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Abstract

Background: Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults. Several recent
transcriptomic studies in GBM have identified different signatures involving immune genes associated with GBM
pathology, overall survival (OS) or response to treatment.

Methods: In order to clarify the immune signatures found in GBM, we performed a co-expression network analysis
that grouped 791 immune-associated genes (IA genes) in large clusters using a combined dataset of 161 GBM
specimens from published databases. We next studied IA genes associated with patient survival using 3 different
statistical methods. We then developed a 6-IA gene risk predictor which stratified patients into two groups with
statistically significantly different survivals. We validated this risk predictor on two other Affymetrix data series, on a
local Agilent data series, and using RT-Q-PCR on a local series of GBM patients treated by standard chemo-radiation
therapy.

Results: The co-expression network analysis of the immune genes disclosed 6 powerful modules identifying innate
immune system and natural killer cells, myeloid cells and cytokine signatures. Two of these modules were
significantly enriched in genes associated with OS. We also found 108 IA genes linked to the immune system
significantly associated with OS in GBM patients. The 6-IA gene risk predictor successfully distinguished two groups
of GBM patients with significantly different survival (OS low risk: 22.3 months versus high risk: 7.3 months; p < 0.001).
Patients with significantly different OS could even be identified among those with known good prognosis
(methylated MGMT promoter-bearing tumor) using Agilent (OS 25 versus 8.1 months; p < 0.01) and RT-PCR (OS 21.8
versus 13.9 months; p < 0.05) technologies. Interestingly, the 6-IA gene risk could also distinguish proneural GBM
subtypes.

Conclusions: This study demonstrates the immune signatures found in previous GBM genomic analyses and
suggests the involvement of immune cells in GBM biology. The robust 6-IA gene risk predictor should be helpful in
establishing prognosis in GBM patients, in particular in those with a proneural GBM subtype, and even in the
well-known good prognosis group of patients with methylated MGMT promoter-bearing tumors.
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Background
Glioblastoma multiforme (GBM) is the most common
and aggressive primary brain tumor in adults. Despite
recent advances in multimodal therapy, prognosis
remains limited [1]. Conventional treatment, generally
maximal safe surgical resection followed by combination
radiation and chemotherapy with temozolomide, fails to
prevent tumor recurrence.
Recently, molecular subtypes of brain tumors have been

characterized by microarray gene expression profiles [2-6].
These subgroups have been associated with significant dif-
ferences in tumor aggressiveness, progression, and/or
prognosis [7]. Gene expression analysis has been reported
as being more accurate than conventional histology [8,9].
Due to this greater accuracy, expression-based classifica-
tions offer an opportunity to improve molecular classifica-
tion of gliomas [6,7] and clinical diagnosis of glioblastomas
[2]. Such advances could be helpful in designing future
therapeutic trials [4,10].
Many arguments have supported a link between the im-

mune system and glioma pathogenesis. In several epide-
miologic studies, glioma incidence is inversely associated
with allergy history [11-13]. T-lymphocyte infiltration has
been reported in certain glioma patients and an elevated
number of intratumoral effector T cells has been recently
correlated with a better survival in GBM patients [14].
Interestingly, several transcriptomic studies using

microarray technologies have also reported an immune
signature in gene expression profiling of glioma
[8,10,15,16] and GBM [17-20]. A signature associated
with myeloid/macrophagic cells has been reported in
most of these studies [10,15,16,18,20], a finding consist-
ent with the known macrophage/microglia infiltration in
GBM [21-23]. More recently, transcriptomic studies in
glioma have revealed different signatures involving im-
mune genes associated with overall survival (OS)
[8,10,15,19]. Gravendeel et al. reported an immune re-
sponse signature associated with poor survival in glioma
(Cluster 23 – the M function category) [8]. Murat et al.
reported better outcome in patients with gene clusters
characterizing features of innate immune response and
macrophages (G24 cluster – 134 probes, among them
probes for CD11b and CD163 genes) [19]. In contrast,
Irliev et al. found an immune module (M7 module) asso-
ciated with short survival that includes 449 genes,
among them T-cell markers (CD4, CD8) and myeloid
markers (MHC class II, TLR1 and TLR2) [15]. An NK
cell signature (G12 gene cluster including Fc gamma
receptors and DAP-12) has previously been reported in
one study with higher level expression in primary GBM
with shorter survival compared to low grade astrocyto-
mas and secondary GBM [10].
In order to clarify the possible role of immune

cells in GBM pathology and OS, we have performed
a co-expression network analysis focusing on 791 genes
linked to the immune system. Using a meta-analysis ap-
proach and independent validation cohorts, we identified
an immune signature of GBM linked to innate immunity
involving myeloid and NK cells as well as a 6-immune
genes risk-model stratifying patients into two groups with
significantly different OS.

Methods
Immune-associated (IA) genes
Immune-associated genes were defined as genes anno-
tated with the ‘immune system process’ Gene Ontology
(GO) biological process term (GO:0002376) by the
AmiGO annotation tool (505 genes). Important immune-
associated genes not annotated with GO:0002376 in GO,
such as cytokines, cells markers and immunomodulation
genes (286 genes), were added to this GO genes list.
This IA genes list is composed of 791 genes (Figure 1)
(Additional file 1: Table S1).

Patients and datasets
For the survival analysis we used four publicly available
Affymetrix technology independent microarray datasets
(Figure 1) [2,5,7,24]. Moreover, a local cohort including 41
patients with newly diagnosed grade IV glioma admitted to
the neurosurgery department of Rennes and Angers
University Hospitals was analyzed using a different tech-
nology (Agilent). Eventually, a local cohort of 57 newly
diagnosed GBM patients, admitted to the neurosurgery de-
partment of Rennes University Hospital and homoge-
neously treated by surgery and radio-chemotherapy with
temozolomide like Stupp’s schedule, was analyzed by a re-
verse transcriptase quantitative polymerase chain reaction
(Q-PCR). All patients of the local cohort signed their
informed consent. All cohorts and patients characteristics
are detailed in Table 1.
The MGMT status of the local cohort was obtained by

pyrosequencing methylation assay with a threshold of
CpG methylation set to ≥9% [25,26]. Local tumor sub-
types were determined using the centroid-based classifi-
cation algorithm described by Verhaak et al. [7].

Weighted gene co-expression network analysis (WGCNA)
Signed weighted gene co-expression network analysis was
performed on the GSE13041 data set [24] (Figure 1 and
Table 1). A co-expression network was constructed on the
basis of the IA genes. For all possible pairs of the variable
genes, Pearson correlation coefficients were calculated
across all samples. The correlations matrix was raised to
the power 6, thus producing a weighted network. The
weighted network was transformed into a network of topo-
logical overlap (TO) — an advanced co-expression meas-
ure that considers not only the correlation of 2 genes with
each other, but also the extent of their shared correlations
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Figure 1 Analysis workflow. 791 IA genes were studied in three analyses: weighted gene co-expression network analysis (WGCNA) and
functional annotation were performed on the GSE13041 data set (blue box); 108 survival associated IA genes were found by 3 different methods
(Step-Cox, Quartile, Z-score) on de Tayrac dataset (middle green box); survival IA gene risk model was built on de Tayrac dataset and validated on
5 datasets: GSE 13041, TCGA, GSE2727, a local Agilent dataset, a local RT-Q- PCR dataset (right hand-side green box).
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across the weighted network. Genes were hierarchically
clustered on the basis of their TO. Modules were identified
on the dendrogram using the Dynamic Tree Cut algorithm
[27]. Each gene’s connectivity was determined within its
module of residence by summing up the TOs of the gene
with all the other genes in the module. By definition, highly
connected (hub) genes display expression profiles highly
characteristic for their module of residence [28]. To define
a measure of prognostic significance, a univariate Cox pro-
portional hazards regression model was used to regress pa-
tient survival on the individual gene expression profiles.
The resulting p-values were used to define a measure of
prognostic significance. To obtain a condensed representa-
tive profile of each module, focus was placed on the top 20
hub genes in the module. Co-expression network analyses
were performed using the WGCNA R package. Survival
analyses were performed using the survival R package.

WGCNA modules functional annotation and enrichment
Functional annotation of the IA genes co-expression
modules was performed on the basis of the analysis of
their top 20 hub genes and survival associated genes in
each module. DAVID software (http://david.abcc.ncifcrf.
gov/) was used to test each module for genome enrich-
ment in GO process terms, PIR superfamily, Panther or
Kegg pathways, InterPro or SwissProt keywords, and to
test IA genes having an impact on overall survival
(Fisher’s exact tests with Benjamini-Hochberg correction
for multiple testing).

IA genes associated with patient outcome
Molecular screening of IA genes was performed on 115
GBM patients included in a whole-genome Affymetrix
meta-analysis dataset described by de Tayrac et al. [2].
Association between expression levels and patient out-
come defined IA genes having an impact on overall sur-
vival (OS). Several survival analysis methods were used
to identify relevant associations: (i) a Cox-step method
[29], (ii) a differential analysis between the first and the
fourth quartile, (iii) a classical Cox analysis (Figure 1).
Adjusted p-values were calculated by controlling for the
false discovery rate with the Benjamini-Hochberg correc-
tion. Overall survival was estimated by the Kaplan Meier
method. Comparisons between survival groups were per-
formed by the log-rank test. Univariate cox analyses
were performed with gene expression data as a predictor
and overall survival in months as the response.

IA genes risk model
An optimal survival model was built on IA genes asso-
ciated with survival as described in de Tayrac et al. [2].
Analyses were performed using survival, survivalROC and

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/


Table 1 Characteristic of patients and datasets

Name
Dataset origin

de Tayrac
GSE4271
GSE4412

Lee
GSE13041

Verhaak
TCGA Data

Portal

Petalidis
GSE2727

Local_1
CHU Rennes
CHU Angers

Local_2
CHU Rennes

Technology
Number of samples

Affymetrix Affymetrix Affymetrix Affymetrix Agilent Q-PCR

115 161 173 39 41 57

Gender Male M:65 M:96 M:112 M:29 M:21 M:31

Female F:50 F:65 F:61 F:10 F:20 F:26

Age (y) median [min-max] 48 [18-82] 55 [22-86] 59 [14-87] 61 [22-74] 58 [33-80] 59 [36-78]

<50 65 59 56 14 10 10

>= 50 50 102 117 25 31 47

KPS (%) median - - 90 [40-100] - 80 [40-100] 80 [40-100]

<=70 - - 22 - 15 28

>70 - - 58 - 23 29

NA - - - 3 -

Treatment (surgical) biopsy - - 6 1 2

partial resection - - - 8 17

total resection - 161(a) 164 (c) 26 38

NA - - 1 6 -

Treatment (adjuvant) RT - 3 -

RT + CT like Stupp’s schedule - (b) (b) (c) 37 57

no treatment - 1 -

MGMT status Methylated - 86 42 - 24 27

Un-methylated - 75 122 - 17 29

NA - - - - - 1

IDH1 status Wild-type - - 167 - 39 39

Mutated - - 6 - 2 1

NA - - - - - 17

Subtype Proneural - 41 48 - 12 -

non-Proneural - 120 125 - 29 -
(a) ‘resection mentioned alone with no other details.
(b) Excessively heterogeneous treatment. GBM de novo tumors with no prior treatment.
(c) Data not available.
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rbsurv R packages. These packages selected survival-
associated genes and estimated the regression coefficients
of the optimal survival model after adjustment on the
study factor. All analyses were stratified on the age.

Q-PCR procedures
Total RNA was isolated using Rneasy Plus Mini QIAGEN
kit from fresh-frozen glioblastoma samples. RNA integrity
was confirmed using the Agilent Bioanalyser (RNA 6000
NAno assay kit). cDNA synthesis was obtained by a High
capacity cDNA Reverse Transcription kit with Rnase inhibi-
tor (Applied biosystemW). Q-PCR reactions were done with
the 7900HT Fast Real-time PCR System using the Applied
biosystemW Taq Man FAM-labeled probes for ACVR2,
CD22, MNX1, ARG1, RPS19 and FGF2, and the three
housekeeping genes: TBP, HPRT1, GAPDH. Liver cells,
testis cells, B lymphocytes and U251 cells were used as
positive control. The relative amounts of the gene tran-
scripts were determined using the ΔΔCt method, as
described by the manufacturer.

Results
IA genes co-expression modules
WGCNA algorithm with the Lee dataset (GSE 13041) was
applied to explore transcriptional relationships between IA
genes and highlight consistent patterns of gene co-
expression [24]. The weighted gene co-expression network
constructed on the basis of the IA genes revealed 6 mod-
ules, each of them containing coordinately expressed genes
potentially involved in shared cellular processes. To associ-
ate putative relevant processes and structures with the
observed gene co-expression, we analyzed the functional
enrichment of each module. For each module, the top five
hub IA genes and the first five genes associated with
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survival are provided in Figure 2. The modules’ annotations
were obtained with the top 20 hub IA genes associated with
each module and all IA genes associated with survival
Module 
assignment Top 5 genes p* An

Genes associated with the module
NCR1 2,89E-46 De

PGLYRP4 4,33E-44 MHC cla
PLUNC 7,20E-42 Killer cell imm
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apoptosis CD164 9,47E-03 Resp
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Figure 2 Gene annotations of the GBM co-expression modules. Annot
module were tested for genome enrichment in Gene Ontology process ter
pathways, InterPro (IPR) keywords or CGAP Sage tissue expression data (CS
were calculated for gene association to the module (*) and module annot
within this module (Figure 2). The IA genes co-expression
modules were thus designated as followed: NK cells and in-
nate immunity (blue module), Cytokines and molecular
notation terms ID+ p** p***

fense response GO_0006952 8,80E-08 1,20E-05
ss I NK cell receptor PTHR_11738 3,40E-06 4,80E-05
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http://david.abcc.ncifcrf.gov/


Vauléon et al. BMC Medical Genomics 2012, 5:41 Page 6 of 13
http://www.biomedcentral.com/1755-8794/5/41
histocompatibility complex (MHC) class I (yellow module),
Myeloid cells (turquoise module), Cell signaling and lectin
(brown module), Cell activation and apoptosis (green mod-
ule) and Regulation of immune response (red module).

IA genes associated with survival
Interestingly, two co-expression modules were significantly
enriched in IA genes having an impact on overall survival:
NK cells and innate immunity signature module and the
Cytokines and MHC class I signature module (p< 0.01).
Three different methods were then applied to further

analyze the IA genes associated with survival using the de
Tayrac dataset. The step-Cox model identified 52 genes
associated with overall survival. The quartile model found
46 genes significantly differentially expressed between the
lowest survivors and the highest survivors. The classical
Cox method identified 28 genes associated with patient
outcome (Additional file 1: Table S2). The overlap between
the three methods is presented in Figure 3. In conclusion,
108 out of 791 IA genes were found to be associated with
GBM patient survival by at least one of the three different
statistical methods.

Risk-score model of IA genes as a GBM outcome
predictor
An optimal survival model was built on IA genes asso-
ciated with survival as described in de Tayrac et al. [2].
Fig.2
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Figure 3 Venn diagram of IA genes associated with survival in the sta
different methods (Step-Cox, Quartile, Z-score) on de Tayrac dataset. The 6
The mathematical model included 6 genes: ACVR2A,
CD22, MNX1, ARG1, RPS19, FGF2 previously identified
as described above. This risk-score equation based
on the expression of these 6 genes can be written
(0.744 × CD22)+(2.109 × ACVR2A) + (0.860 × MNX1)
+ (−1.328 x RPS19) + (−1.028 × FGF2) + (0.913 × ARG1).
A risk-score greater than or equal to the threshold of
0.30 signifies a high-risk patient with poor prognosis.
Prognosis power is positive with expression of 4 genes
(ACVR2A, CD22, MNX1, ARG1) and negative with ex-
pression of two others (RPS 19, FGF2).
The risk-model (threshold = 0.30) stratified the training

cohort (de Tayrac dataset) [2] into 2 groups with a sig-
nificant difference in OS (p = 4.0E-13). The low-risk
(n = 66) and high-risk (n = 49) groups had a median OS
of 22.3 and 7.3 months, respectively. Stratification of the
validation cohort (GSE 2727 published by Petalidis et al.
[5]) led to a significant difference of OS (low risk group
(n = 18): 12 months versus high risk group (n = 21):
6 months; p = 1.2E-4). The robustness of the 6-IA gene
risk-score equation was also checked by using 2 external
and publicly available studies performed on Affymetrix
technologies (Table 1). The predictor identified two
groups of patients with a significant difference in OS
using the GSE13041 cohort [24] (p < 0.001) and the
TCGA cohort [7] (p < 0.01). Median OS and number of
patients in each risk category are provided in Figure 4.
Quartile

x

31

6

RPS19
1

2A
2
1 FGF2

FGF12

HIF1A

HMGB1

FCGR1B/ C

ERAP1

EDNRB

CRHR1

CD79B

CD70

CD247

CCL17

CARTPT

CALCA

C1QBP

BNIP3L

BMPR1A

RPS19

MNX1

FGF2

CD22

ARG1

ACVR2A IGSF6
IKBKG
IL21R
IL33
IL5
IL6ST
JAG2
LDB1
MAP4K2
MET
MS4A1
NCK1
PDGFC
PML
RBP4
RPS14
SCYE1
TAPBP
TGFB1
TNFRSF25
TNFRSF6B
TNFSF12/ 
13
ULBP2
ZEB1

46

28

FR2

XO3

B
1R
ST
N 

PDGFC

RELA

SMAD3

TNFSF12/ 13

Quartile

x

31

6

RPS19
1

2A
2
1 FGF2

FGF12

HIF1A

HMGB1

FCGR1B/ C

ERAP1

EDNRB

CRHR1

CD79B

CD70

CD247

CCL17

CARTPT

CALCA

C1QBP

BNIP3L

BMPR1A

RPS19

MNX1

FGF2

CD22

ARG1

ACVR2A IGSF6
IKBKG
IL21R
IL33
IL5
IL6ST
JAG2
LDB1
MAP4K2
MET
MS4A1
NCK1
PDGFC
PML
RBP4
RPS14
SCYE1
TAPBP
TGFB1
TNFRSF25
TNFRSF6B
TNFSF12/ 
13
ULBP2
ZEB1

46

28

1

9

FGFR2

FOXO3

IL1B
IL21R
IL6ST
LYN 

PDGFC

RELA

SMAD3

TNFSF12/ 13

tistical methods. 108 survival associated IA genes were found by 3
genes of IA risk model were written in red.



p<0.01

BA

DC

Figure 4 GBM patient survival according to 6-IA risk. Kaplan-Meier curves show OS after subdivision into high risk (HR black) and low risk-
score groups (LR grey). The median OS was higher in LR than in HR patients from GSE13041 dataset (A), TCGA dataset (B) Agilent local cohort (C)
and RT-Q-PCR local cohort (D).
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The performance of the 6-IA gene risk model was fur-
ther tested on a local cohort of 41 patients using Agilent
expression microarrays. Low-risk patients had a signifi-
cantly better survival than high-risk patients (median OS
of 19.3 months versus 9.3 months respectively; p < 0.01;
Figure 4C). Eventually, reverse transcription Q-PCR
based expression measurement of the 6-IA gene risk
model genes was performed on a local cohort of 57
patients treated homogenously. Low-risk patients had
also a significantly better survival than high-risk patients
(median OS of 18.5 months versus 13.9 months respect-
ively; p < 0.05; Figure 4D).

IA genes risk-score model and MGMT methylation status
In univariate Cox analysis using the de Tayrac dataset,
the only factors associated with survival were the
MGMT promoter methylation status and the 6-IA gene
risk category. Sex, histology, age and KPS were not sta-
tistically associated with patient outcome. In multivariate
analysis, the MGMT promoter methylation status and
the 6-IA gene risk category were still significant (p = 0.02
and p = 0.01, respectively). Difference of survival defined
by the 6-IA gene risk remained significant when consid-
ering patients bearing tumors with methylated MGMT
promoters (25 versus 8.1 months, n = 8 and 16 respect-
ively, p < 0.01; Figure 5C), as in the Lee dataset (21.2 ver-
sus 13.1 months, p < 0;05, Figure 5A). In the Q-PCR
cohort, the MGMT status and the 6-IA gene risk cat-
egory were also significantly associated with OS of GBM
patients, in both univariate and multivariate analysis
(p = 0.045 and p = 0.036, respectively). Nineteen patients
with low risk had a median survival of 21.8 months
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Figure 5 Survival according to 6-IA risk in patients bearing tumor with methylated MGMT promoter. Kaplan-Meier curves show OS of
patients bearing tumors with methylated MGMT promoters after subdivision into HR (black) and LR (grey) groups. The median OS was higher in
LR than in HR patients from GSE13041 dataset (A), TCGA dataset (B), Agilent local cohort (C) and RT-Q-PCR local cohort (D).
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versus 13.9 months in three patients with high risk. Al-
though the number of high-risk patients is low, the dif-
ference remains significant (p < 0.05; Figure 5D). No
significant difference in survival could be found among
patients bearing tumors with methylated MGMT pro-
moters only in the TCGA cohort (Figure 5B). This might
be explained by insufficient statistical power, especially
since a significant difference was found in the 122
unmethylated MGMT promoter tumors from the TCGA
cohort (data not shown).
IA genes risk-score model and GBM subtypes
The 6-IA gene risk predictor was also applied to a local
cohort and to the cohorts described by Lee and Verhaak
[7,24] taking into account the recent GBM classification
published by Phillips and Verhaak [6,7]. As only the pro-
neural subtype is associated to survival [24], GBM
specimens were divided into two sub-groups: proneural
(25% in GSE13041, 38% in TCGA, 29% in the local co-
hort) and non proneural (Table 1). The 6-IA gene risk
predictor classed the patients with proneural GBM into
two groups exhibiting significant OS difference: 11.9 ver-
sus 28.7 months (p < 0.01; [24]); 11.3 versus 3.4 months
(p < 0.05, [7]); 24.8 versus 4.7 months (p < 0.02; in our
local cohort) (Figure 6 A-C). Conversely, no difference
was observed in the non proneural group of GBM
(Figure 6 D-F).
Discussion
In this study, we were able to link IA genes expression
pattern with GBM biology and patient survival. Indeed,
our co-expression network analysis highlighted clusters
of IA genes and revealed related immune signatures
marking innate immunity, NK and myeloid cells and
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cytokines/MHC class I molecules profiles. Furthermore,
108 IA genes were associated with OS. Among these, 6
IA genes were included in a weighted multigene risk
model that can predict outcome in GBM patients.
Several studies have previously reported an immune

signature in GBM [8,10,15-17,19,20,30]. A signature
associated with myeloid/macrophagic cells was reported
in most of these [10,15,16,18,20]. We also found such a
signature linked to one co-expression module for which
annotation enrichment found monocytes, leukocyte acti-
vation and macrophage-mediated immunity. The well
known macrophage/microglia infiltration in GBM can
account for up to one-third of cells in some GBM speci-
mens [21-23]. Unlike Ivliev et al. [15], we were unable to
identify a T-cell signature in our analysis. Nevertheless,
the association of two gene modules with GBM patient
survival suggests that innate immunity including NK cell
functions and cytokines/CMH class I profiles might
affect outcome in GBM patients. A NK cell signature
has previously been reported in one study in primary
GBM [10]. NK cell infiltration was described earlier in
glioma [31] but was not confirmed by others [32]. It is
noteworthy that in murine glioma models, various vac-
cines strategies using CCL2 [33], CpG [34], IL12-
expressing stroma cells [35] or IL23-expressing dendritic
cells [36], induced an increased recruitment of NK cells
at the tumor site, associated with better overall survival.
Most of chemokines present in the cytokines/MHC class

I module are involved in recruiting T cells, monocytes/
macrophages and neutrophils: e.g. CX3CR1/CX3CL1,
CXCL9 and CXCR2 genes. In addition, most of the cyto-
kines found such as MIF, IL5, IL12A and IL16 genes are
known to regulate macrophages/monocytes, eosinophils,
NK and T cells. Lohr has also reported that intratumoral
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infiltration of effector T cells is associated with a better sur-
vival in GBM [14]. In total, one could speculate that these
two modules associated with overall survival reflect the re-
cruitment and activation of immune cells such as NK cell,
T cell, macrophages/monocytes, or neutrophils that would
interfere with GBM patients’ survival. Interestingly, several
clinical trials using dendritic cells have reported that the
presence of T cells and neutrophils at the tumor site is asso-
ciated with longer survival of the vaccinated patients [37].
Recently, Ducray et al. reported that infiltration of both
CD3+ T cells and CD68+ macrophages was observed more
frequently in GBM responders than in non-responders to
radiotherapy [17]. However, in the present study, we did
not find any association between key regulators of the T cell
biology such as GATA3, TBX21 (TBET), and RORC (ROR-
gamma-t) with patients’ survival (data not shown). The
small amount of these infiltrating cells is usually reported
in the GBM specimens and might have impaired the identi-
fication of such genes by a transcriptomic approach.
In addition to the co-expression network analysis, we

have found 108 IA genes directly associated with OS in
GBM patient using three different statistical methods.
These genes are known to be involved in the biology of B
cells (i.e. immunoglobulins, BLNK, CD19, CD20 and CD22
genes), T cells (i.e. CD1E, PTCRA, CD247), NK cells (i.e.
KIR2DL1, KIR2DL4 and KIR3DL3 genes), and myeloid
cells including monocytes/macrophages (i.e. ADAMDEC1,
CD89/FCAR, CD64/FCGR1B and FCGR1C genes) and
neutrophils (i.e. CD89, and NCF1B genes). Surprisingly,
other important genes expressed by glioma-infiltrating
microglia/macrophages, such as CD163 and AIF1 (IBA1),
were not significantly associated with patients’ survival
(data not shown). Komohara et al. have recently reported
that the presence of CD163+ CD204+ M2-type macro-
phagic cells correlates with glioma grading and survival
using an immunohistochemistry approach [38]. This dis-
crepancy between our results and the Komohara et al.
study could be explained by the fact that we used different
technical approaches to detect these markers: at the
mRNA level in our genomic study and at the protein level
in [38]. Others genes of chemokines and cytokines have
been also found such as CCL15, CCL17 IL1B and IL5
genes. Finally, some genes are known to be involved in the
modulation/suppression of the immune response such as
APRIL, ARG1, CD70, B7-H4, ICOSLG, NOS2A, TGFB1
and TWEAK genes.
Finally, we have developed a 6-IA-gene risk predictor

of OS in GBM patients. The genes have been selected
for an optimal survival model built on IA genes asso-
ciated with survival as described in de Tayrac et al. [2].
This 6-IA gene risk is able to discriminate patients
treated by chemo-radiation therapy into two distinct
groups with significantly different survivals. These
genes ACVR2A, ARG1, CD22, FGF2, MNX1 and RPS19
were present in all but one of the co-expression mod-
ules. The ‘regulation of immune response’ module,
which contains no gene retained in the 6-IA-gene risk
predictor, is the only one that does not include
survival-associated genes. ACVR2A, CD22 and MNX1
genes were found to be associated with GBM patient
survival in the three different statistical methods. Intri-
guingly, these 6 IA genes are not specific markers for
known immune cell subpopulations. They are involved
in the activation or the inhibition of the immune sys-
tem. As a result, they impact positively or negatively
on the risk predictor. For example, the expression of
ARG1, a gene involved in immunosuppression, contri-
butes positively to the 6-IA-gene risk index and there-
fore decreases the patient’s probability of survival.
Although these genes are known in other cancers, they
have not been described in GBM. ACVR2A is a recep-
tor for activin-A and controls cell proliferation [39], for
example proliferation of prostate cancer cells [40].
Mutations of ACVR2A are commonly found in un-
stable colonic cancers [41], and interestingly, infiltra-
tion of CD3 T cells is associated with mutated
ACVR2A genes [42]. ARG1 for arginase-1 is a cytosolic
enzyme that hydrolyses arginine to urea and ornithine
[43]. ARG1 has recently been involved in immunosup-
pressive mechanisms by reducing T-cell activation [44].
CD22 cannot be considered only to be a B cell receptor
that mediates cell adhesion and signaling [45,46] since
Mott et al. report that neurons can secrete this mol-
ecule [47]. Neuronal secretion of CD22 inhibits micro-
glia activation via interaction with CD45 [47]. FGF2 for
fibroblast growth factor-2 stimulates GBM growth [48].
Nevertheless, the high molecular weight FGF2 isoform
inhibits glioma proliferation [49] and explains the radi-
ation therapy resistance pathway [50]. Interestingly,
plasma levels of FGF are higher in GBM patients com-
pared to control [51]. MNX1 gene is involved in a
congenital malformation, the Currarino syndrome
(congenital malformation) [52] and also previously
reported in CD34+ cells, B cells and B lymphoid tissues
[53]. MNX1 function in immune cells and GBM biol-
ogy has not been demonstrated yet but it has recently
been described as a transcriptional factor implicated in
the development of both solid and hematological can-
cers [54]. RPS19 is a subunit of 40S ribosome involved
in pre-rRNA processing but also has extra-ribosomal
functions. Indeed, RPS19 can act as a chemokine that
regulates macrophage migration inhibitory factor (MIF)
negatively [55]. Moreover, RPS19 can interact with
FGF2 to drive differentiation or proliferation pathways
of various cell types [56]. Only one statistical method,
the quartile method, found this gene significantly
(Figure 3), but the co-expression module found it to be
significantly associated with OS (Figure 2).
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To validate the strength of our 6-IA-gene risk predictor,
expression of these genes was tested in a local cohort
using RT Q-PCR. This technique has at least two advan-
tages, it is used routinely in most laboratories and is rela-
tively inexpensive compared with genomic microarray
technologies. The test cohort was small (57 GBM speci-
mens) but homogeneous in terms of treatment: combined
surgery and chemo-radiation therapy [1]. In addition, the
MGMT methylation status, which is the best predictor of
response to the current combination treatment, was
determined for all GBM specimens. Applied to this small
cohort, 6-IA-gene risk predictor was even able to discrim-
inate significantly between patients with high and low risk
in the good prognosis group, defined by methylation of
the MGMT promoter.
Recent advances in glioma classification have been

achieved using genomic analysis. It is now accepted that
GBM can be categorized in four subtypes defined as
proneural, neural, mesenchymal, and classical groups
[6,7,24]. The clinical outcome of the patients is different
according to the GBM subtype. For instance, patients
with proneural subtype live longer and the standard
treatment does not increase their overall survival [6,7].
In contrast, overall survival of patients with classical or
mesenchymal subtype is significantly increased with the
standard treatment. Interestingly, we have shown that
our 6-IA-gene risk predictor was powerful in GBM pro-
neural subtype but not in others subtypes. GBM pro-
neural is an atypical GBM subtype which is associated
with younger age, PDGFRA gene amplification, IDH1
mutations, TP53 mutations [7]. Due to the fact that
these patients with proneural GBM have longer survival,
one could speculate that the anti-tumor immune re-
sponse could have more time to occur and slow down
the tumor progression in some of these patients with a
particular immune profile, revealed by our 6-AI-gene
risk predictor.
Conclusions
In conclusion, we have demonstrated that GBM are
characterized by an immune signature which could re-
flect the infiltration and activation of immune cells or
the immunosuppression mechanisms developed by the
tumor itself. Several IA genes were found to be asso-
ciated with clinical outcome of GBM patients, allowing
us to describe a 6-IA-gene risk predictor. This risk
model can discriminate between patients with different
outcomes, even within the good prognosis group based
on MGMT status and within the proneural GBM sub-
type group. Further studies are needed to understand
how these IA genes are involved in the control of GBM
progression. Overall, this study highlights the important
role of the immune system in the battle against the
tumor and suggests new strategies for further develop-
ment of immunotherapy for GBM patients.
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