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Abstract

(IPA) to identify the networks and pathways.

leukocytes, cell movement of smooth muscle cells etc.

therapies for IA.

Background: Intracranial aneurysm (IA) is one of the most lethal forms of cerebrovascular diseases characterized by
endothelial dysfunction, vascular smooth muscle cell phenotypic modulation, inflammation and consequently loss
of vessel cells and extracellular matrix degradation. Besides environmental factors, genetics seem to be a very
important factor in the genesis of this disease. Previous mRNA expression studies revealed a large number of
differentially expressed genes between IA and control tissue. However, microRNAs (miRNA), small non-coding RNAs
which are post-transcriptional regulators of gene expression, have been barely studied. Studying miRNAs could
provide a hypothetical mechanism underlying rupture of IA.

Methods: A microarray study was carried out to determine difference in microRNAs and mRNA between patients’
IA tissues and controls. Quantitative RT-PCR assay compared the expression level between two groups (14 1A
domes vs. 14 controls) were used for validation. Validated miRNAs were analyzed using Ingenuity Pathway Analysis

Results: 18 miRNAs were confirmed by gPCR to be robustly down-regulated in 14 ruptured IA patients including
hsa-mir-133b, hsa-mir-133a, hsa-mir-1, hsa-mir-143-3p, hsa-mir-145-3p, hsa-mir-145-5p, hsa-mir-455-5p, hsa-mir-143-5p,
hsa-mir-23b-3p etc, of which 11 miRNAs are clusters: hsa-mir-1/has-mir-133a, hsa-mir-143/hsa-mir-145, hsa-mir-23b/
hsa-mir-24-1, and hsa-mir-29b-2/hsa-mir-29¢. 12 predicted functions were generated using IPA which showed significant
associations with migration of phagocytes, proliferation of mononuclear leukocytes, cell movement of mononuclear

Conclusion: These data support common disease mechanisms that may be under miRNA control and provide exciting
directions for further investigations aimed at elucidating the miRNA mechanisms and targets that may yield new
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Background

As one of the most devastating neurological conditions
known to date, intracranial aneurysm (IA) has a high mor-
tality rate and undesirable prognosis with spontaneous
cerebral hemorrhage, cerebral vasospasm, and oculomotor
nerve palsy as the main clinical feature. IA is common re-
sult of vascular abnormalities in the brain, with a preva-
lence of 3.2% in the general population, and an overall risk
of rupture around 1.2% in western populations and 2.3% in
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Japanese series [1]. A significant proportion of aneurysmal
patients are around the age of 4060 [2,3]. Cigarette smok-
ing, excessive alcohol consumption, hypertension and fe-
male gender are significant risk factors for IA formation
and growth, and family history of IA has also been sug-
gested to be evidence for genetic causality of cerebral aneu-
rysms. Dysfunction of vessel cells, degeneration of vessel
wall and activation of immune system were identified to be
the intrinsic factors of IA development [3-6]. Its unpredic-
table nature and the catastrophic consequences of IA rup-
ture remain a challenge for clinicians. Comprehensive
understanding of IA pathobiology is crucial for reasonable
management of IA carriers.
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Due to the fact that animal models of IA are imperfect
and human aneurysmal tissues are difficult to obtain, the
molecular mechanisms of IA remain poorly understood.
Most studies focus on mRNA expression in aneurysmal
and healthy tissue to identify the alteration of gene expres-
sion within the vessel wall, which has implied some mech-
anisms underlying the development of IA. For example, in
2008 Krischek et al. found differentially expressed genes,
which indicated that antigen processing was the most
significantly associated; another study in 2009 by Shi et al.
indicated that misregulated genes were mostly correlated
with focal adhesion, ECM-receptor and cell communica-
tion etc. Because the large amounts of data created with
each study, make a comparison or interpretation of results
difficult, Roder et al. (2012) performed a meta-analysis
which found seven genes showing altered expression in
more than three studies: BCL2, COL1A2, COL3A1, COL
5A2, CXCL12, TIMP4, TNC [7-13]. Functional studies on
these genes showed that COL1A2, COL3A1, COL5A2,
TIMP4, and TNC could modulate processes in the forma-
tion of the extracellular matrix (ECM), which have been
described in association with [As [10,14]. miRNA may be
another layer of control in gene expression which modu-
lates pathways and mechanisms of IA, however, expres-
sion of miRNA in IA is rarely studied.

A novel direction for IA research is the modulation
of miRNA, endogenous approximately 23 nt non-coding
RNAs. By binding to the 3* UTR of complementary
protein-coding mRNAs, miRNA primarily acts in the post-
transcriptional repression of gene expression in animals
and plants. miRNAs are incorporated into the RNA in-
duced silencing complex (RISC) and then inhibit gene
expression by either mRNA degradation or inhibiting
translation which can thereby regulate up to 75% of the
human genome which belong to many biological path-
ways including immune response and apoptosis [15-19].
Dysregulation of miRNAs have been found to have rele-
vance to tumorigenesis, neurological, cardiovascular and
developmental and other diseases [20]. Recent studies
have demonstrated that miRNAs play roles in vascular re-
modelling and atherosclerosis [21,22]. miRNA may be an-
other layer of control in gene expression which modulates
pathways and mechanisms of IA, however, expression of
miRNA in IA is rarely studied.

The role of miRNA in the molecular mechanism of 1A
has been of particular interest. Our study focused on in-
vestigating how the differential expression patterns of re-
gulatory microRNAs in IA act as a potential regulator
in its pathological mechanism. We generated a microRNA
array followed by confirmation of miRNAs individually
with qRT-PCR. We identified 18 miRNAs in 14 patients
which were significantly down-regulated between IA and
control tissue, 11 of these miRNAs in the cluster includ-
ing hsa-mir-1/has-mir-133a, hsa-mir-143/hsa-mir-145, hsa-
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mir-23b/hsa-mir-24-1, hsa-mir-29b-2/hsa-mir-29c. Func-
tional analysis indicates these miRNAs are involved with
dysfunction and remolding of vascular endothelial cells,
vascular smooth muscle cell and involvement of inflamma-
tory/immune processes.

Methods

Patients and tissue samples

Full-thickness vessel wall samples from 14 ruptured IA
domes were prospectively collected from patients (10 fe-
male, 4 male, age: 52.7 + 8.5 ) undergoing microsurgical
clipping. 14 middle meningeal artery (MMA) segments
with matched sex and age were obtained during standard
neurosurgical procedures (traumatic hematoma, tumor re-
section, IA clipping) as control. Written informed consent
for participation in the study was obtained from patients.
Tissue samples were snap frozen in liquid nitrogen and
directly sent to the laboratory to perform RNA extraction.
The collection of the human tissues was approved by
Ethical Committee of the Second Xiangya Hospital of
Central South, China.

Extract RNA from samples

The total RNA was extracted by Trizol Reagent. RNA con-
centration and purity were determined using a NanoDrop
ND-1000 spectrophotometer (NanoDrop Tech, Rockland,
DE), with a 260/280 value >1.8 considered acceptable. RNA
samples were further assessed for quality using a Agilent
2100 Bioanalyzer (Agilent Technologies, Foster City, CA)
according to the manufacturer’s instructions to ensure an
RNA integrity number >7, and RNA samples for Agilent
miRNA Chip: RIN > 6.0 and 28S/185>0.7 was used.

Determination of specific miRNAs

miRNA microarray profile was performed using Agilent
microRNA array 16.0 (3 aneurysmal wall samples and 3
healthy control samples) to identify candidate microRNAs
expressed differently between patients’ IA tissues and con-
trols. Agilent Whole Human Genome Oligo Microarray
(4 x 44 K) was used for mRNA expression (2 aneurysmal
wall samples and 2 healthy control samples). The micro-
array data can be obtained at the Gene Expression Omni-
bus (GEO) database (GSE46338 is the reference Series;
http://www.ncbi.nlm.nih.gov/geo/).

Confirmation of miRNA expression

miRNA and mRNA profile data were screened, keeping
data with a change of more than 2 fold, then we verified
the screened miRNA by RTq-PCR (SYBR® PrimeScript™
miRNA RT-PCR Kit (RR716)) according to manufactu-
rer’s recommendation. Quantitative RT-PCR reactions were
completed on CFX96™ Real-Time System. The relative ex-
pression levels of the miRNAs were calculated using the -
AACT method and relative miRNA levels were normalized
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to U6 small non-coding RNA. We compared the ex-
pression level between two groups (14 IA domes vs. 14
controls). For the data obtained by qRT-PCR, the Mann—
Whitney test and Student's t-test were used for the com-
parison between IA and control, and differences were
considered to be significant when p < 0.05. Samples were
run in triplicate and the average values were used in sub-
sequent analysis.

Function analysis

The selected miRNAs were further analyzed to identify the
networks and pathways. For this purpose, we used software
Ingenuity Pathway analysis (IPA, Ingenuity® Systems; http://
www.ingenuity.com). This pathway analysis software identi-
fies the putative targets for the input miRNA(s), integrates
with our mRNA microarray profiles data, and then de-
velops the networks and functions among the genes/targets.
Before starting the analysis, miRNA targets (confidence was
set to “highly predicted” and “experimental observed”,
species was chosen to “human”) were predicted by an
integrated database including miRecords, Tarbase and
TargetScan Human. Then the high predicted targets were
matched and paired with mRNA expression data by the ex-
pression pairing function of IPA. We assume that the
expression of a given miRNA is anti-correlated with the
mRNA expression of its targets. This is a widely accepted
and experimentally verified supposition [23]. The results
which provide us mainly with bio-functions and canonical
pathways associated with our data had been generated
automatically using the option of core-analysis in IPA.

Results

Identification of differently expressed miRNAs in IA
Focusing initially miRNA profiling data on IA tissues vs.
normal tissues, there were 30 (FDR p < 0.05, + 2 fold)
differentially regulated miRNAs out of 1500 microRNAs.
Among the 30 miRNAs identified, 29 were down-regulated
in the IA tissue and 1 was upregulated. miRNAs identified
in the microarray study were validated using individual
real-time qRT-PCR assays. And 18 were found to be signifi-
cantly different between the IA and control groups of the
14 patients (FC > 2 or FC < -2), and the p-value and FC
were calculated (Table 1), miR-142-5p was upregulated in
microarray profile, but qRT-PCR result showed no signifi-
cance between IAs and controls (P = 0.25). The rest of
the candidate miRNAs showed an expression tendency
consistent with the array result, but without statistical
significance.

The expression levels of hsa-mir-1, hsa-mir-7-1-3p, hsa-
mir-23b-5p, hsa-mir-23b-3p, hsa-mir-24-1-5p, hsa-mir-28-
5p, hsa-mir-28-3p, hsa-mir-29b-2-5p, hsa-mir-29¢-5p, hsa-
mir-29¢-3p, hsa-mir-133a, hsa-mir-133b, hsa-mir-140-3p,
hsa-mir-143-5p, hsa-mir-143-3p, hsa-mir-145-5p, hsa-mir-
145-3p, hsa-mir-455-5p were down-regulated at least two
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fold in IA compared with the control group (Figure 1).
There are 4 clusters among those miRNAs: hsa-mir-1/has-
mir-133a (chr18), hsa-mir-143/hsa-mir-145 (chr5), hsa-mir-
23b/hsa-mir-24-1 (chr9), hsa-mir-29b-2/hsa-mir-29¢ (chrl).

Some miRNAs play a role in the cardiovascular system.
For example, miR-1 is induced during smooth muscle cell
(SMC) differentiation and increases the expression of
SMC-specific contractile proteins. miR-133 is a key regu-
lator of vascular smooth muscle cell phenotypic switch
in vitro and in vivo [24]. Also notable, miR-145 is related
to the thickness of the vessel wall, and the absence of
miR-145 could reduce the vessel thickness and due to
hypotrophy of SMCs [25]. miR-145 is down-regulated fol-
lowing vascular injury, during atherosclerosis, and in ex-
perimentally induced aneurysms [26,27].

Integrated analysis of misregulated miRNAs and mRNAs

miRNAs modulate gene expression through both mRNA
degradation and translational repression mechanisms, and
miRNA-mRNA regulatory networks are highly complex.
A dataset of 681 genes created from our mRNA micro-
array data paired with high predicted and experimentally
observed targets to 18 miRNAs, which were used for In-
genuity Pathway Analysis (IPA). IPA results revealed top
functions of these 681 common targets. The most im-
pacted biological processes for IA including: migration of
phagocytes, proliferation of mononuclear leukocytes, cell
movement of mononuclear leukocytes, cell movement of
smooth muscle cells, differentiation of macrophages etc.
(Table 1). The functions are chosen and arranged by the
z-score which indicates the predicted degree of those
functions. A positive value means an increase in the func-
tion, while a negative value means a decrease the function,
and the p-value indicates the significance of each function.

IPA predicted the most impacted biological processes
for IA based on the miRNAs and their targets. 54 genes
and 11 miRNAs were involved in the top 12 predicted
functions, and a network generated by IPA showed the
interactions between those miRNAs and mRNA (Figure 2).
Some distinctive genes shown in the network targeted
by more than 3 miRNAs include Kruppel-like factors
4 (KLF4); inducible T cell co-stimulator (ICOS); CD28,
Mitogen-activated protein kinase 1 (MAPK1); and colla-
gen, type IV, alpha 3 (COL4A3). Notably, among the dif-
ferentially expressed mRNAs predicted to be targeted by
the differential miRNAs, were some genes previously ex-
perimentally identified to be involved in aneurysm forma-
tion or loss of vessel cells, such as TGFBR1, MMPs and
IL18 etc. [28,29].

KLF4 plays roles in cell proliferation, differentiation and
survival. Its role, especially in the context of cancer, has
been extensively studied, and several studies have explored
the role of KLF4 in vascular smooth muscle cell and vas-
cular endothelial cell. ICOS belongs to the CD28 and
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Table 1 Network of the interactions of the miRNA target genes

Category

Genes

Upstream miRNAs

Z-score/ p-value

Migration of Phagocytes

Proliferation of Mononuclear Leukocytes

Cell Movement of Mononuclear Leukocytes

Cell Movement of Smooth Muscle cells

Differentiation of Macrophages
Stimulation of T Lymphocytes

Cell Death of Vascular Endothelial Cells
Migration of Endothelial Cells

Cell Movement of Endothelial Cells
Apoptosis of Vascular Endothelial Cells
Proliferation of Smooth Muscle Cells

Proliferation of Endothelial Cells

CCL2, CCL7, CDA40, CSF1, FN1, MMP14, PLAU,
PLXND1, SERPINET, SOCS3

ANPEP, CD1D, CD276, CD28, CD40, CD84, CSF1, DPP4, FN1,
FTL, ICOS, IL18, IL2RA, KLF4, KLRC4-KLRK1/KLRK, LILRB1, MYC,
PIM1, PNP, PTPRJ, THBST, TIGIT, TNFRSF10B, TNFRSF9, TNFSF13, ULBP2

ADAM17, CCL2, CCL7, CD28, F11R, FNT1, ICOS, IL18, ITGAL, MMP14,
PDGFB, PLAU, PTPRO, RGS1, SERPINET, SOCS3, THBST, TLR4

CCL2, CSF1, FNT, IL18, PLAU, PTGS2, THBST, TRIB1
CDC42, CSF1, LIF, MYB, PRDM1, TLR4

CD28, CD40, DPP4, FN1, ICOS, IL18, KLRC4-KLRK1/KLRK1
BCL2L1, IL18, LRP1, MAPKT, PMAIP1, THBST, TNFRSF10B, TNFSF15
CCL2, COL4A1, DPP4, FN1, HOXA9, MMP14, NRP1, PDGFB, PIM1,

PTGS2, SCARB1, SCG2, SERPINET,TGFBR1,THBS1,TNFSF15

ANPEP, CCL2, CDH2, COL4A1, DPP4, FN1, HOXA9, MMP14, NRP1, PDGFB,
PIM1, PTGS2, SCARB1, SCG2, SERPINET, TGFBR1, THBS1, TNFSF15

BCL2L1, IL18, LRP1, MAPK1, PMAIP1, THBST, TNFRSF10B

CCL2, FOS, MAPKT, PDGFB, SERPINE1, ST8SIAT, THBS1, TLR4, TNFAIP3, TRIB1

CDH2, COL4A1, COL4A3, CSF1, DAB2, F11R, FN1, LPAR2, NRP1, PDGFB,
PIM1, SCG2, TGFBR1, THBST, TNFSF15

mir-1, mir-133, mir-143-3p, mir-145-5p, mir-23a-3p,
mir-28-5p, mir-455-5p

mir-1, mir-133, mir-140-3p, mir-143-3p, mir-145-5p,
mir-23a-3p, , Mir-28-3p,

mir-28-5p, mir29b-3p, mir-455-5p

mir-1, mir-133, mir-140-3p, mir-143-3p, mir-145-5p,
mir-23a-3p, mir-28-3p, mir-28-5p, mir-29b-3p, mir-455-5p
mir-1, mir-143-3p, mir-23a-3p, mir-28-5p

mir-133, mir-140-3p, mir-145-5p, mir-23a-3p,
mir-28-5p, mir-29b-3p

mir-1, mir-133, mir-143-3p, mir-145-5p, mir-28-3p,
mir-28-5p, mir-29-3p,

mir-1, mir-133, mir-143-3p, mir-143-5p,
mir-23a-3p, mir-28-5p,

mir-1, mir-133, mir-143-3p, mir-145-5p, mir-23a-3p,
mir-29b-3p

mir-1, mir-133, mir-143-3p, mir-145-5p,
mir-23a-3p, mir-29b-3p

mir-1, mir-133, mir-140-3p, mir-143-3p,
mir-145-5p, mir-23a-3p, mir-28-5p

mir-1, mir-143-3p, mir-140-3p, mir-145-5p,
mir-23a-3p, mMir-28-5p, mir-29b-3p, mir-455-5p
mir-1, mir-133, mir-140-3p, mir-143-3p,
mir-145-5p, mir-23a-3p, mir-28-5p, mir-29b-3p

2627/1.05E7

2612/2.66E°

2316/2.66E°

2.201/1.20E°
2.166/5.70E

2.000/7.39E”

1.811/447E7

1610/2.197

1.606/8.83E*

1.525/1.02E7

1.037/1.83€3

—1.600/3.16E

The P value indicates the likelihood of the focus genes in a network being found together as a result of random chance. Using a 99% confidence level, z-scores of 2 were considered significant. Significances for the
enrichment of the genes in a network with particular biologic functions or canonical pathways were determined via right-tailed Fisher’s exact test and the whole database as a reference set. The same computation
was used for gene ontology analyses of the initial gene list. The columns are arranged in descending order of z-score.
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Figure 1 Validation of microarray results by real-time gRT-PCR in a set of samples (n = 14). 18 miRNAs identified as significantly different
between IA and controls in the microarray study were evaluated by gRT-PCR in 14 IA and 14 control samples (MMA).
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Figure 2 A network of the interactions of the miRNAs and their target genes (experimental observed or highly predicted). Ingenuity
Pathway Analysis® tool was used to generate miRNA-mRNA interactions of miR-1, miR-133, miR-140-3p, miR-143-3p, miR-145-5p and, miR-23a-3p,
miR-28-3p, MiR-28-5p, miR-29b-3p and their targets in all selected functions. Red and green color represents the molecules to be upregulated
and down-regulated respectively.
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CTLA-4 cell-surface receptor family, and it plays an im-
portant role in cell-cell signaling, immune responses, and
regulation of cell proliferation. ICOS also has been found
to function in vascular diseases such as atherosclerosis
[30]. CD28 is essential for T-cell proliferation and survival,
cytokine production, and T-helper type-2 development.
A recent study has shown that CD28 influence the ath-
erosclerosis development by co-stimulating T-cell with
CD80/86 [31]. MAPKI1 is a component of MAP kinase
family which is involved in a wide variety of cellular pro-
cesses such as proliferation, differentiation, and transcrip-
tion regulation and development. Many researchers have
determined the MAPK signaling participate in the bio-
logical processes of vascular system such as proliferation
of vascular endothelial cell [32] and vascular damage [33].
COLA4A3 is a subunit of Type IV collagen and is the major
structural component of basement membranes. Investigat-
ing these targets in this network may provide new com-
pensatory mechanisms for protecting against IA, and may
also be characterized in future studies to contribute to the
miRNA-regulated response mechanisms following IA.

The mechanism that underlies the formation and de-
velopment of IA is complicated and partly understood.
In order to demonstrate our result more distinctively, we
drew a schematic diagram to list three most impacted
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aspects of IA [3,5] in black box (Figure 3). Dysfunction of
vascular endothelial cell (VEC), modulation of vascular
smooth muscle cell (VSMC) and inflammatory response
were identified to be the intrinsic factors of IA develop-
ment. Several branches are connected to a red box with
the name of the relevant function, genes involved in and
z-score/p-value. Another green box contain the miRNAs
which target the corresponding genes in the function is at-
tached to the red one. Among those functions, migration
of phagocytes has the highest z-score about 2.627, which
means the function could have the maximum extent of ac-
tivation based on the genes (CCL2, CCL7, CD40, CSF1,
EN1, MMP14, PLAU, PLXNDI, SERPINE1, SOCS3) , and
those genes are validated or highly predicted targets of
mir-145-5p, mir-23a-3p, mir-143-3p, mir-133, mir-28-5p,
mir-1, mir-455-5p.

Discussion

IA is the most fatal cerebrovascular system disease. Mech-
anisms underlying formation, progression, and rupture of
IA are complex and involve a multitude of processes that
are not completely understood. No safe and effective non-
invasive therapies have been applied in clinical practice
until recently. Treatments currently available include sur-
gical (clipping) and endovascular (such as coiling), which
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Figure 3 Biological categories of miRNA and predicted functions.
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have similar goals of isolating the aneurysm from blood
circulation, but potentially serious complications [4]. Nu-
merous efforts made to uncover the biology of IA have
suggested that aneurysm is caused by a combination of
hemodynamic stresses and defective vessel wall responses
[34]. In recent years, prominent roles for microRNAs
(miRNAs) have been revealed in several vascular disor-
ders, several miRNAs have been found to be critical mod-
ulators of vascular pathologies, such as atherosclerosis,
lipoprotein metabolism, inflammation, arterial remodeling,
angiogenesis, smooth muscle cell regeneration, hyperten-
sion, apoptosis, neointimal hyperplasia and signal trans-
duction pathways [35]. miRNAs may also serve as novel
biomarkers and/or therapeutic targets for vascular disease
[36-38]. Determining miRNA regulatory role and investi-
gating the molecular mechanisms will expand our know-
ledge to better understand IA by analyzing miRNA
mediated pathways.

We found that 18 miRNAs were significantly down-
regulated in IA domes of 14 ruptured IA patients. There
are 4 clusters among 18 miRNAs according to mirBase
(www.mirbase.org): hsa-mir-1/has-mir-133a, hsa-mir-143/
hsa-mir-145, hsa-mir-23b/hsa-mir-24-1, hsa-mir-29b-2/h
sa-mira-29c. We searched the literature for information
on the 18 miRNAs. miR-1, miR-133, miR-143, miR-145
are highly expressed miRs in SMCs and have been found
to regulate the SMC phenotype [39-44]. miR-1 is induced
during SMC differentiation and increases the expression
of SMC-specific contractile proteins by targeting KLF4
[45]. Notably, the interaction which is critical for modula-
tion of vascular smooth muscle cell phenotype, between
KLF4 and miR-143/145 has also been identified [46,47];
miR-133 impairs the proliferation of SMCs and inhibits
the PDGF-induced switch towards a synthetic SMC phe-
notype by repressing the transcription factor Sp-1 [48].
Several recent studies describe the involvement of miR-29
in aneurysm formation by post-transcriptionally repressing
the expression of extracellular matrix proteins such as
collagens, elastin, and fibrillins [49-54]. Several genome-
wide linkage studies have determined some disease-related
loci such as chr1p34.3—-p36.13, chr7qll, chr19q13.3, and
chrXp22 underlying the development of IA [55]. One
study which is worth noting has identified several loci in
familial IAs, miR-133a-1/miR-1-2 locates at chromosomes
18q11.2 which is strongly associated with the development
of intracranial aneurysms [56].

miRNAs may function as provital regulators of biological
processes during IA development by regulating down-
stream genes. A meta-analysis of five microarray gene ex-
pression studies of 60 samples revealed seven genes: BCL2,
COL1A2, COL3A1, COL5A2, CXCL12, TIMP4, TNC that
are very likely to be involved in the genesis of IAs [57].
These genes are also upregulated more than two fold in
our samples. BCL2 is targeted by miR-143 in cervical
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cancer, which is involved in apoptosis and tumor forma-
tion; miR-1 regulates cardiomyocyte apoptosis by targeting
BCL2 [58,59]. miR-1 is able to inhibit thyroid carcinoma
cell proliferation and migration by targeting CCND2, CX
CR4 and CXCL12 [60]. COL1A2, COL3A1, COL5A2 are a
group of collagen genes in which mutations are associated
with several connective diseases such as the involvement of
COL3A1 mutations in intracranial aneurysms and Ehlers-
Danlos syndrome type IV with aortic and arterial aneu-
rysms [61,62]. miR-29 targeted several extracellular matrix
genes including COL1A2, COL3A1 and COL5A2, and has
been validated in nasopharyngeal carcinomas and HTM
(human trabecular meshwork) cells [63,64]. Another study
has observed that COL3A1 is targeted by miR-29 as a par-
ticipant in the mechanism of atrial fibrillation [65].

A break in the delicate balance between local hemody-
namic stress and arterial wall integrity may be the reason
why IA occurs. Genesis of IA may be triggered by aberrant
flow conditions, and a group of activated cells could lead
to an unstable situation between “repair and maintain” and
“degrade and destroy”, following which dysfunction of
endothelial cell, and loss of mural cell and inflammatory
response may eventually lead IA rupture [3]. Lots of cells
and genes are abnormally modulated during the develop-
ment of IA, investigating those miRNA or mRNA found in
our study and their regulating networks may provide new
insight of IA pathogenesis.

Analysis generated by IPA on those validated miRNAs
and their putative targets revealed that these miRNAs
may be involved in the three main pathological pro-
cesses: loss of vessel cells, phenotypic change of vessel
cells, and inflammation of the vessel. Several targets of
miRNAs have been reported to function in the loss of
vessel cells which is the main characteristic of the late
stages of the human aneurysmal disease. For example,
Thrombospondin 1 (THBS1), also known as TSP-1,
targeted by miR-1 [66], and form a subunit of a disulfide-
linked homotrimeric protein. Study of human aortic
smooth muscle cells (HASMC) has revealed that TSP-1 is
involved in the migration and proliferation of HASMC,
moreover, the upregulation of TSP-1 by leptin is depended
on JAK2 and MAPK pathways [67]. Activated movement
of smooth muscle cell and migration/movement of endo-
thelial cell may imply phenotypic modulation of those
cells. Neuropilin 1 (NRP1), validated to be targeted by
miR-1 [66], participates in several different types of signal-
ing pathways that control cell migration, for example,
NRP1 binding with VEGF is essential for stimulation of
endothelial cell migration [68]. One of the crucial players
in the pathophysiology of IA is inflammation. Some stud-
ies at the transcriptome level are in accordance with the
histopathological series that associated endothelial dys-
function, loss of mural cells, inflammatory cell infiltration
and degradation of the matrix with sIA wall rupture [69].
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Though inflammatory macrophages and lymphocytes in-
filtrate the aneurysm wall, a link between their presence
and aneurysm growth with subsequent rupture is not
completely understood [70]. 5 out of 12 functions are re-
lated to immune response, among those functions, migra-
tion of phagocytes, affected by 7 miRNAs and 11 genes,
has the highest potential to be activated. Genes validated
to interact with miRNA include PNP, MYC, CD276,
PIM1, THBS], F11R and PLAU etc. which are involved in
immune response. For example, purine nucleoside phos-
phorylase (PNP) targeted by miR-1 [71], is associated with
T-cell (cell-mediated) immunity, B-cell immunity and anti-
body responses [72].

Functional analysis revealed some molecules targeted
miRNAs with high prediction, validation of the relation-
ship between the miRNA and these predicted targets are
necessary for extending the molecular network of IA.
Some upregulated genes expressed in intracranial arter-
ies including NLR family, tumor necrosis factor (ligand)
superfamily, interleukin, fibronectin and chemokine are
predicted targets of down-regulated miRNAs in our study.
Previous studies have implied their importance in IA
[11,57]. NLRP1I, predicted target of miR-143-3p, is a mem-
ber of the Ced-4 family of apoptosis proteins that could
induce caspase-1 activation through the assembly of in-
flammasomes, multiprotein complexes, which are critical
for generating mature proinflammatory cytokines includ-
ing IL-1P and IL18. IL18 is also a predicted target of miR-
143-3p, which increase early stage apoptosis of cultured
HUVEC (umbilical vein endothelial cells) cells [73], and
increase the death of VEC [74]. Another apoptosis related
gene is TNFSF15, predicted target of miR-145-5p, which
belongs to the tumor necrosis factor (TNF) ligand family
acts as an autocrine factor to induce apoptosis in endothe-
lial cells by activating NF-kappaB and MAP kinases [75].
EN1, targeted by miR-1, is involved in cell adhesion and
migration processes. Two cytokine, CCL2 and CCL7, were
targeted by miR-1, miR-23a-3p and miR-143-3p respec-
tively. CCL2 displays chemotactic activity for monocytes
and basophils which has been implicated in the pathogen-
esis of atherosclerosis which is characterized by monocytic
infiltrates [76]. CCL7 is a secreted chemokine which at-
tracts macrophages during inflammation and metastasis
[77]. Although their interactions with miRNAs are pre-
dicted, validation the interactions in IA tissue could un-
earth the pivotal role of miRNAs in the pathogenesis of IA.

Limitation

This study has several limitations. One limitation is that
only end-stage of disease tissues are available, as only
the human IA samples are large enough or ruptured and
need surgical intervention can be obtained. IA dome
contains different cell type and tissues, the contribution
of misregulated genes in each cell type should be further
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determined. Our functional analyses were based on miRNA
targets which include highly predicted and experimentally
validated, so these highly predicted interactions should be
validated in future research.

Conclusion

Our data clearly showed the differential expression of 18
miRNAs in IA tissue from a control group of human
MMA tissue. Bio-informatic analysis by IPA indicates that
miRNAs target genes which may play a role in functional
changes in VEC and VSMC, and activation of inflammatory
response, and loss of cells in vessel wall. Our study was in
line with many previous studies, several candidates need to
be studied thoroughly to uncover the role of miRNA in IA.
Our study provides novel evidence identifying miRNAs in-
volved with response of the rupture of IA and gives us a
deeper understanding on pathology of IA, miRNA found in
this study may be a notably potential entry point to reveal
pathology of IA from another perspective.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

YJ and MZ recruited patients, obtained tissue samples from cases and
controls, verified clinical information, designed experiment, analyzed data,
and critically reviewed the manuscript. HH, JC and HZ prepared RNA samples
for microarray and RTg-PCR, and ran the RTg-PCR assay. JL contributed to
the microarray data handling, functional analysis, as well as drafting and
editing the manuscript. RD contributed to the experimental design, data
analysis, drafting and editing of the manuscript, and obtained funding for
the study. All authors read and approved the final manuscript.

Acknowledgements

This work was supported in part by National Natural Science Foundation of
China (grant number: 81071028, 81172513, 81130021), Program for New
Century Excellent Talents (grant number: 7603230006), the Major State Basic
Research Development Program of China (973 Program) (grant number:
2011CB510000, 2012CB944600).

Author details

'State Key Laboratory of Medical Genetics, Central South University,
Changsha, Hunan Province, China. Department of Neurosurgery, Second
Xiang-ya Hospital of Central South University, Changsha, Hunan Province, China.

Received: 20 April 2013 Accepted: 25 September 2013
Published: 30 September 2013

References

1. Juvela S: Prevalence of and risk factors for intracranial aneurysms. Lancet
Neurol 2011, 10(7):595-597.

2. Tulamo R, Frosen J, Paetau A, Seitsonen S, Hernesniemi J, Niemeld M, et al:
Lack of complement inhibitors in the outer intracranial artery aneurysm
wall associates with complement terminal pathway activation.

Am J Pathol 2010, 177:3224-3232.

3. Frosen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemeld M,
Hernesniemi J: Saccular intracranial aneurysm: pathology and
mechanisms. Acta Neuropathologica 2012, 123:773-786.

4. Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M, Alvarez H, ter
Brugge KG, Hans FJ: Intracranial aneurysms: from vessel wall pathology to
therapeutic approach. Nat Rev Neurol 2011, 7(10):547-559.

5. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser
RH, Koch WJ, Dumont AS: Biology of intracranial aneurysms: role of
inflammation. J Cereb Blood Flow Metab 2012, 32(9):1659-1676.



Jiang et al. BMC Medical Genomics 2013, 6:36
http://www.biomedcentral.com/1755-8794/6/36

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G: European
stroke organization guidelines for the management of intracranial
aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013,
35(2):93-112.

Aoki T, Nishimura M: The development and the use of experimental
animal models to study the underlying mechanisms of CA formation.
J Biomed Biotechnol 2011, 2011:535921.

Krischek B, Kasuya H, Tajima A, Akagawa H, Sasaki T, Yoneyama T, Ujiie H,
Kubo O, Bonin M, Takakura K, Hori T, Inoue I: Network-based gene
expression analysis of intracranial aneurysm tissue reveals role of
antigen presenting cells. Neuroscience 2008, 154:1398-1407.

Krischek B, Tatagiba M: The influence of genetics on intracranial
aneurysm formation and rupture: current knowledge and its possible
impact on future treatment. Adv Tech Stand Neurosurg 2008, 33:131-147.
Li L, Yang X, Jiang F, Dusting GJ, Wu Z: Transcriptome-wide
characterization of gene expression associated with unruptured
intracranial aneurysms. European Neurology 2009, 62:330-337.

Shi C, Awad IA, Jafari N, Lin S, Du P, Hage ZA, et al: Genomics of human
intracranial aneurysm wall. Stroke 2009, 40:1252-1261.

Marchese E, Vignati A, Albanese A, Nucci CG, Sabatino G, Tirpakova B, et al:
Comparative evaluation of genome-wide gene expression profiles in
ruptured and unruptured human intracranial aneurysms. J Biol Regul &
Homeost Agents 2010, 24:185-195.

Pera J, Korostynski M, Krzyszkowski T, Czopek J, Slowik A, Dziedzic T, et al:
Gene expression profiles in human ruptured and unruptured intracranial
aneurysms: what is the role of inflammation? Stroke 2010, 41:224-231.
Hsia HC, Schwarzbauer JE: Meet the tenascins: multifunctional and
mysterious. J Biol Chem 2005, 280:26641-26644.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120:15-20.

Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemeld M, Hernesniemi J,
et al: Growth factor receptor expression and remodeling of saccular
cerebral artery aneurysm walls: implications for biological therapy
preventing rupture. Neurosurgery 2006, 58:534-541.

Bartel DP: MicroRNAs: target recognition and regulatory functions.

Cell 2009, 136(2):215-233.

Korja M, Silventoinen K, McCarron P, Zdravkovic S, Skytthe A, Haapanen A,
et al: Genetic epidemiology of spontaneous subarachnoid hemorrhage:
Nordic twin study. Stroke 2010, 41:2458-2462.

Lynam-Lennon N, Maher SG, Reynolds JV: The roles of microRNA in cancer
and apoptosis. Biol Rev Camb Philos Soc 2009, 84:55-71.

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet 2011,
12(12):861-874.

Small EM, Frost RJ, Olson EN: MicroRNAs add a new dimension to
cardiovascular disease. Circulation 2010, 121(8):1022-1032.

van Rooij E: The art of microRNA research. Circ Res 2011, 108:219-234.
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs

predominantly act to decrease target mRNA levels. Nature 2010, 466:335-840.

Torella D, laconetti C, Catalucci D, Ellison GM, Leone A, Waring CD,
Bochicchio A, Vicinanza C, Aquila |, Curcio A, Condorelli G, Indolfi C:
MicroRNA-133 controls vascular smooth muscle cell phenotypic switch
in vitro and vascular remodeling in vivo. Circ Res 2011, 109(8):880-893.
Xin M, Small EM, Sutherland LB, et a: MicroRNAs miR-143 and miR-145
modulate cytoskeletal dynamics and responsiveness of smooth muscle
cells to injury. Genes Dev 2009, 23:2166-2178.

Cheng Y, Liu X, Yang J, et al: MicroRNA-145, a novel smooth muscle cell
phenotypic marker and modulator, controls vascular neointimal lesion
formation. Circ Res 2009, 105:158-166.

Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL,
Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G: The knockout
of miR-143 and —145 alters smooth muscle cell maintenance and
vascular homeostasis in mice: correlates with human disease. Cell Death
Differ 2009, 16(12):1590-1598.

van Rooij E, Sutherland LB, Thatcher JE, et al: Dysregulation of microRNAs
after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.
Proc Natl Acad Sci U S A 2008, 105:13027-13032.

Siefert SA, Sarkar R: Matrix metalloproteinases in vascular physiology and
disease. Vascular 2012, 20(4):210-216.

Afek A, Harats D, Roth A, Keren G, George J: A functional role for inducible
costimulator (ICOS) in atherosclerosis. Atherosclerosis 2005, 183(1):57-63.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

45.

46.

47.

48.

49.

50.

52.

Page 9 of 10

Ewing MM, Karper JC, Abdul S, de Jong RC, Peters HA, de Vries MR, Redeker A,
Kuiper J, Toes RE, Arens R, Jukema JW, Quax PH: T-cell co-stimulation by
(CD28-CD80/86 and its negative regulator CTLA-4 strongly influence
accelerated atherosclerosis development. Int J Cardiol 2013. in press.
Fournier NM, Lee B, Banasr M, Elsayed M, Duman RS: Vascular endothelial
growth factor regulates adult hippocampal cell proliferation through
MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology 2012,
63(4):642-652.

de Nigris F, Rienzo M, Sessa M, Infante T, Cesario E, Ignarro LJ, Al-Omran M,
Giordano A, Palinski W, Napoli C: Glycoxydation promotes vascular damage
via MAPK-ERK/INK pathways. J Cell Physiol 2012, 227(11):3639-3647.

Krings T, Geibprasert S, ter Brugge KG: Pathomechanisms and treatment of
pediatric aneurysms. Childs Nerv Syst 2010, 26:1309-1318.

Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular
biology. Nature 2011, 469:336-342.

van Rooij E, Olson EN: MicroRNA therapeutics for cardiovascular disease:
opportunities and obstacles. Nat Rev Drug Discov 2012, 11(11):860-872.
Jamaluddin MS, Weakley SM, Zhang L, Kougias P, Lin PH, Yao Q, Chen C:
miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol
Diagn 2011, 11(1):79-89.

Thum T: MicroRNA therapeutics in cardiovascular medicine. EMBO Mole
Med 2012, 4:3-14.

Caré A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML,
Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Haydal M, Autore C,
Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce
CM, Peschle C, Condorelli G: MicroRNA-133 controls cardiac hypertrophy.
Nat Med 2007, 13(5):613-618.

Chen J, Yin H, Jiang Y, Radhakrishnan SK, Huang ZP, Li J, Shi Z, Kilsdonk EP,
Gui Y, Wang DZ, Zheng XL: Induction of microRNA-1 by myocardin in
smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol
2011, 31(2):368-375.

Bostjancic E, Zidar N, Stajer D, Glavac D: MicroRNAs miR-1, miR-133a, miR-
133b and miR-208 are dysregulated in human myocardial infarction.
Cardiology 2010, 115:163-1609.

Long X, Miano JM: Transforming growth factor-beta1 (TGF-beta1) utilizes
distinct pathways for the transcriptional activation of microRNA 143/145
in human coronary artery smooth muscle cells. J Biol Chem 2011,
286(34):30119-30129.

Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L: The miR-143/145 cluster
is a novel transcriptional target of Jagged-1/Notch signaling in vascular
smooth muscle cells. J Biol Chem 2011, 286(32):28312-28321.

Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L: miR-143 and
miR-145: molecular keys to switch the phenotype of vascular smooth
muscle cells. Circulation: Cardiovasc Genet 2011, 4:197-205.

Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, Garcia-Barrio MT,
Zhang J, Chen YE: MicroRNA-1 regulates smooth muscle cell differentiation
by repressing Kruppel-like factor 4. Stem Cells Dev 2011, 20(2):205-210.
Cordes KR, Sheehy NT, White MP, et al: miR-145 and miR-143 regulate
smooth muscle cell fate and plasticity. Nature 2009, 460:705-710.
Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G,
Hata A: Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143
/145 is critical for modulation of vascular smooth muscle cell phenotype
by transforming growth factor-beta and bone morphogenetic protein 4.
J Biol Chem 2011, 286(32):28097-28110.

Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R,
Olson EN: microRNA-133a regulates cardiomyocyte proliferation and
suppresses smooth muscle gene expression in the heart. Genes Dev 2008,
22(23):3242-3254.

Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U,
Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL,

Spin JM, Tsao PS: Inhibition of microRNA-29b reduces murine abdominal
aortic aneurysm development. J Clin Invest 2012, 122(2):497-506.
Maegdefessel L, Azuma J, Tsao PS: MicroRNA-29b regulation of abdominal
aortic aneurysm development. Trends Cardiovasc Med 2013. in press.

Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJ,
Vinciguerra M, Rosenthal N, Sciacca S, Pilato M, van Heijningen P, Essers J,
Brandes RP, Zeiher AM, Dimmeler S: MicroRNA-29 in aortic dilation:
implications for aneurysm formation. Circ Res 2011, 109(10):1115-1119.
Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M:
Regulation of fibrinogen production by microRNAs. Blood 2010,
116(14):2608-2615.



Jiang et al. BMC Medical Genomics 2013, 6:36
http://www.biomedcentral.com/1755-8794/6/36

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

Sinha S, Dutta S, Datta K, Ghosh AK, Mukhopadhyay D: Von Hippel-Lindau
gene product modulates TIS11B expression in renal cell carcinoma:
impact on vascular endothelial growth factor expression in hypoxia.

J Biol Chem 2009, 284(47):32610-32618.

Boon RA, Dimmeler S: MicroRNAs and aneurysm formation.

Trends Cardiovasc Med 2011, 21(6):172-177.

Ruigrok YM, Rinkel GJ: Genetics of intracranial aneurysms. Stroke 2008,
39(3):1049-1055.

Ruigrok YM, Rinkel GJ: From GWAS to the clinic: risk factors for
intracranial aneurysms. Genome Med 2010, 2:61.

Roder C, Kasuya H, Harati A, Tatagiba M, Inoue |, Krischek B: Meta-analysis
of microarray gene expression studies on intracranial aneurysms.
Neuroscience 2012, 201:105-113.

Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, Huang C, Zhou F, Liu M, Wu X,
Wang X: miR-143 is down-regulated in cervical cancer and promotes
apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep
2012, 5(3):753-760.

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G: MicroRNA-1 regulates

cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 2009, 50(3):377-387.

Leone V, D'Angelo D, Rubio |, de Freitas PM, Federico A, Colamaio M,
Pallante P, Medeiros-Neto G, Fusco A: miR-1 is a tumor suppressor in
thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha.

J Clin Endocrinol Metab 2011, 96(9):E1388-E1398.

Kuivaniemi H, Prockop DJ, Wu Y, Madhatheri SL, Kleinert C, Earley JJ, Jokinen A,
Stolle C, Majamaa K, Myllyld W, et al: Exclusion of mutations in the gene for
type Il collagen (COL3A1) as a common cause of intracranial aneurysms or
cervical artery dissections: results from sequence analysis of the coding
sequences of type Il collagen from 55 unrelated patients. Neurology 1993,
43(12):2652-2658.

Kontusaari S, Tromp G, Kuivaniemi H, Ladda RL, Prockop DJ: Inheritance of
an RNA splicing mutation (G + 1 1VS20) in the type Il procollagen gene
(COL3A1) in a family having aortic aneurysms and easy bruisability:
phenotypic overlap between familial arterial aneurysms and Ehlers-
Danlos syndrome type IV. Am J Hum Genet 1990, 47(1):112-120.
Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ,
Chen CJ, Hildesheim A, Sugden B, Ahlquist P: MicroRNA 29c¢ is down-
regulated in nasopharyngeal carcinomas, up-regulating mRNAs
encoding extracellular matrix proteins. Proc Natl Acad Sci USA 2008,
105(15):5874-5878.

Luna C, Li G, Qiu J, Epstein DL, Gonzalez P: Role of miR-29b on the
regulation of the extracellular matrix in human trabecular meshwork
cells under chronic oxidative stress. Mol Vis 2009, 15:2488-2497.

Dawson K, Wakili R, Ordég B, Clauss S, Chen Y, Iwasaki Y, Voigt N, Qi XY,
Sinner MF, Dobrev D, Kadb S, Nattel S: MicroRNA29: a mechanistic
contributor and potential biomarker in atrial fibrillation. Circulation 2013.
Selbach M, Schwanhdusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N:
Widespread changes in protein synthesis induced by microRNAs.
Nature 2008, 455(7209):58-63.

Chavez RJ, Haney RM, Cuadra RH, Ganguly R, Adapala RK, Thodeti CK,
Raman P: Upregulation of thrombospondin-1 expression by leptin in
vascular smooth muscle cells via JAK2- and MAPK-dependent pathways.
Am J Physiol Cell Physiol 2012, 303(2).C179-C191.

Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC: VEGF binding
to NRP1 is essential for VEGF stimulation of endothelial cell migration,
complex formation between NRP1 and VEGFR2, and signaling via FAK
Tyr407 phosphorylation. Mol Biol Cell 2011, 22(15):2766-2776.

Guo F, Li Z, Song L, Han T, Feng Q, Guo Y, et al: Increased apoptosis and
cysteinyl aspartate specific protease-3 gene expression in human
intracranial aneurysm. J Clin Neurosc 2007, 14:550-555.

Ferns SP, Sprengers ME, van Rooij WJ, Rinkel GJ, van Rijn JC, Bipat S,
Sluzewski M, Majoie CB: Coiling of intracranial aneurysms: a systematic
review on initial occlusion and reopening and retreatment rates.

Stroke 2009, 40:e523-e529.

Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Sasaki K, Chiyomaru T,
Kawakami K, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N:
Identification of novel molecular targets regulated by tumor suppressive
miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int J Oncol
2011, 39(5):1099-1107.

Somech R, Lev A, Simon AJ, Hanna S, Etzioni A: T- and B-cell defects in a
novel purine nucleoside phosphorylase mutation. J Allergy Clin Immunol
2012, 130(2):539-542.

73.

74.

75.

76.

77.

Page 10 of 10

Zhou G, Zhou Z, Ge S, Liu D, Zhang R, Xu G, Zhu W, Yin Q, Chen AF, Liu X:
IL-18 accelerates the cell apoptosis by up-regulating cysteinyl leukotriene 2
receptor expression in human umbilical vein endothelial cells at the early
stage of administration. Vascul Pharmacol 2009, 32:1659-1676.
Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD,
Valente AJ: Adiponectin blocks interleukin-18-mediated endothelial cell
death via APPL1-dependent AMP-activated protein kinase (AMPK)
activation and IKK/NF-kappaB/PTEN suppression. J Biol Chem 2008,
283:24889-24898.

Duan L, Yang G, Zhang R, Feng L, Xu C: Advancement in the research on
vascular endothelial growth inhibitor (VEGI). Target Oncol 2012, 7(1):87-90.
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder
LA, Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-
tumour metastasis. Nature 2011, 475(7355):222-225.

Ben-Baruch A, Xu L, Young PR, Bengali K, Oppenheim JJ, Wang JM:
Monocyte chemotactic protein-3 (MCP3) interacts with multiple
leukocyte receptors. C-C CKR1, a receptor for macrophage inflammatory
protein-1 alpha/Rantes, is also a functional receptor for MCP3.

J Biol Chem 1995, 270(38):22123-22128.

doi:10.1186/1755-8794-6-36
Cite this article as: Jiang et al: MicroRNA/mRNA profiling and regulatory
network of intracranial aneurysm. BMC Medical Genomics 2013 6:36.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
e Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patients and tissue samples
	Extract RNA from samples
	Determination of specific miRNAs
	Confirmation of miRNA expression
	Function analysis

	Results
	Identification of differently expressed miRNAs in IA
	Integrated analysis of misregulated miRNAs and mRNAs

	Discussion
	Limitation

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

