, 3 μg of the amplified
cDNA were processed with the WT-Ovation Exon
Module to produce sense strand ST-cDNA. Following
purification and quantitation, 5 μg ST-cDNA was
fragmented and labeled with the FL-Ovation™ cDNA
Biotin Module using a proprietary two-step fragmenta-
tion and labeling process. The first step is a combined
chemical and enzymatic fragmentation process that
yields single-stranded cDNA products in the 50 to 100
base range. In the second step, this fragmented product
is labeled via enzymatic attachment of a biotin-labeled
nucleotide to the 3-hydroxyl end of the fragmented
cDNA generated in the first step. Hybridization, wash-
ing and laser scanning of Affymetrix Human Exon 1.0
ST microarrays were performed according to the manu-
facturer’s protocol (Affymetrix, Santa Clara, CA).
Hybridization was performed at 45 °C overnight, fol-
lowed by washing and staining using FS450 fluidics sta-
tion. Scanning was carried out using the 7 G GCS3000
scanner.

Microarray data collection and annotation
Exon-level core RMA-sketch intensity values for each of
the chips were collected using Affymetrix Expression
Console (EC) Software (Affymetrix, Santa Clara, CA).
The 284,258 core probesets were annotated using the
Affymetrix annotation file from Netaffx (www.netaffx.
com, HuEx-1_0-st-v2.na29.hg18.probeset.csv).

Analysis of exon arrays
Gene level intensity values were obtained by taking the
average RMA values over probesets for each transcript
cluster. A two sample t-test (SCD N1 = 6 and control
N2 = 3) was computed on 9 samples in order to deter-
mine differential gene expression between SCD and con-
trols. Microarray RMA values for each transcript cluster
for each of 9 samples were submitted to a Principal
Component Analysis in order to detect possible outliers.
Alternative splicing analysis was computed using the
ExonANOVA available from software developed by two
of the authors, J.B and P.J.M (http://affylims.cit.nih.gov/
MSCLtoolbox). The ExonANOVA model fits the follow-
ing formula

yijk ¼ μþ Ai þ ACik þ Ck þ βj ið Þ þ Eijk

to the data.
In the above formula, yijk is the log 2 expression inten-

sity, i is treatment, j is replicate within treatment and k
indexes exons. The μ is the mean and the two fixed fac-
tors are the treatment effect (A) and exon effect (C).
The random factor (β) is the sample within treatment ef-
fect and (e) is the error. The fixed interaction between
treatment and exon (AC) models the alternative splicing
event. In this study, the treatment effect is sickle cell or
control. The significance of a detected alternatively
spliced event is denoted p-AC. Alternatively spliced
events are declared if p-AC<= 10^-8 and the maximum

http://www.netaffx.com
http://www.netaffx.com
http://affylims.cit.nih.gov/MSCLtoolbox
http://affylims.cit.nih.gov/MSCLtoolbox
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absolute interaction effect (maxik|ACik|) is greater than
or equal to 2. A p-AC<= 10^-8 corresponds to less
than 1% false discovery rate (FDR) using the method of
Benjamini and Hochberg [18].

Library construction for RNA-seq
High quality total RNA at 1.5 μg was used for analysis on
the Illumina GAII analyzer on six SCD samples and four
healthy controls. cDNA library preparation and sequen-
cing reactions were carried out using Illumina library
prep, clustering and sequencing reagents following the
manufacturer's recommendations (http://www.illumina.
com). Briefly, mRNAs were purified using poly-T oligo-
attached magnetic beads and then fragmented. The first
and the second strand cDNAs were synthesized and end
repaired. Adaptors were ligated after adenylation at the 3'-
ends. After gel purification, cDNA templates were
enriched by PCR. cDNA libraries were validated using a
High Sensitivity Chip on the Agilent2100 Bioanalyzer™
(Agilent Technologies, Palo Alto, CA). The samples were
clustered on a flow cell using the cBOT. After clustering,
the samples were loaded on the Illumina GA-II machine.
The samples were sequenced using a single lane with 36
cycles. Initial base calling and quality filtering of the Illu-
mina GA-II image data were performed using the default
parameters of the Illumina GA Pipeline GERALD stage
(http://www.illumina.com).

Mapping and analysis of RNA-seq data
The raw data Fastq sequence files obtained from GAII
were mapped to the human genome (build HG18) to get
genomic addresses using Bowtie/Tophat [19] allowing
up to two mismatches. Reads that mapped to more than
10 locations were discarded. We obtained ~15.1 million
reads per sample. We mapped reads both to exons of
known RefSeq transcripts (human genome build 18) and
to Affymetrix probe selection region coordinates. Reads
mapped to Refseq exons and to Affymetrix probeset se-
lection regions were counted using the CoverageBed
method in BedTools [20]. Reads were counted for exons
within each RefSeq transcript. In order to compare RNA-
seq data fairly to the Exon microarray, we counted reads
mapped to each probeset selection region (or probeset)
within each exon.
Transcript cluster level reads were counted per probe-

set within each transcript cluster. Very low count tran-
script clusters (fewer than 6 samples with 6 or more
counts) were ignored. This filtered out a total of 7,146
transcript clusters leaving 11,562 for further statistical
analysis. In order to normalize the data, transcript clus-
ter counts were divided by the median transcript cluster
count for that sample, and logarithm base 10 trans-
formed, yielding transformed, normalized counts. After
principal component analysis (PCA) of the transformed
data, one outlier, a control sample was detected and dis-
regarded from further analysis leaving 9 samples. A two
sample t-test (sickle cell N1 = 6, control N2 = 3) was used
on the normalized, transformed data to test for differen-
tial expression. Alternative splicing analysis was com-
puted using the ExonANOVA as with the microarrays
data. A conservative and reasonable background limit at
4.5 RMA units was applied for Exon arrays and 1.0 in
RPKM units as recommended by Mortazavi et al. [21]
was applied for RNA_seq. The RMA level of 4.5 is
slightly above the median RMA for detected exons
(Affymetrix DABG value p< 0.01, Affymetrix’s recom-
mendation for a conservative detection of exons).
In order to identify novel transcription events, we

counted reads mapping to each 200 base pair region of
the genome. Only populated bins (5 or more samples
had 6 or more reads) bins were considered further. This
filter retained 187,764 bins for analysis. We disregarded
bins that fell within annotated RefSeq exons. The
remaining 48,462 bins, describe novel, unannotated tran-
scription events. To normalize these data, counts were
divided by the 90th percentile of counts for that sample
and base 10 logarithm transformed. p-values were
required to be 0.0005 or less (corresponding to FDR
< 0.15), and the fold-change was required to be 2-fold
or greater. If differential expression was found, it was
classified as a novel transcript.
Real time Q-PCR analysis
First-strand cDNA was synthesized using 500 ng of
RNA and random primers in a 20 μl reverse transcript-
ase reaction mixture using Invitrogen’s Superscript
cDNA synthesis kit (Invitrogen, Carlsbad, CA) following
the manufacturer’s directions. Quantitative real-time
PCR assays were carried out on 11 differentially
expressed genes from both the platforms with the use of
gene-specific double fluorescently labeled probes in a
7900 Sequence Detector (PE Applied Biosystems, Nor-
walk, CT). Probes and primers were obtained from Ap-
plied Biosystems. In brief, PCR amplification was
performed in a 384 well plate with a 20-μl reaction mix-
ture containing 300 nm of each primer, 200 nm probe,
200 nm dNTP in 1x real time PCR buffer and passive
reference (ROX) fluorochrome. The thermal cycling
conditions were 2 min at 50° C and 10 min at 95° C, fol-
lowed by 40 cycles of 15 sec denaturation at 95° C and
1 min annealing and extension at 60° C. Samples were
analyzed in duplicate and the Ct values obtained were
normalized to the housekeeping gene ß actin. The com-
parative CT (ΔΔ CT) method [22] which compares the
differences in CT values between groups was used to
achieve the relative fold change in gene expression be-
tween SCD and Controls.

http://www.illumina.com
http://www.illumina.com
http://www.illumina.com
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Results
Principal component analysis
Principal component analysis was first used to identify
outliers within the SCD and healthy controls groups.
Figure 1A for RNA-seq data showed a clear segregation
and clustering of SCD and healthy controls. Similarly
with the Exon array analysis on the same set of samples,
a clear separation of SCD patients and healthy controls
was observed as depicted in Figure 1B. The first princi-
pal component (PC1) accounted for 31% of total vari-
ability in the RNA-seq data and 33% of total variability
of Exon array data, and also fully separated the sickle
cell group from the controls. Sample S6 displayed the
largest value for the Affymetrix QC parameter all_probe-
sets_rle_mean, a measure of hybridization quality, where
larger values indicate lesser quality. This fact may ex-
plain the divergence of patterns observed in the two
dendrograms

Evaluation of dynamic range, within platform
reproducibility - coefficient of variation and sensitivity
To assess the dynamic range (the ratio of the largest
observable value to the background expression level
(over all genes) of each platform, a scatter plot (Figure 2)
was constructed using the results on control samples for
each method. The base 10 logarithm of the RPKM
Figure 1 Principal component analysis and hierarchical clustering (A)
and PC2 (y-axis) represents 22.1% of total variation in the data. Hierarchical
right order. (B). Exon array data. PC1 vs. PC2 on Exon array data together re
clustering shows similarities to that in A, e.g. sample C4 departs strongly fro
data sets.
values from RNA-seq (normalized for gene length) is
plotted versus the base 10 logarithm of signal intensity
values for Exon array. As can be seen from the figure,
RNA-seq shows a larger dynamic range of expression
when compared to the Exon array and the magnitude of
this increased dynamic range varied from 4 to 16 fold
according to the expression levels of differentially
expressed genes.
The technical reproducibility and coefficient of variation

of the array and RNA-seq platforms at both the gene and
exon levels was examined using the mean expression
levels over all samples. The pooled coefficient of variation
calculated over all samples were broken up into 4 bins
(see Figure 3 legend) Figure 3 clearly shows that the coef-
ficient of variation for exon array is much lower than that
for RNA-seq and is also independent of the number of
counts for each transcript suggesting that technical vari-
ability within group is higher in the RNA-seq platform
than the arrays, especially for genes with low-expression
thereby demonstrating the potential advantage of micro-
array in cases where the RNA-seq counts are very small.
The RNA-seq CV drops to 40% for highly expressed genes
while for the exon array the CV rises slightly, to about
20% . This difference is partly a consequence of the
extended dynamic range for RNA-seq (or equivalently, the
compressed dynamic range observed in microarray).
RNA-seq data. Principal Component 1 (PC1, x-axis) represents 31.4%
cluster of 9 samples with heatmap representing all 9 PCs in left-to-
presenting 33.2% and 21.8% of the data variability. Hierarchical
m remaining data, samples C3, C5 appear to be neighbors in both



Figure 2 Comparison of Gene Expression Measurements by Two Methods. Gene Microarray expression level (RMA) vs. RNA-seq
expression level (log2 RPKM) for subject C3. Both axes are expressed in base 2 logarithmic scale. The dynamic range (ratio of largest
observable value to apparent background value) of the RNA-seq data is clearly larger than that of Exon array data. Bivariate density contours
indicate a strong but nonlinear correlation between the two measurements. The two methods yield nearly proportional results above the median
expression levels (Blue line). Solid Black lines are detection limits for microarray (RMA= 4.5) and RNA-seq (log2RPKM =0). Refer Methods for the
description of detection limits.
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With the expectation that deeper sequencing and
large amounts of starting material are needed to ad-
equately cover low abundance transcripts, we tested the
sensitivity of each of the platforms by examining the ex-
pression of transcripts above background. With the ap-
plication of conservative and reasonable background
limits at 4.5 RMA units for Exon arrays and 1.0 in
RPKM units for RNA_seq to one sample for a control
subject C3 (Figure 2), we were able to detect 6% more
transcripts (12,310/11,662 = 1.06) above background in
exon arrays than in RNA-seq.

Differentially expressed genes in SCD
Global gene level expression analysis for each platform
is shown in volcano plots (Figure 4). The fold changes
from RNA-seq have generally larger magnitude than
those from the arrays, with RNA-seq values ranging up
to 100 fold, while with microarrays, we observed fold
changes up to 31 fold. The relative magnitude of log fold
changes can be clearly observed in Figure 4 and Figure 5,
with RNA-seq reporting generally twice the log fold
change compared with Exon array. In order to perform
an unbiased comparative analysis of the two platforms
and knowing that the microarrays have a compressed
fold change, we chose two different conservative filters
to select differentially expressed transcripts. We selected
transcripts using different criteria for each method, spe-
cifically, requiring at least a 2-fold change in microarray
data or a greater than 4-fold change in RNA-seq data.
Altogether, 331 transcripts were found to be differen-
tially expressed one or the other method, by these cri-
teria. Many of these genes fell into pathways related to
SCD including inflammatory response, oxidoreductase
pathways, stress response, cell signaling and apoptosis
(Table 1).
Of the 331 selected transcripts, 84 transcripts pass

only the RNA-seq filter, 151 transcripts pass only the
exon array filter and 96 transcripts pass both (Figure 6).
Of the 331 transcripts, only 11 (3.3%) were discordant in
their direction of change as measured by the two



Figure 3 Coefficient of Variation (CV) versus expression level for microarray and RNA-seq. RNA-seq expression level is grouped inot 4 bins
according to RNA-seq average number of reads per gene lesser than1, 1–25, 26–158, 159 or higher. CV is calculated as sample standard deviation
of expression level within group (SCD and control), pooled and dvidied by mean expression level for RNA-seq (Red). For microarray (Blue), the
expression values (RMA units) are first divided by ln (2) = 0.693 to convert them to a natural log scale. Then the CV is calculated as the pooled
standard deviation of natural log of the expression levels.
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methods and none of these were among the 96 passing
both filters. The cross platform correlation for the differ-
ential expression (Figure 5) was substantial (r = 0.64), in-
dicating that the two methods give highly similar results
overall. With the additional requirement of statistical
significance p< 0.005 corresponding to FDR <24% for
RNA-seq and FDR< 35% for Exon array, only 112 tran-
scripts showed changes in one or both methods. Of
these, 54 showed differential expression only in RNA-
Figure 4 Volcano plots for RNA-seq and Exon array. (A). p-value vs. lo
vs. log10 fold change for Affymetrix human Exon array data. Points in the l
clusters that are significant and differentially expressed. ●Blue circles repres
triangles represent FC greater or equal to 2 in Exon arrays. *Green asterisks
only.
seq, 27 showed differential expression in only Exon
array, and 31 showed differential expression in both
methods.
Genes identified as differentially expressed in SCD

were subjected to gene ontology enrichment analysis to
determine their molecular functions. This analysis
selected 10 highly significant functional pathways includ-
ing cell cycle regulators, apoptosis, oxidative stress re-
sponse, inflammation and immune response, free radical
g10 fold change (SCD vs. control) for RNA-seq data. (B). p-value
ower right and lower left hand corners of the plots represent transcript
ent transcripts with a FC greater or equal to 4 in RNA-seq and Δ Red
represent transcripts with a FC greater than or equal to 4 on RNA-seq



Figure 5 Fold change for RNA-seq vs. fold change for Exon array (SCD vs Control). A total of 331 transcript clusters are highlighted in the
figure. The 96 blue circles ● represent transcripts with a FC greater than or equal to 4 in RNA-seq and a FC greater than or equal to 2 in
microarray. The 151 red triangles ▲ represent transcripts with a fold change greater than or equal to 2 on microarray only. The 84 green asterisks
* represent transcripts with a fold change greater than or equal to 4 in RNA-seq only. Correlation coefficient, R = 0.64. Genes showing greater
than 4 fold change in expression levels were selected as differentially expressed in RNA-seq and genes showing greater than 2 fold change in
expression levels were selected as differentially expressed in microarrays.
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scavenging, protein modification, and hematopoiesis.
(Additional file 1: Figure S1). Examination of these path-
ways suggests that these differentially regulated genes
are consistent with the homeostatic response to known
pathobiological stresses in SCD, including oxidative and
hemolytic stress, vascular injury, and participation in re-
pair. We also observed upregulated expression of several
reticulocyte specific genes such as ankyrin1, erythroid
associated factor, hemoglobins, nuclear associated factor,
glycophorin, transferrin receptor, and selenium binding
protein, as expected with prominent reticulocytosis in
SCD, thereby validating the performance of the two
technologies in identifying biological alterations in the
sickle cell disease model.
Effect of globin reduction on RNA-seq data quality
Currently, RNA-seq requires enrichment steps to select
Poly A RNA for library construction from total RNA.
Since ribosomal RNA represents over 90% of the RNA
within a given cell, studies have shown that its removal
increases the sensitivity to retrieve data from the
remaining portion of the transcriptome. In large clinical
studies where whole blood PAXgene RNA is used, there
is an additional interference by the high levels of globins
in whole blood RNA. This is further complicated in
hematologic diseases such as sickle cell where globins
account for more than 70% of mRNA.
In order to determine if globins interfere with the se-

quence reads and affect the sensitivity of transcriptome



Table 1 Selected Differentially Expressed Genes Grouped by Pathways of Interest

Genes Symbol Gene Title FCRNA-seq FC MA

Apoptosis/cell cycle regulation

NM_005581 BCAM basal cell adhesion molecule 12.27 1.73

NM_138578 BCL2L1 BCL2-like 1 5.44 1.45

NM_198892 BMP2K BMP2 inducible kinase 4.09 1.93

NM_004331 BNIP3L BCL2 4.98 1.37

NM_014326 DAPK2 death-associated protein kinase 2 0.33 0.48

NM_001923 DDB1 damage-specific DNA binding protein 1, 127 kDa 2.82 2.23

NM_001122665 DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y 1.29 3.00

NM_017631 DDX60 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 1.51 2.25

NM_019030 DHX29 DEAH (Asp-Glu-Ala-His) box polypeptide 29 1.29 2.07

NM_024940 DOCK5 dedicator of cytokinesis 5 0.43 0.50

NM_004864 GDF15 growth differentiation factor 15 4.77 0.99

NM_002094 GSPT1 G1 to S phase transition 1 4.03 1.34

Cell-signaling

NM_017436 A4GALT alpha 1,4-galactosyltransferase 4.70 0.98

NR_024080 ACP1 acid phosphatase 1, soluble 2.79 2.41

NM_015256 ACSL6 acyl-CoA synthetase long-chain family member 6 6.96 2.24

NM_005622 ACSM3 acyl-CoA synthetase medium-chain family member 3 3.90 2.72

NM_001629 ALOX5AP arachidonate 5-lipoxygenase-activating protein 0.39 0.48

NM_020980 AQP9 aquaporin 9 0.48 0.37

NM_015313 ARHGEF12 Rho guanine nucleotide exchange factor (GEF) 12 3.42 2.49

NM_015994 ATP6V1D ATPase, H + transporting, V1 subunit D 1.54 2.21

NM_199186 BPGM 2,3-bisphosphoglycerate mutase 11.03 2.89

NM_020850 RANBP10 RAN binding protein 10 5.70 2.31

NM_001145657 RAP1GAP RAP1 GTPase activating protein 42.05 2.58

NM_014737 RASSF2 Ras association (RalGDS 0.45 0.47

NM_002923 RGS2 regulator of G-protein signaling 2, 24 kDa 0.32 0.44

NM_000062 SERPING1 serpin peptidase inhibitor, clade G (C1 inhibitor) 3.58 2.03

NM_001122752 SERPINI1 serpin peptidase inhibitor, clade I (neuroserpin), 1 1.47 3.07

NM_007111 TFDP1 transcription factor Dp-1 5.69 2.45

NM_003227 TFR2 transferrin receptor 2 5.67 1.42

NM_173804 TMEM86B transmembrane protein 86B 5.22 1.39

NM_015049 TRAK2 trafficking protein, kinesin binding 2 5.51 3.24

NM_022066 UBE2O ubiquitin-conjugating enzyme E2O 7.13 2.83

Oxidative stress/antioxidants/Stress Response

NM_000032 ALAS2 aminolevulinate, delta-, synthase 2 4.36 1.66

NM_001128829 CA1 carbonic anhydrase I 10.68 2.07

NM_000067 CA2 carbonic anhydrase II 5.03 3.45

NM_016417 GLRX5 glutaredoxin 5 5.24 1.59

NM_201397 GPX1 glutathione peroxidase 1 8.02 2.16

NM_001145260 NCOA4 nuclear receptor coactivator 4 4.77 2.12

NM_002501 NFIX nuclear factor I 5.73 1.73

NM_000274 OAT ornithine aminotransferase (gyrate atrophy) 1.30 2.19

NM_030758 OSBP2 oxysterol binding protein 2 11.80 2.57
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Table 1 Selected Differentially Expressed Genes Grouped by Pathways of Interest (Continued)

NM_032523 OSBPL6 oxysterol binding protein-like 6 4.70 2.45

NM_005809 PRDX2 peroxiredoxin 2 4.10 1.12

NM_006745 SC4MOL sterol-C4-methyl oxidase-like 1.31 2.47

NM_138432 SDSL serine dehydratase-like 6.58 1.21

NM_003944 SELENBP1 selenium binding protein 1 5.76 1.92

NM_175839 SMOX spermine oxidase 5.09 2.78

NM_003794 SNX4 sorting nexin 4 1.43 2.29

NM_003105 SORL1 sortilin-related receptor, L(DLR class) A repeats 0.48 0.41

NM_003227 TFR2 transferrin receptor 2 5.67 1.42

NM_022648 TNS1 tensin 1 4.21 1.05

Inflammatory Response

NM_005581 BCAM basal cell adhesion molecule (Lutheran blood group) 12.27 1.73

NM_003965 CCRL2 chemokine (C-C motif) receptor-like 2 2.00 2.28

NM_012120 CD2AP CD2-associated protein 2.30 2.20

NM_001001548 CD36 CD36 molecule (thrombospondin receptor) 1.68 2.11

NM_152243 CDC42EP1 CDC42 effector protein (Rho GTPase binding) 1 8.43 1.04

NM_004344 CETN2 centrin, EF-hand protein, 2 2.85 2.46

NM_001008388 CISD2 CDGSH iron sulfur domain 2 7.29 3.91

NM_033554 HLA-DPA1 major histocompatibility complex, DP alpha 1 1.32 2.11

NM_002125 HLA-DRB5 major histocompatibility complex, class II, DR beta 5 1.96 2.09

NM_001130080 IFI27 interferon, alpha-inducible protein 27 51.57 6.64

NM_006417 IFI44 interferon-induced protein 44 3.14 3.21

NM_006820 IFI44L interferon-induced protein 44-like 3.86 5.37

NM_001548 IFIT1 interferon-induced protein with tetratricopeptide 1 3.04 2.62

NM_000576 IL1B interleukin 1, beta 0.43 0.41

NM_004633 IL1R2 interleukin 1 receptor, type II 0.17 0.27

NM_002182 IL1RAP interleukin 1 receptor accessory protein 0.29 0.40

NM_002183 IL3RA interleukin 3 receptor, alpha (low affinity) 0.52 0.49

NM_003024 ITSN1 intersectin 1 (SH3 domain protein) 6.28 1.87

NM_003189 TAL1 T-cell acute lymphocytic leukemia 1 5.37 1.76

NM_017772 TBC1D22B TBC1 domain family, member 22B 3.78 2.82

NM_152772 TCP11L2 t-complex 11 (mouse)-like 2 3.32 2.64

Red Cell genes

NM_020476 ANK1 ankyrin 1, erythrocytic 4.04 1.62

NM_152326 ANKRD9 ankyrin repeat domain 9 9.23 1.08

NM_001728 BSG basigin (Ok blood group) 5.01 1.50

NM_016633 ERAF erythroid associated factor 9.64 3.91

NM_001017922 ERMAP erythroblast membrane-associated protein 3.86 2.05

NM_001012515 FECH ferrochelatase (protoporphyria) 8.10 2.56

NM_002099 GYPA glycophorin A (MNS blood group) 11.49 4.40

NM_002100 GYPB glycophorin B (MNS blood group) 7.43 2.11

NM_198682 GYPE glycophorin E 6.67 2.70

NM_000558 HBA1 hemoglobin, alpha 1 51.86 5.54

NM_000518 HBB hemoglobin, beta 28.47 1.12

NM_000519 HBD hemoglobin, delta 44.50 2.88
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Table 1 Selected Differentially Expressed Genes Grouped by Pathways of Interest (Continued)

NM_005330 HBE1 hemoglobin, epsilon 1 24.48 2.34

NM_000559 HBG1 hemoglobin, gamma A 43.18 2.17

NM_001003938 HBM hemoglobin, mu 3.75 2.04

NM_005332 HBZ hemoglobin, zeta 8.72 2.34

NM_018437 HEMGN hemogen 5.83 2.18

NM_000420 KEL Kell blood group, metallo-endopeptidase 4.59 1.67

NM_006563 KLF1 Kruppel-like factor 1 (erythroid) 6.76 1.41

Novel Genes

NM_007021 C10orf10 chromosome 10 open reading frame 10 10.26 1.35

NM_001009894 C12orf29 chromosome 12 open reading frame 29 1.39 2.71

NM_014059 C13orf15 chromosome 13 open reading frame 15 2.22 2.03

NM_025057 C14orf45 chromosome 14 open reading frame 45 4.54 4.02

AK303128 C17orf99 chromosome 17 open reading frame 99 5.43 1.24

BC038410 C1orf105 chromosome 1 open reading frame 105 6.00 1.16

NM_020362 C1orf128 chromosome 1 open reading frame 128 5.23 2.58

NM_015680 C2orf24 chromosome 2 open reading frame 24 4.06 1.75

NM_001042521 C2orf88 chromosome 2 open reading frame 88 5.41 2.19

NM_001002029 C4B complement component 4B 4.22 1.37

NM_000715 C4BPA complement component 4 binding protein, alpha 0.04 0.23

NM_001128424 C4orf18 chromosome 4 open reading frame 18 1.35 2.60

NM_032412 C5orf32 chromosome 5 open reading frame 32 3.04 2.12

NM_032385 C5orf4 chromosome 5 open reading frame 4 7.20 2.18

NM_052831 C6orf192 chromosome 6 open reading frame 192 2.08 2.36

NR_027330 C7orf54 chromosome 7 open reading frame 54 0.67 0.49

* Differentially expressed genes were selected if they showed greater than 4-fold change (SCD v Control) in RNAseq or greater than 2-fold change in Microarray.

Raghavachari et al. BMC Medical Genomics 2012, 5:28 Page 11 of 20
http://www.biomedcentral.com/1755-8794/5/28
analysis on RNA-seq platform, we reduced the globins
on one sickle cell patient sample and compared the glo-
bin reduced and non-reduced samples on RNA-seq.
Scatter plot analysis of the normalized transcript read
counts for these two samples showed a high correlation
(R = 0.93, Additional file 2: Figure S2). This suggests that
the globin transcripts in the sickle cell sample do not
affect the sequence reads and do not introduce much
bias in the analysis.

Validation by QPCR analysis
Taqman analysis was used to validate 11 selected differ-
entially expressed genes identified by one or both the
microarray and RNA-seq platforms. The concordance of
each platform with QPCR analysis was measured by
Pearson’s correlation on the fold changes. A good degree
of correlation was observed for most of the genes across
the three platforms (Additional file 3: Table S2). RNA-
seq and QPCR showed a correlation R= 0.6; while QPCR
and Exon array revealed a correlation of R = 0.58. The
line of identity shown in Figure 7 illustrates the
concordance between the platforms. The most highly
correlated genes between the platforms are those that lie
closest to the line of identity in the figure. Genes IRF8,
SNX12, and TPM 4 showed directional discrepancy be-
tween microarray and RNA-seq, however QPCR analysis
corroborated the microarray data for those genes. Con-
versely, QPCR analysis of gene TNK2, which was found
to be up-regulated by RNA-seq and down regulated by
Exon array, corroborated the RNA-seq analysis.

Detection of alternatively spliced exons
Using ExonAnova analysis and filtering criteria as set
forth in the Methods section, we were able to identify 16
genes displaying alternative splicing using the RNA-seq
platform including ATF6B, BCL6, CARM1, CCNDBP1,
COX4I1, DCTN2, HPS1, INPP5D, INSIG1, NUDT,
NUDT4P1, RHCE, RHD, TNXA, TNXB, and UNC13D as
shown in Table 2. Exon array, on the other hand was
able to identify only HBA1 as a significantly alternatively
spliced gene while the other genes did not meet the stat-
istical filter for splicing.



Figure 6 Venn diagram showing the 331 differentially expressed genes between SCD and Healthy Controls for RNA-seq and
microarray. Gene selection Criteria for RNA-Seq -FC greater than or equal to 4; Exon array -FC greater than or equal to 2.
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Discovery of novel transcripts to be differentially
expressed in SCD
RNA-seq technology is capable of discovering novel
transcripts and novel isoforms as it is not constrained to
Figure 7 Validation by QPCR - Log2 expression fold change (SCD vs.
qPCR on selected genes. Closed symbols represent significant changes, o
Symbols closer to the line of identity are in better agreement with QPCR. ▲
■Significantly differentially expressed genes by RNA-seq; Δ No significance
measure only pre-defined transcripts, as is the micro-
array. Instead of mapping reads to known transcripts,
we mapped reads to the entire genome, and collected
them into 200 base pair bins (see Methods) to identify
Control) measured by microarray (Red) or RNA-seq (Blue) vs.
pen signals are not significant. The green line is the line of identity.
Significantly differentially expressed genes by microarray,
in microarray; □No significance in RNA-seq.



Table 2 Highly Significant Alternatively Spliced Genes

Symbol GeneTitle Molecular Functions RNAseq MA

Splicing Index

ATF6B* activating transcription factor 6 beta Cell Death/Immune Response 0.49* 0.17

BCL6* B-cell CLL Apoptosis/Immune Response 0.68* 0.07

CARM* coactivator-associated arginine methyltransferase 1 Cell Development/Differentiation 0.40* 0.12

CCND* cyclin D-type binding-protein 1 Cell Cycle 0.63* 0.13

COX4I* cytochrome c oxidase subunit IV iso1 Cellular Development/Compromise 0.89* 0.04

DCTN* dynactin 2 (p50) Cellular Movement 0.47* 0.08

HPS1* Hermansky-Pudlak syndrome 1 Inflammatory Response; Cell Signaling 0.39* 0.15

INPP5* inositol polyphosphate-5-phosphatase Cell-Cell Signaling 0.49* 0.07

INSIG1* insulin induced gene 1 Lipid metabolism, Molecular Transport 0.52* 0.09

NUDT* nudix type motif 4 Cell signaling; Hematopoiesis 0.37* 0.16

NUDT* nudix motif 4 pseudogene Cell signaling; Hematopoiesis 0.37* 0.16

RHCE* Rh blood group, CcEe antigens Agglutination of red blood cells 0.54* 0.18

RHD* Rh blood group, D antigen Agglutination of red blood cells 0.54* 0.18

TNXA* tenascin XA (pseudogene) Cellular Assembly 0.49* 0.17

TNXB* tenascin XB Cellular Assembly 0.49* 0.17

UNC13* unc-13 homolog D Cell Signaling 0.76* 0.10

HBA1** hemoglobin, alpha 1 Transport of oxygen 0.09 0.57**

* Selected genes from RNA-Seq with P< 0.00000001.
** Selected Genes from Microarray with P< 0.00000001.
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such novel transcripts. We identified 86 novel regions
that manifest a significant (p< 0.005; 15% FDR), greater
than 2-fold change between sickle cell disease and con-
trol groups (Table 3).
One novel region was found within the differentially

expressed ALAS2 gene. Figure 8A shows the high ex-
pression levels detected for each exon of that gene.
Based on the known exons, the computed expression
change was 4 fold. One 200 bp region (Table 3,
chrX:55067400–55067599) falls between exons 4 and 5,
and showed a significant (P< 0.0003), 6 fold expression
change, but with expression levels that are nearly invis-
ible in the context of the surrounding exons (Figure 8).
Figure 8 and the Additional file 4: Figure S3 (zoomedin
exon 4A) show that expression is in fact present in this
region for the SCD patients but nearly completely absent
in controls. Curiously, expression in this apparently
novel region has been previously observed in a single
EST derived from T-cells (EST BX367133). It is likely
that this represents a rarely used, alternative exon for
the ALAS2 gene with greater expression in SCD (6-fold
vs 2-fold). Similarly, 200 bp bin analysis showed several
differentially expressed regions in chromosomes X, Y, M,
1–12, 19, 20 and 22 and these regions mapped to mito-
chondrial genes with some regions representing psuedo-
genes. These results are shown in Table 3. Additional
file 5: Table S1 shows few examples of the alignment of
sequences by BLAST.
Analysis for sequence variation in expressed transcripts
RNA-seq is an attractive method that enables the identi-
fication of sequence variations in expressed transcripts.
To illustrate the feasibility of identifying sequence vari-
ation in expressed genes, we visualized the sequence of
reads from the beta globin gene (DNAnexus, https://
dnanexus.com/) for SCD and control subjects in the
neighborhood of the known single mutation driving
sickle cell disease. In SCD, glutamic acid (coded by
CTC) is replaced by Valine (coded by CAC). Figure 9
clearly identifies this mutation in the sickle cell sample
as compared to the controls. Interestingly, one of our
sickle cell patients (S1) was a compound heterozygous
hemoglobin SC patient and the heterozygosity in this pa-
tient is clearly seen in Figure 9. This demonstrates the
ability of the RNA-seq technology to identify sequence
variation in the expressed transcripts that would not be
detected in the microarray analysis.

Discussion
Whole transcriptome sequencing (RNA-seq) is a power-
ful transcriptional profiling technology using next gener-
ation sequencing platforms [4,23-25] and has signaled a
new age in clinical genomics. Several recent studies have
indicated that RNA-seq will be more useful than the
current microarray technology due to the increased dy-
namic range of signal of sequencing [4,26-28] and its
ability to identify the exact location of transcription

https://dnanexus.com/
https://dnanexus.com/


Table 3 Highly Significant Novel Differentially Expressed
200 bp Regions

Chromosome Start-Base −1 End- Base 200 Fold Change p Value

chr1 203465800 203465999 18.69 0.00005

chr1 246094400 246094599 12.84 0.00018

chr1 144990000 144990199 4.96 0.00016

chr1 209819000 209819199 4.93 0.00022

chr1 554400 554599 0.44 0.00050

chr1 91770600 91770799 0.43 0.00030

chr1 157083400 157083599 0.33 0.00034

chr1 159838000 159838199 0.26 0.00025

chr2 177785200 177785399 9.45 0.00049

chr2 128992200 128992399 5.46 0.00038

chr2 91411400 91411599 3.38 0.00037

chr2 175293200 175293399 0.50 0.00037

chr2 207652800 207652999 0.35 0.00012

chr3 76567600 76567799 0.49 0.00029

chr4 154075400 154075599 10.11 0.00029

chr4 38368600 38368799 9.62 0.00004

chr4 154075800 154075999 7.75 0.00005

chr4 146763600 146763799 4.91 0.00035

chr4 146765600 146765799 4.82 0.00018

chr4 111338400 111338599 4.66 0.00028

chr4 146516600 146516799 0.39 0.00014

chr4 26043400 26043599 0.38 0.00045

chr5 176439200 176439399 5.84 0.00048

chr5 138854200 138854399 5.30 0.00014

chr5 138856400 138856599 3.34 0.00006

chr5 177142200 177142399 3.10 0.00046

chr5 43623000 43623199 0.46 0.00018

chr5 99410000 99410199 0.26 0.00010

chr6 53038000 53038199 10.59 0.00015

chr6 151297600 151297799 5.46 0.00021

chr6 28212400 28212599 2.43 0.00004

chr7 55681200 55681399 3.73 0.00047

chr7 5567000 5567199 0.48 0.00041

chr7 139365000 139365199 0.35 0.00034

chr8 41761600 41761799 8.49 0.00001

chr8 41762200 41762399 6.42 0.00046

chr8 130922200 130922399 0.34 0.00033

chr9 35101200 35101399 22.26 0.00009

chr9 35101400 35101599 18.75 0.00019

chr9 5101000 5101199 3.04 0.00020

chr9 79521600 79521799 0.38 0.00020

chr9 79523600 79523799 0.36 0.00014

chr10 13766600 13766799 12.54 0.00002

Table 3 Highly Significant Novel Differentially Expressed
200 bp Regions (Continued)

chr10 91112400 91112599 11.27 0.00042

chr10 75248600 75248799 0.37 0.00000

chr10 81901200 81901399 0.35 0.00036

chr11 5225800 5225999 24.75 0.00001

chr11 94542200 94542399 2.35 0.00002

chr11 117571400 117571599 0.37 0.00034

chr11 6193200 6193399 0.34 0.00012

chr12 111304400 111304599 9.16 0.00022

chr12 105247200 105247399 7.71 0.00033

chr12 88443200 88443399 3.83 0.00014

chr12 62331800 62331999 0.47 0.00032

chr13 74302000 74302199 7.60 0.00014

chr13 18137800 18137999 3.88 0.00013

chr14 65417400 65417599 6.12 0.00029

chr14 65417000 65417199 5.15 0.00033

chr14 52176600 52176799 0.36 0.00046

chr15 72689200 72689399 11.91 0.00011

chr15 72678200 72678399 6.26 0.00018

chr15 72688400 72688599 6.17 0.00014

chr15 72687200 72687399 5.89 0.00028

chr15 79393000 79393199 0.43 0.00002

chr17 39736800 39736999 9.65 0.00025

chr17 39632800 39632999 3.77 0.00047

chr17 35692200 35692399 0.43 0.00047

chr18 14383400 14383599 3.15 0.00016

chr19 51317000 51317199 7.49 0.00019

chr19 56938000 56938199 0.31 0.00035

chr20 55405400 55405599 13.85 0.00012

chr20 30909600 30909799 0.44 0.00014

chr20 1403000 1403199 0.29 0.00036

chr21 14058800 14058999 4.92 0.00006

chr22 29607600 29607799 12.14 0.00048

chr22 35263200 35263399 6.35 0.00047

chr22 43511000 43511199 2.97 0.00018

chr22 20569800 20569999 0.45 0.00029

chr22 22898800 22898999 0.34 0.00010

chrM 12600 12799 0.44 0.00026

chrX 55067400 55067599 5.80 0.00033

chrX 125434800 125434999 0.50 0.00005

chrX 143984400 143984599 0.41 0.00005

chrX 1389000 1389199 0.34 0.00037

chrY 3611200 3611399 8.93 0.00011

chrY 1389000 1389199 0.34 0.00037
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Figure 8 Coverage Plot of RNA-seq data for ALAS2 gene RNA-seq reads for ALAS2 gene are shown in genomic context
(chrX:55,051,744-55,074,222). An apparently novel exon dubbed 4a, between exons 4 and 5 is expressed significantly more in SCD compared
with controls (p = 0.0003). This exon has been previously observed as human EST BX367133, in a clone derived from T cells. The inset shows the
region bounded by exons 4 and 5 with the coverage range expanded and truncated to 20 for each track.
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boundaries at single base resolution. RNA-seq also pro-
vides the sequence information needed to identify single
nucleotide variants, map variant transcription start sites,
and detect novel transcript splicing. These features make
RNA-seq particularly useful for studying complex tran-
scriptomes, such as those found in the clinical blood
samples.
Although attractive, clinical application of RNA-seq is

feasible only if the tool can demonstrate high specificity,
sensitivity and reproducibility with limited amount of
starting material. Although current technology for tran-
scriptome sequencing requires at least 100 ng total RNA
(tens of thousands of cell equivalents), along with add-
itional enrichment steps to select for poly(A) + RNA
and/or to reduce the content of ribosomal RNA (rRNA)
prior to NGS library construction, to minimize the loss
of input material researchers tend to start with a mini-
mum of 1 microgram total RNA. The utility of RNA-seq



Figure 9 (See legend on next page.)
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(See figure on previous page.)
Figure 9 Analysis of sequence variants in the expressed hemoglobin transcript in a Healthy Control – (C1), and Homozygous (S3-HbSS)
and Heterozygous (S1-HbSC) Sickle Cell Patients Observed sequences of HBB (hemoglobin B) gene in the region including the known
sickle cell mutation, which causes a substituion of valine (coded by CAC) for glutamic acid (coded by CTC). The box for the reads from
sample C1 - control, show the observed sequences (on the coding strand, but in reversed order) and are consistently T at the mutation position.
The box for sample S3 - HbSS shows the consistent substitution of A at this same position. The box for sample S1 - HbSC show approximately
50% substitution of A for T at this position, and an additional mutation at the neighboring postion C-> T. This sample was revealed to be from a
compound heterozygous hemoglobin SC patient.
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data generated is believed to be sensitive to read length,
mapping and assembly of reads and statistical and com-
putational challenges. However, with the current avail-
ability of substantially improved mapping software, these
challenges are expected to be well tackled. Microarrays,
on the other hand, are known to suffer from reduced dy-
namic range of signals due to saturation biases and high
background, and non-specific or cross-hybridization
resulting in false-positive signals, especially for tran-
scripts that have low expression levels.
Considering these challenges inherent to each of the

high throughput platforms, we undertook this compara-
tive study in an attempt to better understand the relative
merits of high density exon microarrays and RNA-seq
for biomarker discovery in the clinical setting. We chose
the sickle cell disease because strong differential expres-
sion has been previously observed, and the phenotype of
the disease is in manifested in blood, an accessible tissue
for study. Sampling whole blood, a globin abundant tis-
sue, allowed us to examine the potential interference of
high abundant globin transcripts during sequencing and
also to potentially discover novel genes that are asso-
ciated with sickle cell disease from cell types such as
nucleated red cells in addition to the conventional per-
ipheral blood mononuclear cells. We believe that this is
the first study that has compared the 2 platforms on a
monogenic human disease model using easily accessible
whole blood clinical specimens mimicking a large scale
clinical research project.
In this study we used 50 ng of total RNA on exon

arrays without any globin reduction or poly(A) + enrich-
ment to identify differentially expressed genes and alter-
native splicing events in sickle cell disease. The same
samples were also analyzed by RNA-seq using 1.5 micro-
grams of total RNA. RNA-seq analysis generated an
average of 83% mappable reads from the whole blood
samples after poly(A) + enrichment. The globin reduc-
tion process had insignificant effect on the mappable
read count, even for sickle cells samples which have high
levels of globin RNA suggetsing that it is not necessary
to reduce the globins while analyzing whole blood sam-
ples by RNA-seq.
As expected, comparison of the dynamic range of the

two platforms confirmed that RNA-seq has a dramatic-
ally larger range varying from 4 to 16 fold. This enticing
feature of RNA-seq effectively removes the saturation
biases inherent to the array platform. Examination of the
technical reproducibility and coefficient of variation of
the array and RNA-seq platforms at the gene and exon
levels, as a function of the mean expression level, indi-
cated that the coefficient of variation for microarray is
much lower than that for RNA-seq and is also independ-
ent of the expression level for each transcript, suggesting
that technical variability within group is higher in the
RNA-seq platform than the arrays. A similar observation
has been reported by Marioni et al. [15]. They observed
extremely high CVs when the read counts were low, a
domain where Poisson counting error dominates in
RNA-seq. In this domain, microarray produces moder-
ately low CV (20%), suggesting that microarray may in
fact be more effective at detecting expression changes
for low-abundance genes.
Our comparative analysis of detection sensitivity with

material from clinical samples revealed that even with
the usage of 30 times less starting material (50 ng vs 1.5
micrograms) Exon arrays could detect as many tran-
scripts above background as in RNA-seq. It should be
noted that the sequencing depth in this study (~10 mil-
lion reads) is comparable with most published RNA-seq
studies. Xu and others [29] from their comparative study
using GG Exon arrays to RNA-seq reported that al-
though both platforms detect similar expression changes
at the gene level, the Exon array is more sensitive at the
exon level and deeper sequencing is required to ad-
equately cover low abundance transcripts [29]. It should
be mentioned here that with the latest much improved
sequencing instruments, it would be easier to generate ~
80 million reads and this would substantially increase
the sensitivity of detection in RNA-seq platform.
We found 331 transcripts with differentially expressed

transcripts in SCD. These included genes involved in
pathways related to sickle cell disease such as inflamma-
tory response, oxidoreductase pathways, stress response,
cell signaling and apoptosis. Of these 331 transcripts
which showed a high degree of correlation (R = 0.64), 96
genes were identified by both the technologies. A similar
observation has also been reported by correlating gene
expression arrays and RNA-seq on their study on differ-
entially expressed liver and kidney tissues [15]. Only 11
genes out of the 331 genes from the current study
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showed an opposite trend in differential expression in
sickle cell disease, suggesting that the number of false
positives was small, using either method.
Gene ontology analysis of these genes helped to clas-

sify their molecular functions into ten highly significant
functional pathway such as cellular cycle regulators,
apoptosis, oxidative stress response, inflammation and
immune response, free radical scavenging, protein modi-
fication, and hematopoiesis. Examination of these path-
ways suggests that differentially regulation may be in
response to oxidant and hemolytic stress, vascular injury
and participation in repair and homeostasis [17,30-34].
Interestingly, GDF15 expression was upregulated, which
also has been observed in thalassemia intermedia, and
associated with repression of hepcidin, an important me-
diator of the inflammatory response on erythropoiesis
[35].
We also observed upregulated expression of several re-

ticulocyte specific genes as expected in SCD where a
higher proportion of reticulocytes are observed. This
finding validates the performance of both technologies
in identifying alterations relevant to sickle cell disease.
From a biological perspective, the whole blood expres-
sion profile provided a window into real time erythro-
cyte expression profiles. Insights into the transcription
profile of these red blood cells may contribute greatly to
our understanding of mechanism of disease, prognosis,
and responses to therapeutics.
Using ExonAnova analysis on RNA-seq data, we iden-

tified 16 alternatively spliced genes. While further valid-
ation of these splice variants is needed, it is interesting
to note that both RHCE and RHD are components of
the important Rh antigen system on red cells. However
the potential implications of altered Rh splicing in SCD
is still unclear. Deficiency of UNC13D is known to re-
sult in defective exocytosis of cytolytic granules of cyto-
toxic T lymphocytes and natural killer cells, causing
immune dysregulation [36]. Whether altered expression
of UNC13D in SCD could contribute to the relative im-
mune compromise of SCD may merit future investigation.
To illustrate the power of RNA-seq in detecting differ-

ential transcription not associated with known genes, we
scanned the entire genome for novel differential expres-
sion focusing only on unannotated genomic regions. By
doing so, we found an interesting region to include an
apparently novel, minor exon between exons 4 and 5 in
the ALAS2 gene with SCD patients showing at least six
times higher expression levels compared to the control
subjects (p = 0.003). This could suggest alternative spli-
cing in SCD which might serve as an ALAS2 transcrip-
tion regulator. Follow up of this suggestion would
require a functional analysis of this newly identified re-
gion of ALAS2 but is beyond the scope of the current
study but is planned for the future. ALAS2 gene
expression is restricted to the erythroid lineage [37] and
plays a pivotal role in heme synthesis. In addition to
heme-mediated feedback inhibition of enzymatic func-
tion, ALAS-2, a member of a small family of genes is
modulated by iron [38]. This ability of RNA-seq to iden-
tify regions in detail holds great promise for the future
discovery of novel transcripts and biomarkers in clinical
genomic studies.
Another key advantage of RNA-seq over existing tech-

nologies for transcriptomic studies is its ability to iden-
tify sequence variations in expressed transcripts. To
illustrate the feasibility of identifying sequence variation
in expressed genes, we focused on the known single nu-
cleotide mutation in SCD in which glutamic acid-6 is
replaced by valine (GAG replaced by GTG). We were
able to successfully detect this mutation in all the sickle
cell patients. Interestingly, we were also able to identify,
that same mutation in heterozygous combination with a
hemoglobin C beta globin variant having glutamic acid
replaced by lysine (GAG replaced by AAG) in one com-
pound heterozygous sickle cell patient, thereby demon-
strating the ability of RNA-seq to reliably identify
heterozygous single base mutations in the expressed
transcripts.
In conclusion, our study clearly illustrates a high level

of concordance between the array platform and the
RNA-seq technology, and suggests that the high density
Exon array still remains a powerful tool to generate
meaningful data when the amount of material is limited.
Although RNA-seq is still in the early stages of use in
clinical studies, it has clear advantages over the array
based transcriptomic methods, based on its ability to
discover novel transcripts, identify sequence variants,
and increased dynamic range of signals leading to in-
crease fold change in measured expression levels. With
the rapid evolution of NGS instruments and library
preparation methods with multiplexing barcodes, longer
read lengths and large number of paired end reads asso-
ciated with reduced cost per lane is highly feasible in the
near future. The use of picogram to few nanogram
amounts to total RNA for RNAseq still needs to be opti-
mized in order to capture low abundance transcripts.
We believe that the results from this study provide

guidelines on the choice of tools in the form of arrays or
RNA-seq for clinical transcriptomic studies using limited
amount of starting material. We believe that the selec-
tion of an appropriate tool for clinical genomic studies is
mostly driven by the biological question underlying the
study: whether a formal hypothesis is being tested or is
the study intended to better describe the complete tran-
scriptome and discover novel transcripts. An emerging
approach is to apply both RNA-seq and arrays in com-
bination, in large scale clinical studies, where RNA-seq
is used first to define the transcriptome elements
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associated with the disease in question, followed by high
throughput and reliable screening of these elements on
thousands of patient samples using the arrays. Integrat-
ing data from both microarray and RNA-seq experi-
ments may open up new possibilities for creating
meaningful informational networks which will aid our
understanding of disease pathology and development of
novel therapeutics.
Additional files

Additional file 1: Figure S1. Gene Ontology analysis on the
differentially expressed genes. The top 13 highly significant classification/
functions of genes are shown in the figure.

Additional file 2: Figure S2. Effect of Globin Reduction on RNA-seq
expression. Y-axis: Read counts per transcript, normalized by median for
globin reduced sample; X-axis: Read counts normalized by median for
same sample using standard preparation. Correlation coefficient is 0.93.

Additional file 3: Table S2. Validation of few differentially expressed
genes by QPCR.

Additional file 4: Figure S3. Putative Exon 4A . UCSC Genome Browser
view of the BAM files for each sample showing genomic region
chromosome X: 55067500–5506725. The first 3 aligned tracks show the
control samples, the following 5 tracks show the sickle cell disease
samples. Aligned reads are Red if to the negative strands and blue if to
the positive strands. The total reads per sample is: C3: 15,715,705, C4:
15,131,360, C5: 15,730,372, S6: 16,570,843, S1: 13,481,528, S2: 16,707,788,
S3: 14,650,161, S4: 18,580,778 and S5: 16,460,443. S6: 16570843, S1.

Additional file 5: Table S1. Complete List of differentially expressed
genes (n = 331).
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