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Abstract

abnormality in their function may lead to disease.

to mRNA-expression and genotypes.

mechanisms.

Background: Steatohepatitis occurs in alcoholic liver disease and may progress to liver cirrhosis and hepatocellular
carcinoma. Its molecular pathogenesis is to a large degree unknown. Histone modifications play a key role in
transcriptional regulations as marks for silencing and activation of gene expression and as marks for functional
elements. Many transcription factors (TFs) are crucial for the control of the genes involved in metabolism, and

Methods: We performed ChiIP-seq of the histone modifications H3K4me1, H3K4me3 and H3K27ac and a candidate
transcription factor (USF1) in liver tissue from patients with steatohepatitis and normal livers and correlated results

Results: We found several regions that are differentially enriched for histone modifications between disease and
normal tissue, and gRT-PCR results indicated that the expression of the tested genes strongly correlated with
differential enrichment of histone modifications but is independent of USF1 enrichment. By gene ontology analysis
of differentially modified genes we found many disease associated genes, some of which had previously been
implicated in the etiology of steatohepatitis. Importantly, the genes associated to the strongest histone peaks in the
patient were over-represented in cancer specific pathways suggesting that the tissue was on a path to develop to
cancer, a common complication to the disease. We also found several novel SNPs and GWAS catalogue SNPs that
are candidates to be functional and therefore needs further study.

Conclusion: In summary we find that analysis of chromatin features in tissue samples provides insight into disease

Keywords: ChiP-seq, Tissue samples, Steatohepatitis, Cancer networks

Background

Alcoholic steatohepatitsis (ASH) is a chronic liver disease
that develops in approximately 20% of heavy drinkers.
ASH leads to characteristic morphological alterations in
the liver, such as accumulation of fat (steatosis), ballooning
of hepatocytes, appearance of hepatocytic protein aggre-
gates (Mallory Denk Bodies), necrosis and apoptosis, fi-
brosis, inflammation, and cholestasis. These alterations
are similar to steatohepatitis that develops in patients
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without alcoholic liver diseases (non-alcoholic steatohepa-
titis; NASH) in the context of obesity, diabetes and the
metabolic syndrome [1]. The similar morphological alter-
ations in ASH and NASH suggest common pathophysio-
logical mechanisms that still have to be characterized.
Furthermore it is still unclear whether simple steatosis of
the liver which is a relatively benign and in principle re-
versible disease progresses to steatohepatitis which further
progresses to liver cirrhosis and eventually to cancer, or
whether steatosis and steatohepatitis (ASH or NASH) are
two different disorders [2]. A study on the role of alcohol
metabolism in the pathogenesis of NASH found that the
alcohol dehydrogenase genes, catalase genes, cytochrome
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P450 2E1 (CYP2EI) and aldehyde dehydrogenase have an
increased level of transcription in NASH patients com-
pared to controls [3]. Genome-wide association studies
(GWAS) on African American and European American in-
dividuals showed that the ‘G’ allele of the rs738409 SNP in
the PNPLA3 gene was strongly associated with increased
hepatic fat levels and with hepatic inflammation [4]. An-
other GWA study using variance components methods
showed significant association with histological NAFLD
and variants in or around the genes of NCAN, GCKR and
LYPLALI [5].

Chromatin Immunoprecipitation coupled with high
throughput sequencing (ChIP-seq) allows the study of
binding sites for TFs or sites of modified histones to be
identified in a single experiment on a genome-wide scale.
In this study, we used bio-bank samples from patients with
steatohepatitis and compared it to samples from healthy
controls. N-terminal modifications of histones may change
the chromatin accessibility to transcription and they are as-
sociated with activation and silencing of the genes [6]. We
compared the histone modification patterns in liver sam-
ples between patients with ASH and controls using ChIP-
seq for three marks associated with active genes. Histone 3
lysine 4 tri-methylation (H3K4me3) is associated to
promoters while Histone 3 lysine 4 mono-methylation
(H3K4mel) is associated to enhancers and lysine 27 acetyl-
ation (H3K27ac) are found both at active enhancers and
promoters. To our knowledge, this is the first epigenetic
study on these three histone marks of steatohepatitis pa-
tients. USF1 is a transcription factor in the helix-
loop-helix leucine zipper family that binds the E-box
sequence CA[C/T]GTG at many genes important for lipid
and cholesterol metabolism [7]. Two SNPs (rs2073658 and
rs3737787) in USFI1 have been associated to the disease
familial combined hyperlipidemia [8] and furthermore,
these SNPs have been have been associated to an increased
risk of type 2 diabetes in a case control association study
on Dutch Caucasians [9]. We therefore hypothesized that
USF1 may play a role in steatohepatitis and studied its
binding sites using ChIP-seq on biobank samples.

We find that the pattern of histone modifications was
similar when comparing normal liver tissue and alcoholic
steatohepatitis. However, in differentially enriched regions
we find genes known to be involved in the disease as well
as new genes that are candidates to contribute to the path-
ology. In particular, in the patient we find genes in cancer
pathways suggesting that the tissue is en route to a malig-
nancy, a known complication to the disease.

Methods

Tissue samples

Frozen liver tissue samples from three patients with
ASH and three controls without chronic liver diseases
(patients who underwent liver surgery because of liver

Page 2 of 14

metastasis from colon cancer) were obtained from Graz
bio-bank, Medical university of Graz, Austria. The first
control and patient set was used to map USFI, the sec-
ond set was used to study the histone modifications and
a third set along with the above two sets was used for
RNA expression analysis by qRT-PCR.

Chromatin immunoprecipitation

Frozen liver tissues were chopped into small pieces and
crosslinked with a final concentration of 0.37% formal-
dehyde for 10 minutes and the crosslinking was stopped
by adding glycine to a final concentration of 0.125 M.
Crosslinked tissue was washed by 1X PBS and cell lysis
buffer with protease inhibitors (PIs) was added and nu-
clei were prepared by using a dounce homogenizer.
RIPA buffer (1X PBS, 1% NP-40, 0.1% SDS, 0.5% Sodium
deoxycholate, 0.004% sodium azide) with PIs was added to
the nuclei and chromatin was sonicated to 100-300 bp
fragments using a BioRuptor (Diagenode). After preclear-
ing with Protein-G-Agarose beads (Roche), chromatin was
incubated with antibody overnight. Antibodies were from
Santa Cruz Biotechnology for USF1 (sc-229) and from
Abcam for histone modifications (ab8895, ab8580 and
ab4729). Protein-G agarose beads were added and incu-
bated for two hours and then the chromatin-antibody-
bead complex was washed four times with RIPA buffer,
once with ChIP wash buffer 2 (0.01 M Tris—HCI (pH 8),
0.25 M LiCl, 0.001 M EDTA, 1% NP-40, 1% Sodium deox-
ycholate) and once with TE buffer. The protein-DNA
complex was eluted in IP elution buffer (0.1 M NaHCO;
and 1% SDS) with vigorous shaking of beads at room
temperature and crosslinks were reversed at 65°C with
0.3 M Sodium chloride and RNase A for 6 hours followed
by 45°C overnight incubation with Proteinase K. The
DNA was extracted by phenol/chloroform and ethanol
precipitation and the pellet was dissolved in water. The
ChIP DNA enrichment was verified by semi-quantitative
PCR using two known positive and two negative targets.

SOLiD fragment library preparation

SOLID fragment libraries were prepared according to
the manufacturer’s protocol. ChIP DNA fragments were
end repaired and ligated with adapters. Ligated fragments
were amplified using adapter specific primers and size se-
lected on Invitrogen’s flash gel. Approximately 200-300 bp
fragments (including adapters) were collected. These li-
braries were sequenced on the ABI SOLiDV3 platform.

lllumina library preparation

ChIP enriched DNA was end repaired using end repair
kit (Epicentre) at room temperature for 45 minutes, ‘A’
base was added to the 3" ends of the fragments using
Klenow (3'-5" exo-) (NEB) by incubating at 37°C for
30 minutes. These fragments were ligated with Illumina
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adapters using quick ligase kit (NEB). Adapter ligated
fragments were enriched by PCR with Pfu ultra high
sensitivity master mix (Agilent) and adapter specific
primers. The PCR product was size-selected on 2% TAE
agarose gel and purified with Qiagen gel extraction col-
umns. Qiagen MinElute columns were used for purifica-
tion after end repair and A-tailing and AMPure XP beads
were used to purify and size-select the ligation mix before
amplification. Sequencing was done on Illumina Hiseq
platform using paired-end technology. Quality and size
range of libraries for both the platforms were checked on
Bioanalyzer (Agilent technologies) before sequencing.

Sanger sequencing

Primers were designed for the SNPs located near a motif
for USF1 in peaks with potential differential enrichment.
USF1 enriched ChIP DNA and genomic DNA of pa-
tient and control was amplified and purified and PCR
products were sequenced using BigDye terminator v3.1
(Applied Bio system) and capillary electrophoresis on a
ABI 3730XL DNA analyzer. Obtained sequences were an-
alyzed by using Sequencher software.

Quantitative PCR

New replicate of ChIP was performed with the tissues
from the same individuals using anti-USF1 antibody and
primers for qPCR were designed around the USF1
enriched regions and the regions without enrichment.
qPCR in triplicates was used to measure enrichment by
comparing to a standard curve obtained for each primer
by serial dilution of input DNA and to a background
level calculated as the average + 2*standard deviation of
the values for negative regions. Enrichment of more than
two-fold over this background level was considered as
positive.

RNA Preparation, Synthesis of cDNA and gRT-PCR

Total RNA was extracted from tissue samples using
mammalian total RNA extraction kit (Sigma Aldrich).
First Strand cDNA was synthesized from 5 pg of total
RNA using the Maxima First Strand cDNA synthesis kit
(Thermo Scientific). The reaction was performed at 50°C
for 30 minutes and terminated by incubating at 85°C
for 5 minutes. JPCR was performed with ¢cDNA in tripli-
cates and normalized to the house keeping genes GAPDH,
[B-Actin and RSP18.

ChiIP-seq data analysis

The SOLIiD 50 bp reads for USF1 were aligned to the
hg18 reference genome using BFAST (v. 6.4) with the -A
3 setting which excludes reads with more than one best
scoring alignment. We further removed all alignments
with more than five mismatches in the first 40 colors
and a mapping quality below 20. Only one read per start
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position was retained. Reads were extended in silico to
the average fragment length (170 bp) and the overlaps of
the extended fragments were calculated throughout the
genome. Thresholds for significance (more than 5 and
10 reads for ASH and control respectively) were set
based on the number of reads used for peak calling and
the enrichment compared to background to get compar-
able datasets for patient and control, and peaks of en-
richment higher than the thresholds were identified. The
center position with highest overlap count was identified
in each peak and used as basis for motif discovery and
location analysis. De novo motif analysis was done using
the online version of MEME-ChIP (http://meme.nbcr.net/
meme/cgi-bin/meme-chip.cgi) based on the 500 highest
and lowest peaks for each dataset.

The Illumina reads for histone modifications were
aligned to hgl8 using bwa [10]. Duplicates were re-
moved using Picard tools (http://picard.sourceforge.net).
MACS was used to call peaks, and for differential en-
richment analysis SICTIN [11] was used to count reads in
the peak regions and the counts were normalized by the
total number of mapped read. The difference in counts
between ASH and control was used to rank genes as
higher in patient or higher in control. For genomic distri-
butions, all histone modification peaks with an overlap to-
wards the TSS or the 3" end of the genes were identified.
All 37 175 genes annotated in the Ensembl were consid-
ered. Intragenic peaks were defined as a peak with any
overlap to a gene, and intergenic peaks as those without
any overlap. The statistics was calculated for the three his-
tone modifications and two states (higher in patient than
in control, or higher in control than in patient), which
gave six categories in total. Regions with more than 80%
overlap to the simpleRepeat track downloaded from the
UCSC Genome Browser were removed.

Footprints over TSS

SICTIN build binary was used to transform the bed files
into a binary format and make footprint to count the
average number of reads for a region of +/- 1000 bp
from the TSS. The gene annotations were collected from
the Ensembl [12] system (H.sapiens 54_36p). Only the
19 950 genes annotated as protein coding were used.
Each histone modification was normalized to have the
same total sum over all 2001 positions, and then scaled
so that the maximal observed enrichment had a value
of 1.

Gene ontology

For gene ontology enrichment analysis we identified the
1000 peaks with highest differential enrichment in pa-
tient and in control for each histone modification and
for each peak selected the gene with the closest TSS. For
USF1 we used the nearest gene for all peaks.
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SNP calling

Aligned reads from all three histone modifications from
the same individual were merged to a single file and
SNP calling was done using samtools and bcftools. SNPs
in regions with sequencing depth > 100 were excluded to
avoid repetitive sequences. SnpSift [13] was used to re-
move SNPs with quality < 50. Annotated SNPs were sep-
arated from possibly novel SNPs with annovar [14] and
dbSNP version 129. Possibly novel SNPs with at least
ten reads in the peak regions were identified in the pa-
tient by additionally filter using dnpSNP version 132.
Those were annotated using SnpEff [13].

The annotated SNPs in patient and control were
compared to “A Catalog of published Genome-Wide
Association Studies” (http://www.genome.gov/26525384)
and SNPs in either sample that had been reported in
GWASs related to certain keywords (diabetes, fasting
plasma glucose, hepatitis, hepatocellular carcinoma, insu-
lin, LDL cholesterol, lipid metabolism, liver, obesity, tri-
glycerides) were identified. In the GWAS database, only
the strongest associations are reported when there are
multiple hits in the same region. In order to also identify
the weaker hits in the samples, we searched for SNPs in
high LD with GWAS SNPs using the SNAP proxy search
(http://www.broadinstitute.org/mpg/snap/ldsearch.php)
with data from the CEU panel in the 1000 Genomes Pilot
project, using an r” threshold of 0.8 and a distance limit of
500 kb. The SNPs were annotated with whether they had
overlap to a HM peak only in control, only in patient, in
both, or in none.

Results

ChIP-sequencing and USF1 peaks

In the ChIP-seq experiments we used Illumina HiSeq for
analysis of H3K4mel, H3K4me3 and H3K27ac and Life
Technologies SOLIiD platform for USF1. After filtering
of duplicate and ambiguously mapped reads 5 — 24.7 M
reads remained for peak calling (Tables 1 and 2).

The USF1 peak lists were filtered for regions enriched
also in input chromatin and the enrichment threshold
was set to account for the different number of reads in
the samples, which gave a set of 2054 enriched peaks for
control and 1766 peaks for ASH (Table 1 and Additional
file 1). The genome-wide distribution of peaks was simi-
lar to what have been seen in the HepG2 cell line [7]
with a marked enrichment for peaks immediately up-
stream of the TSS for both samples but with a better

Table 1 USF1 ChIP-seq reads and peak calls

Unique aligned Cut-off Peaks  Peaks with
reads (peak height) motif
Control 17 M 10 2054 895
ASH 5M 5 1766 948
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enrichment obtained for the patient sample (Figure 1A).
The USF1 motif with the E-box recognition sequence
CA[C/T]GTG could be identified de novo from both
datasets and was enriched in both the highest and lowest
peaks (Figure 1B and Additional file 2: Figure S7), which
indicates that the peak lists to a large extent represents
direct USF1 bindings. In all, we found 895 (44%) peaks
for the control and 948 (54%) peaks for the ASH sample
with at least one match to the CAC[G/A]TG sequence
within 50 bps of the peak center (Table 1).

To further validate the ChIP-seq results we tested thir-
teen positive and four negative sites with qPCR on a repli-
cate ChIP sample and found a good correlation (R* = 0.41
for the control and 0.62 for the patient sample) between
the ChIP-seq and qPCR enrichment indicating good qual-
ity in the data (Additional file 2: Figure S1).

Detection and analysis of differentially enriched regions
for histone modifications

To identify differentially modified regions, we first iden-
tified enriched regions using the MACS peak finder,
which gave 10 317-18 358 peaks for the different sam-
ples (Table 2). The overall patterns of histone modifica-
tions were strongly correlated between patients and
controls (Additional file 2: Figure S2), as can be expected
for samples from the same tissue type. Considering that
the number of peaks may depend on the number of
reads, we used a fixed number of peaks from each sam-
ple for further analysis. Using the fewest number of
peaks found in a sample, rounded by thousands, the
10 000 highest ranked (P-value) peaks were kept for
each sample. The normalized read counts in the peak
regions were calculated for both samples for each peak
region identified in either ASH patient or control, and
peaks were ranked according to the difference in enrich-
ment. The numerical distributions of differences were
quite skewed and different for the different modifica-
tions, i.e. H3K4me3 and H3K27ac had higher signals
in patient than in control, whereas H3K4mel had higher
signal in control than in patient (Additional file 2). To
avoid introducing any arbitrary assumptions about the
data, for each histone modification we selected the 1000
regions with the highest difference in each direction as dif-
ferentially enriched regions. For each differential region
the Ensembl database was used to identify the closest gene
(Additional file 3).

From the ChIP-seq enrichment profiles we generated
footprints within 2 kb windows of transcription start sites
(TSS) for the three histone modifications (Figure 1C). As
expected from previous studies, we have observed double
peaks centered on the TSS for all three modifications with
the strongest enrichment for H3K4me3 and H3K27ac
as these marks are mainly promoter-associated histone
marks of active genes [15]. The double peaks could be an
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Table 2 Histone modification ChIP-seq reads and peak calls
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Control ASH
Total reads Aligned reads Dup. rate Peaks Total reads Aligned reads Dup. rate Peaks
H3K4me1 178 M 114 M 0.5% 10255 276 M 196 M 4.8% 10673
H3K4me3 145 M 87 M 0.8% 14667 287 M 247 M 2.5% 18357
H3K27ac 127 M 94 M 0.5% 11655 272 M 21 M 2.6% 12384

indication of bidirectional promoters [7]. We have previ-
ously observed this type of bidirectional pattern in HepG2
cells for H3K4me3 mark [16]. We also looked into gen-
omic localization of differentially enriched histone modifi-
cations across the genome, i.e. at +/- 2 kb of TSS and
non-TSS regions (Figure 2). As expected, the majority of
the H3K4me3 peaks are located within 2 kb of TSS,
whereas the peaks for H3K4mel and H3K27ac are distrib-
uted both at TSS and non-TSS regions (Figure 2). The
majority of identified genes had peaks for both control
and ASH, with around 1600-3000 genes containing a
significant peak only in patient or in control (Additional
file 2: Figure S3). We further compared the lists with dif-
ferentially enriched histone modification peaks to the
USEF1 binding sites but did not observe any significant dif-
ference in USF1 signal for these genes. This indicates that

USF1 is not a major contributor to differential gene regu-
lation between the steatohepatitis patients and controls.

Gene ontology prediction of genes involved in liver
metabolism and cancer

We used the web based functional annotation tool
(DAVID) (http://david.abcc.ncifcrf.gov/summary.jsp) [17]
for gene ontology (GO) for genes with USF1 binding sites
and for genes with differential histone modifications and
identified many groups of genes that are involved in differ-
ent liver specific mechanisms and pathways. GO analysis
of the highest USF1 peaks did not show any major differ-
ence between the individuals. We combined the gene lists
with differential histone modifications for each sample
(Additional file 4) and found some of the most signifi-
cantly enriched pathways that were detected in the control
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Figure 1 ChIP-seq peak distributions. A) Distribution and peak heights (left) of USF1 peaks around the TSS and the enrichment at promoters
(right). Peak heights are reported in reads per million (RPM). B) The USF1 motif was identified in both high and low USF1 peaks. C) Foot prints in
2 kb windows of TSS for the Histone marks H3K4me1, H3K4me3, H3K27ac.
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Figure 2 Histone modification peaks at TSS. Percentage of differentially enriched peaks identified at 2 kb of TSS and non TSS sites for

but not in the patient to be fatty acid metabolism and pyru-
vate metabolism (Table 3). Importantly, in the patient data
set we identified cancer specific pathways and pathways for
basal cell carcinoma. We further looked at the role of these
genes in hepatocellular (http://liverome.kobic.re.kr/index.
php) [18] for liver-cancer related gene lists and found that
some of the genes present in these pathways were known

to have changed their expression in liver cancer (Table 4).
This indicates that the gene expression pattern has changed
from a normal liver metabolism to a state that is more
cancer-like in the patient, and that the ASH in this patient
may be on the way to progress into HCC.

We have used another web based tool GORIilla (http://
cbl-gorilla.cs.technion.ac.il) [26] to further support our
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Table 3 Pathways identified using the genes associated
with ChIP-seq histone modification peaks for ASH

and control

KEGG
pathway

ENSEMBL_GENE_ID Gene name

Control

Glycine, serine ENSG00000092621
and threonine
metabolism

ENSG00000131471

ENSG00000168237
ENSG00000182199

ENSG00000069535
ENSG00000145692

ENSG00000160200
ENSG00000145020
ENSG00000023330
ENSG00000172482

Pyruvate ENSG0O0000076555

metabolism

ENSG00000168291

ENSG00000154930

ENSG00000166816
ENSG00000173599
ENSG00000063854

Fatty acid ENSG00000127884

metabolism
ENSG00000162365
ENSG00000105607
ENSG00000151726

ENSG00000187048

ENSG00000196344

PPAR
signaling
pathway

ENSG00000083807

ENSG00000186350
ENSG00000165269
ENSG00000162365

ENSG00000151726

ENSG00000118137

Phosphoglycerate dehydrogenase

Amine oxidase, copper containing
3 (vascular adhesion protein 1)

Glycerate kinase

Serine hydroxymethyltransferase
2 (mitochondrial)

Monoamine oxidase B

Betaine-homocysteine
methyltransferase

Cystathionine-beta-synthase
Aminomethyltransferase
Aminolevulinate, delta-, synthase 1

Alanine-glyoxylate
aminotransferase

Acetyl-Coenzyme A carboxylase
beta

Pyruvate dehydrogenase
(lipoamide) beta

Acyl-CoA synthetase short-chain
family member 1

Lactate dehydrogenase D
Pyruvate carboxylase
Hydroxyacylglutathione hydrolase

Enoyl Coenzyme A hydratase,
short chain, 1, mitochondrial

Cytochrome P450, family 4,
subfamily A, polypeptide 22

Glutaryl-Coenzyme A
dehydrogenase

Acyl-CoA synthetase long-chain
family member 1

Cytochrome P450, family 4,
subfamily A, polypeptide 11

Alcohol dehydrogenase 7
(class IV), mu or sigma
polypeptide

Solute carrier family 27
(fatty acid transporter), member 5

Retinoid X receptor, alpha
Aquaporin 7

Cytochrome P450, family 4,
subfamily A, polypeptide 22

Acyl-CoA synthetase long-chain
family member 1

Apolipoprotein A-l
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Table 3 Pathways identified using the genes associated
with ChIP-seq histone modification peaks for ASH

and control (Continued)

ENSG00000187048

ENSG00000140284

Steroid ENSG00000052802

biosynthesis
ENSG00000109929

ENSG00000116133

ENSG00000001630

ASH

Pathways ENSG00000108091

in cancer
ENSG00000168040
ENSG00000197461

ENSG00000143816

ENSG00000100644

ENSG00000177885

ENSG00000006451

ENSG00000133101
ENSG00000157404

ENSG00000175305
ENSG00000168036

ENSG00000147889

ENSG00000033800

ENSG00000145675

ENSG00000044115

ENSG00000156427
ENSG00000135766
ENSG00000196591
ENSG00000138448

ENSG00000108379

Cytochrome P450, family 4,
subfamily A, polypeptide 11

Solute carrier family 27
(fatty acid transporter), member 2

Sterol-C4-methyl oxidase-like

Sterol-C5-desaturase (ERG3
delta-5-desaturase homolog,
S. cerevisiae)-like

24-dehydrocholesterol reductase

Cytochrome P450, family 51,
subfamily A, polypeptide 1

Coiled-coil domain containing 6

Fas (TNFRSF6)-associated via
death domain

Platelet-derived growth factor
alpha polypeptide

Wingless-type MMTV integration
site family, member 9A

Hypoxia inducible factor 1, alpha
subunit (basic helix-loop-helix
transcription factor)

Growth factor receptor-bound
protein 2

v-ral simian leukemia viral
oncogene homolog A (ras related)

Cyclin A1

Similar to Mast/stem cell growth
factor receptor precursor (SCFR)
(Proto-oncogene tyrosine-protein
kinase Kit)Ta

Cyclin E2

Catenin (cadherin-associated
protein), beta 1, 88 kDa

Cyclin-dependent kinase inhibitor
2A (melanoma, p16, inhibits CDK4)

Protein inhibitor of activated
STAT, 1

Phosphoinositide-3-kinase,
regulatory subunit 1 (alpha)

Catenin (cadherin-associated
protein), alpha 1, 102 kDa

Fibroblast growth factor 18
Egl nine homolog 1 (C. elegans)
Histone deacetylase 2

Integrin, alpha V (vitronectin
receptor, alpha polypeptide,
antigen CD51)

Wingless-type MMTV integration
site family, member 3
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Table 3 Pathways identified using the genes associated
with ChIP-seq histone modification peaks for ASH
and control (Continued)

ENSG00000104290  Frizzled homolog 3 (Drosophila)
ENSG00000125084  Wingless-type MMTV integration
site family, member 1
ENSG00000102678  Fibroblast growth factor 9
(glia-activating factor)
ENSG00000185920 Patched homolog 1 (Drosophila)
ENSG00000111186  Wingless-type MMTV integration
site family, member 5B
ENSG00000161958  Fibroblast growth factor 11

ENSG00000128602

Smoothened homolog
(Drosophila)

ENSG00000138795  Lymphoid enhancer-binding
factor 1
ENSG00000053747 Laminin, alpha 3
ENSG00000056558  TNF receptor-associated factor 1
ENSG00000131759  Retinoic acid receptor, alpha
ENSG00000099942  v-crk sarcoma virus CT10
oncogene homolog (avian)-like
ENSG00000139687  Retinoblastoma 1
ENSGO00000007968 E2F transcription factor 2
Basal cell ENSG00000111186  Wingless-type MMTV integration
carcinoma site family, member 5B
ENSG00000128602  Smoothened homolog

ENSG00000108379

(Drosophila)

Wingless-type MMTV integration
site family, member 3

ENSG00000138795  Lymphoid enhancer-binding
factor 1

ENSG00000168036 Catenin (cadherin-associated
protein), beta 1, 88 kDa

ENSG00000104290  Frizzled homolog 3 (Drosophila)

ENSG00000125084  Wingless-type MMTV integration
site family, member 1

ENSG00000143816  Wingless-type MMTV integration

site family, member 9A

Table 4 Expression profiles of liver-cancer associated genes

Page 8 of 14

GO findings in DAVID. From the GORilla database,
we found that the genes related to metabolism were
enriched in both the patient and control. Surprisingly,
the metabolism related genes had lower ChIP-seq
peaks indicating lower gene expression in the patient
(based on p-value) (Additional file 2: Figure S4) compared
to control (Additional file 2: Figure S5). These findings
further support our hypothesis that as the disease pro-
gresses, metabolism-related genes were down-regulated and
cancer-related genes became activated and up-regulated.

Figure 3 shows the signal for three metabolism related
genes with different histone modification patterns. Triose-
phosphate isomerase 1 (TPI1) catalyses the isomerisation
of Glyceraldehyde 3 phosphate (G3P) and Dihydroxy acet-
one phosphate (DHAP) which is involved in glycolysis and
in gluconeogenesis (Figure 3B). ALDH2 is an enzyme
involved in alcohol metabolism. Higher expression of
ALDH? has been observed in NASH patients than in nor-
mal liver [3] and we found stronger ChIP-seq peaks at the
promoter of ALDH2 in ASH patient than in control com-
patible with a common pathophysiological mechanisms
in ASH and NASH (Figure 3A). The promoter of the
Apolipoprotein C4 gene (APOC4) had lower signal for ac-
tivating histone modifications in the patient than in the
control suggesting that the gene is inactivated in the
patient (Figure 3C). APOC4 is a key regulator in lipid
transport [27] and a further support for the finding that
genes in metabolism may be down-regulated as the dis-
ease progress.

We have investigated the histone modification pat-
tern of the genes involved in alcohol metabolism and
alcohol-related liver disease in the patient and control.
There were stronger peaks in the patient than the control
for the histone modifications at the promoters for Mono-
cyte differentiation antigen (CD14) and the Toll like re-
ceptor (TLR4) (Additional file 2: Figure S6A) that are both
known to play an important role in alcohol metabolism.
We have also seen stronger enrichment of activating his-
tone modifications at the TSS of the gene for tumor ne-
crosis factor (TNF4a), which is in line with previous
studies, which have shown that there is an increased

ENSEMBL Gene ID Gene name Gene symbol Regulation Study references
ENSG00000197461 Platelet-derived growth factor alpha polypeptide PDGFA Up [19]
ENSG00000177885 Growth factor receptor-bound protein 2 GRB2 Up/Down [19]
ENSG00000168036 Catenin (cadherin-associated protein), beta 1, 88 kDa CTNNB1 Up/Down [19]
ENSG00000147889 Cyclin-dependent kinase inhibitor 2A CDKN2A Up [20]
(melanoma, p16, inhibits CDK4)

ENSG00000102678 Fibroblast growth factor 9 (glia-activating factor) FGF9 Up 21]
ENSG00000053747 Laminin, alpha 3 LAMA3 Up [22-24]

ENSG00000139687 Retinoblastoma 1

RB1 Down [25]
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expression in patients for this gene. It should also be
noted the involvement of TNF4a in cancer which is in line
with our findings on cancer described above (Additional
file 2: Figure S6C). We have also observed increased en-
richment of the histone modifications in the patient at the
start of the genes for platelet derived growth factor
(PDGF) and for transforming growth factor (TGFBI),
which are both known to mediate hepatic fibrosis, a well-
known component of ASH [28] (Additional file 2: Figure
S6D-E).

Known and novel SNPs associated to disease

Single Nucleotide Polymorphisms (SNPs) are associated
with many common diseases such as diabetes and high
blood pressure [29]. SNPs and structural variants located

in close vicinity to the TF binding motif can affect the
binding of TF to DNA [30]. We identified many SNPs
close to USF1 motifs in the enriched regions (Additional
file 2: Table S1) and selected peaks with difference in read
counts in patient and control and performed Sanger se-
quencing on replicate ChIP DNA to find potentially func-
tional SNPs in these regions. No difference in genotype
was found for these SNPs.

For the histone modifications we used longer paired
end reads and achieved better coverage over SNPs in the
differentially enriched histone regions. SNP calling on
the combined dataset gave 121 SNPs in patient and 57
SNPs in control that are also present in the GWAS cata-
logue (http://www.genome.gov/gwastudies) (Additional file
2: Tables S2 and S3). Additionally, 1237 SNPs in high LD
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with the GWAS SNPs were identified in the patients and
456 in the control (Data not shown). We hypothesized
that the consequence of a functional SNP sometimes can
be seen as a differences in the histone modification level,
due to changes in TF binding or nucleosome positioning.
To support our hypothesis, we further looked at the regu-
latory potential of the GWAS related SNPs using two EN-
CODE project based databases, Haploreg [31] and
RegulomeDB [32] and found that the majority of these
GWAS catalogue dbSNPs are located at TF binding
sites, binding motifs and DNasel HS sites, which ex-
plains the regulatory potential of these SNPs and their
possible contribution to disease. We have also observed
that some of the SNPs from the patient sample are within
the binding motifs of TFs associated to ASH (Additional
file 2: Table S3).

Apart from GWAS catalogue SNPs, we have also identi-
fied 383 novel SNPs in the patient with overlap to the dif-
ferentially modified regions (250 SNPs from regions with
higher HM signal in the control and 133 SNPs from re-
gions with higher signal in the patient) (Additional file 2:
Tables S4 and S5). Some SNPs are associated to multiple
genes or transcripts. Some of these SNPs might be in-
volved in the etiology of the disease, e.g. by differential
binding to TFs.

USF1 binds genes associated to ASH

We found a good correlation between enrichment for
USF1 close to TSS (r=0.66 for peaks within 250 bp of
TSS, (Additional file 2: Figure S8) with more than half of
the ASH peaks located within 100 bp of a significant peak
in the control dataset. Several USF1 peaks were found at
genes previously known to be involved in steatohepatitis
or other liver specific disorders. We compared the enrich-
ment at these genes and found some with potential differ-
ential enrichment for USF1. We selected genes with
potential differential USF1 binding where the signal was at
least two times higher than the significance threshold for
one of the samples, and compared the expression of genes,
some with a known involvement in liver metabolism.
These genes include Adenosine Kinase (ADK), which had
a significant USF1 peak only in ASH, and Oxysterol bind-
ing protein like 6 (OSBPL6) and Peroxisome proliferator-
activator receptor y (PPARy) [33,34], which were higher
in control. ADK is an enzyme involved in liver metabol-
ism and its deficiency may lead to the development of
hepatic steatosis [34]. PPARy is a TF involved in lipid me-
tabolism and treatment with ligands of PPARy can im-
prove NASH [35]. We analyzed the mRNA expression of
these genes using qRT-PCR and found the expression to
agree with USF1 signal for ADK and OSBPL6 but for
PPARy higher USF1 signal was associated with lower ex-
pression (Figure 4). We also tested three other genes not
known to be involved in the disease but with potential
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differential USF1 binding, and found higher USF1 signals
to correlate with higher expression with significant differ-
ences in mRNA for ANAPCS and NEU1 but for COPZ1
there was no significant difference in expression (Figure 4).
In summary, for four of the tested genes, a significant dif-
ference in expression is seen in accordance with ChIP-seq
peak heights, for one there was no difference in expression
and for one a significant difference in the opposite direc-
tion was observed. USF1 may be involved in the control of
expression of these genes, but differential binding does
not appear to be the only mechanism underlying altered
expression in ASH patients.

ChlIP-seq data of histone modifications correlated with
RNA expression

Gene expression levels can be predicted using histone
modifications [36]. To see if the differential enrichment
of histone modifications between ASH and controls cor-
relate with gene expression also in other samples of the
same type, we have chosen 16 genes from the top thou-
sand differentially enriched histone modification peaks
and measured RNA expression with qRT-PCR. Out of 16
genes tested with qRT-PCR (Figure 5), expression-values
of 11 genes were significantly different in concordance
with ChIP-seq data of histone modifications (Figure 5;
PPARGCla, HNF4a, ARL6IP4, ATAD2B, IGFBPI, IL6R,
ELP3, TCEB3, ALASI, PRKARIB and ILI5RA) and 1 gene
had a significant change in the opposite direction (Figure 5;
AMDI). Four genes did not show any significant dif-
ference between ASH and control (Figure 5; DDX3X,
IFITM3, FAIM3 and DYRKIB). Most of the tested
genes are involved in lipid metabolism and cholesterol
metabolism, directly or in the presence of other TFs.
We have tested Peroxisome proliferator-activated receptor
y co-activator la (PPARGCla) which is a TF previously
known to be involved in developing of NAFLD [37,38].
PPARGCIa gene polymorphisms and lower expression of
PPARGCla are important contributors of NAFLD [37]
and also in our samples we found lower expression in the
ASH than in the control. Thus, there is a chromatin signa-
ture related to gene expression that can help distinguish
ASH from normal tissue. Further studies may define the
mechanisms that drive the difference in gene activity.

Discussion

By studying key TFs and histone modifications in tissue
samples from cases with ASH and from controls we may
learn more about the etiology of the disease. In a previ-
ous study, we mapped USF1 binding regions along with
USF2 and H3Ac in HepG2 cell line using ChIP-chip [7]
and found that USF1 regulates genes in glucose and lipid
metabolism. We therefore decided to study the role of
USF1 and three histone modifications in the liver disease
ASH. In this study we present the first whole genome
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analysis of USF1 and three histone modifications using
ChIP-seq in liver tissue from a patient with ASH and
liver tissue with normal histology.

KEGG pathways identified many genes involved in
liver metabolism in normal tissue and many cancer re-
lated genes in liver tissue from a ASH patient. This indi-
cates that the mapping of histone modifications may
provide further knowledge about disease progression.
Potentially they can serve as biomarkers that could be
mapped in liver biopsies from disease subjects and re-
sults like those in this study could provide support for
more intense intervention to lower alcohol consumption
and other types of therapy. The genes found in this
study may be involved in the disease but more func-
tional studies are needed to verify this. We have also ob-
served the change of gene expression and function of
these genes using the GORIilla and Liverome databases.
Based on these studies, our data proved that using
ChIP-seq of histone modifications and TFs we can iden-
tify genes involved in the disease as well as new disease
candidates. More functional studies of these genes are
needed to determine their relation to ASH. Due to the
limitation of tissue material availability from the same
individual, we have used tissue material from different
individuals for the ChIP-seq experiments but used the
same tissues along with a third set of tissues for RNA
expression and found good correlation between histone
peaks and gene expression, which suggests that similar
mechanisms are present in multiple patients. There was
a partial correlation between USF1 ChIP-seq signal and
RNA expression. The study thus gives input to the de-
sign of biobanks so that enough material is collected to
allow a series of assays to be performed on a tissue sam-
ple from the same individual, or preferentially from lar-
ger cohorts.

We have identified several SNPs with high regulatory
potential from the GWAS catalogue using ChIP-seq data
of histone modifications. Some of these SNPs contain
motifs for different TFs. For example, we found that the
SNP rs17145750 is located within the binding motif of
PPAR in MLXIPL gene (Additional file 2: Table S2). PPAR
is known to be involved in NASH and ASH progression
[35,37,39] and MLXIPL (also known as ChREBP) is one of
the key regulators in glucose metabolism and is also in-
volved in maintenance of tri glyceride levels [40]. Further
focus on the SNPs identified in this study may reveal a
contribution of these SNPs in the etiology of the disease.

From ChIP-seq data, we found many differentially
enriched signals between ASH and control for USF1 and
for histone modifications. RT-PCR results for mRNA ex-
pression from USF1 enriched sites showed that the ex-
pression is independent of USF1 enrichment. This means
that USF1 alone did not show any effect on expression of
these genes so other factors are of importance. On the
other hand ChIP-seq signals for histone modifications are
strongly correlated with mRNA-expression indicating that
it is of interest to map them in order to learn more about
the disease.

To our knowledge this is the first ChIP-seq study with
USF1 and histone modifications in ASH patients. Our
study identified many genes associated with liver-specific
disorders. It is of great interest that we found signatures
of histone modifications in genes in cancer pathways.
Thus, if replicated in larger cohorts similar studies may
have prognostic value in patients. We have also shown
that ChIP-seq of histone modifications and TFs may aid
identification of functional SNPs in regions associated to
disease found in GWAS. Our study indicates the value
of performing ChIP-seq with disease associated TFs to
get better conclusions about the causes of disease.
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Conclusion

In conclusion we find that ChIP-seq of histone modifica-
tions and transcription factors is a powerful method to
study disease mechanisms on tissue samples. Further-
more, for histone modifications we identified differentially
enriched peaks i.e. that were high in disease and low in
normal tissue, or vice versa, and some of the associated
genes have previously been implicated in the disease
whereas others should be further studied as etiological

candidates. An important finding was that the highest
peaks in disease tissue were at genes in cancer-specific
pathways indicating that the tissue from this ASH patient
could be on a route to malignancy, which is a common
complication to the disease. Such histone marks have the
potential to act as biomarkers for a severe disease if repli-
cated in larger epidemiological studies. Based on GWAS,
SNPs have been identified that contribute to the risk of de-
veloping steatohepatitis and other liver-specific disorders.



Bysani et al. BMC Medical Genomics 2013, 6:50
http://www.biomedcentral.com/1755-8794/6/50

By investigating the sequence reads of the histone modifi-
cations we found many known and novel SNPs and many
of them are present in the GWAS catalogue. Since histone
marks are present at gene regulatory regions the SNPs
found in this study are candidates to be involved in the eti-
ology of any disease due to molecular defects in the liver,
including ASH. We have also identified genes with differ-
entially enriched USF1 peaks and differential RNA expres-
sion which suggests that USF1 may be one of the many
factors that contributes to the disease. Thus, the study
shows that analysis of chromatin and TFs furthers the
knowledge of liver biology and the same strategy can be
applied to other normal and disease tissues.

Data accession

All ChIP-seq data is freely available at NCBI SRA web-
page (http://www.ncbinlm.nih.gov/sra/) with the acces-
sion number SRA066400.

Additional files

Additional file 1: Shows the USF1 peaks and read counts for
control and ASH.

Additional file 2: Figure S1. Comparison of ChIP-seq signals with ChiP-
qPCR represents the good correlation between gPCR and ChIP-seq signal.
Figure S2. Comparison of the ChIP-seq signal over the peak regions
between disease and control for the histone modifications. Figure S3.
The number of genes that contain histone modification peaks both in
ASH and in control, only in ASH and only in control. Figure S4. Different
biological processes identified using the genes associated with histone
modifications in ASH. Figure S5. Different biological processes identified
using the genes associated with histone modifications in control.

Figure S6. Histone modification pattern for the genes associated with
alcoholic liver disease and ASH. Figure S7. Fraction of peaks with USF1
motif ranked on peak height, with comparison to peaks called with MACS
for the same dataset. Figure S8. Correlation between ASH and control
signals for USF1 for peaks close to TSS. Table S1. Sanger sequencing
results of SNPs identified at USF1 peaks and alleles identified for Genomic
DNA and ChIP DNA of USF1. Allele frequencies obtained from dbSNP129
and AA, AB and BB indicate the frequencies calculated by using
Hardy-Weinberg equation. Table S2. GWAS catalogue dbSNPs identified
using ChIP-seq data of histone modifications in control. Table S3. GWAS
catalogue dbSNPs identified using ChiP-seq data of histone modifications
in ASH. Table S4. Novel SNPs identified using ChIP-seq data of histone
modifications in control. Table S5. Novel SNPs identified using ChIP-seq
data of histone modifications in ASH. Table S6. Primers used for USF1
qPCR validations, mRNA primers for USF1 and histone modifications.

Additional file 3: Peak regions with the highest differences in
histone modification levels between ASH and control.

Additional file 4: List of genes within 2 kb from the histone
modification peaks with highest difference between ASH and
control. Peaks for all three histone modifications are combined. This is
the list we have used for Gene Ontology.

Abbreviations

ChlIP: Chromatin Immunoprecipitation; ChIP-seq: Chromatin
Immunoprecipitation coupled with sequencing; GO: Gene ontology;

GWAS: Genome wide association studies; H3K27ac: Histone 3 lysine 27
acetylation; H3K4me1: Histone 3 lysine 4 mono-methylation;

H3K4me3: Histone 3 lysine 4 tri-methylation; HCC: Hepatocellular carcinoma;
NAFLD: Non-alcoholic fatty liver disease; ASH: Alcoholic steatohepatitis;
NASH: Non-alcoholic steatohepatitis; gRT-PCR: Quantitative real time PCR;
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SNP: Single nucleotide polymorphism; TF: Transcription factor;
TSS: Transcription start site; USF1: Upstream stimulatory factor 1.
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