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Abstract

conditions, respectively.

discriminant analysis classification methods.

be validated experimentally.

Background: In this study, we explored the gene prioritization in preeclampsia, combining co-expression network
analysis and genetic algorithms optimization approaches. We analysed five public projects obtaining 1,146
significant genes after cross-platform and processing of 81 and 149 microarrays in preeclamptic and normal

Methods: After co-expression network construction, modular and node analysis were performed using several
approaches. Moreover, genetic algorithms were also applied in combination with the nearest neighbour and

Results: Significant differences were found in the genes connectivity distribution, both in normal and preeclampsia
conditions pointing to the need and importance of examining connectivity alongside expression for prioritization.
We discuss the global as well as intra-modular connectivity for hubs detection and also the utility of genetic
algorithms in combination with the network information. FLTT, LEP, INHA and ENG genes were identified according
to the literature, however, we also found other genes as FLNB, INHBA, NDRG1 and LYN highly significant but
underexplored during normal pregnancy or preeclampsia.

Conclusions: Weighted genes co-expression network analysis reveals a similar distribution along the modules
detected both in normal and preeclampsia conditions. However, major differences were obtained by analysing the
nodes connectivity. All models obtained by genetic algorithm procedures were consistent with a correct
classification, higher than 90%, restricting to 30 variables in both classification methods applied.

Combining the two methods we identified well known genes related to preeclampsia, but also lead us to propose
new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which may have to

Background

Preeclampsia remains a leading cause of maternal/fetal
mortality and morbidity associated with gestational hyper-
tension and proteinuria. The underlying mechanism and
preventive treatment [1,2] remain unknown and therefore,
it is still known as the “disease of theories” [3]. Due to pos-
sible multifactorial causes involved [1,2,4], an increase in
“omics” experimental approaches is noted, generating a
large amount of information, not always integrated or ana-
lysed by recent methodologies.
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Some bioinformatics analysis were performed on spe-
cific microarray assays [5-7], and our group has recently
carried out an extensive review of related data, processing
multiple microarrays combined with text mining tools that
led to the identification of several specific genes [8].

In this work, we present a different strategy focused
on gene prioritization by co-expression network analysis
and genetic algorithms optimization. We also increase
the number of microarrays processed.

Methods

Microarray processing

Experimental microarray data comparing normal (N) and
preeclamptic pregnancies (PRE) was obtained analysing
the Gene Expression Omnibus (GEO) and ArrayExpress
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databases [9,10]. Only the studies comprising more than
10 subjects (by groups) were included (Table 1).

Table 1 shows the GEO and Array Express data sources,
references, and additional information used in the study.
Each microarray was processed as follows: for Affymetrix
platforms, the raw data was mas5 preprocessed and log2
transformed using affy package [15], in Bioconductor [16];
for Ilumina platforms, batch correction, normalization
and log2 transformation were performed using the [umi
package [17], also in Bioconductor; finally, ABI Human
platform was used as provided. The authors (GSE
10588, ABI platform) indicated that the arrays were
quantile normalized and background correction was
performed using ABI 1700 software, however, we ex-
tracted and processed the public data using GEOquery
package [18] in Bioconductor.

In cross-platform microarray analysis the first step, after
individual microarrays analysis is to combine the different
probes. For this task usually a common identifier is used
(ie. entrez gene, unigene code) in order to obtain the
common space across all platforms [19-21]. We mapped
the arrays probes for the respective entrez gene ID
through manual observation and also using the updated
manufacturers annotation information (using R-packages:
lumiHumanIDMapping and hgul33b.db [22,23]) for all
platforms. Only genes common to all platforms (6816
genes) were used in the subsequent analysis. Genes with
more than one probe were combined by averaging the
intensity values using collapseRows and intersect the func-
tions available in the WGCNA package [24,25]. The sec-
ond normalization was performed in order to re-scale the
intensity and also remove cross-platform batch effects
using Combat function in SVA package [26]. The identifi-
cation of genes with statistically different expression be-
tween N and PRE groups was performed using [mFit from
Limma R-Package [27] and only genes with p<0.05 (n=
1146 genes) were considered for co-expression networks
construction.

Co-expression network construction and analysis

Genes differentiated (n = 1146 genes) between N and PRE
groups were used for weighted genes co-expression
(CoE) network construction in each group using

Table 1 General microarrays information

Code Database Sample Method  Tissue Ref.
E-TABM-682  Array express 13(PRE), 58(N) lllumina Placenta [11]
E-MEXP-1050 Array express 16(PRE), 17(N) Affymetrix ~ Placenta [12]
GSE25906 GEO 23(PRE), 37(N) lllumina Placenta [13]
GSE14722°  GEO 12(PRE), 11(N) Affymetrix  Placenta [14]
GSE10588 GEO 17(PRE), 26(N) ABI Human Placenta [7]

Notes: All samples were collected for biopsy of placenta during childbirth. 2)
In the GEO appear two platforms (GPL96, GPL97) but only GPL96 was used
because a greater number of probes are shared with other platforms.
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WGCNA package [24]. In the weighted genes co-
expression network the nodes represent genes and the
edges represent the connection strength which corre-
sponds essentially to a weighted adjacency matrix (A) with
elements a;; = |cor(x; xj)|ﬁ where x; and x; are the expres-
sion profiles of genes i and j. This method considers a
continuous ([0,1] interval) instead of discrete adjacency
matrix which proved to be highly robust with respect to
the [} parameter variation.

In this study, we selected P = 6, following the scale-free
topology criterion proposed by Zhang and Horvath
using the pickSoftThreshold function in WGCNA (data
not shown) [28]. Once defined the adjacency matrix for
each group (normal and PRE), the co-expression matrix
(CoN and CoP, respectively) and the topological overlap
matrix (TOM) were obtained (Figure 1). The topological
overlap matrix (TOM) is the central starting point for
network modules detection and analysis and each elem-
ent (w;) represents a measure of similarity between two
nodes in the same network.

Further analyses were divided into main branch (Figure 1):
a) modular (inter and intra-modules) analysis and b) genes
(nodes) analysis.

Modules analysis

The modules were detected using the Dynamic Tree Cut
algorithm [29] with cutreeDynamic function in WGCNA
package and defining the deep split=3 and cutting
height corresponding to the 99th percentile and the
maximum of the joining heights on the dendrograms. In
each module, the node connectivity and the node intra-
modular connectivity were calculated. This means, the
node connectivity is basically defined as the sum of the
weights of all edges connected to it (k; = ¥ ;a;;), however,
when a module is defined each gene is now linked with
a specific subgroup of neighbours and therefore con-
nectivity will change as a consequence of reduction of
the number of neighbours, therefore, in a network with
m =1,2,...,M modules and where each of these modules
has N,, nodes, the intra-modular connectivity (k}") is
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Figure 1 Workflow overview representing the different
procedures explored in the present study. CoN and CoP: Normal
and Preeclampsia co-expression matrixes, respectively.
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defined as k)" = Zj-v"‘a,«,,», this means, the sum of the
weights of all edges connected to node i in module .

We also compared the modules obtained for each net-
work (CoN and CoP), using the Fisher’s exact test, where
we basically analysed the number of common genes be-
tween modules. Therefore, the modules (between the
two conditions), with an increased number of shared
genes tend to be more unspecific. Combined analysis of
intra-modular connectivity and modules comparison
could provide a better identification and description of
each gene in the network modules, and therefore the
identification of potential network hubs.

Nodes analysis

Even when the module analysis above could provide a
deep inside in the network hubs in identifying PRE specific
related genes, we are interested in a direct comparison be-
tween nodes (genes) in both networks. The weighted adja-
cency matrix represents a complete graph because each
element of the network is connected (even with very low
strength), moreover, both the network have the same
number of nodes and edges, so if connectivity environ-
ment of a gene i is similar in both network then the genes
are also similar in both physiological states. Consequently,
we define a distance measure of gene i between two net-
works (CoN and CoP) as follows:

L 1 N ( cop_ con)?
KDist; = 7/(?0[, n kiC”N \/Zj_l (au - )

The highest values of KDist correspond to genes with
very different connectivity environments and therefore
more likely to be a significant gene in the PRE condition.
Similar procedures were implemented by other authors,
using the node degree obtained in binary adjacency
matrix and counting the number of common edges
[30,31]. To select a group with increased distance values,
we need to identify a distance cut-off. The cut-off dis-
tance was selected for comparison with 1000 random-
ized network as follows: for each network (CoN and
CoP) 1000 network were obtained by random permuta-
tion of the original edges strengths (a;;). Among all net-
works (randomized N and PRE) the KDist is computed
followed by counting the number of nodes with dis-
tances higher than a predefined percent (cut-off value)
of the maximum distance value. The selected numbers
of genes for the different cut-off values were compared
using t-test (similar strategy was followed in [30,31]).

Gene ontology and metabolic pathway enrichment analysis
The gene ontology and pathways enrichment analysis were
performed using DAVID bioinformatics resource v6.7
[32], exploiting the well know databases: gene Ontology
and KEGG databases. Complete enrichment analyses of
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each of the network modules will considerable increase
the length of the presented work and therefore we will
present only the results obtained for specific and relevant
modules.

Genetic algorithm optimization in genes selection

These procedures can also be seen as a node centred ana-
lysis, but considering exclusively expression values and
not a network structure. The general idea is to identify
genes (combination of them) that maximize the differenti-
ation between N and PRE groups. In this context, we can
apply a combination of genetic algorithm (GA) optimi-
zation with two widely used classification methods:
Nearest Neighbour (GANN) and Discriminant Analysis
(GADA). We used the Euclidian as the distance metric in
the nearest neighbour algorithm and the linear discrimin-
ant function in the discriminant analysis. It is important to
realize that other metrics can be used in both the nearest
neighbour and discriminant analysis and probably will lead
to different results, however, find the “best” strategy is not
an objective of the present study and probably will depend
on particular classification/data problem.

The GA was run 25 times with different initial popula-
tions and each of the final models was used in further
analysis. The GA initial parameters were: 1,000 genera-
tions, the initial population of 100 chromosomes and a
cross-over and mutation probability of 0.7 and 0.3, re-
spectively. The maximum number of selected genes was
restricted to 30. The criterion for model selection was
the leave-one-out (LOO) cross-validation procedure and
therefore, for each algorithm, we have a set of 25 models
and the error estimated by the LOO, respectively.

The 25 models obtained in each algorithm procedure
(a total of 2x25 models and a maximum possibility of
25x30 different genes, by procedure) do not comprise
the same genes but a space of them. However, some
genes are frequently present across the models and
therefore may be of specific interest in further consider-
ations. We also cross-analysed the genes space obtained
by the different GA procedures with the respective gene
location in the network modules and also the relation-
ship with KDist leading to integrated information and
facilitates the interpretation.

Results
The correlation between the mean ranked expression, as
well as the mean ranked connectivity between N and
PRE groups shows a higher correlation for the expres-
sion instead of connectivity, even when both are statisti-
cally significant (Figure 2).

The average nodes degree in each network were
(mean * standard error): 1.57 +0.05 (N) and 32.7 +0.19
(PRE), indicating that the correlation between the gene



Tejera et al. BMC Medical Genomics 2013, 6:51
http://www.biomedcentral.com/1755-8794/6/51

Page 4 of 10

R=0.62 p-value <0.01

Connectivity(PRE)

200 400 600 800

0

T T T
0 200 400 600 800
Connectivity(N)

\

Figure 2 Left: Mean ranked expression comparison; Right: Mean ranked connectivity comparison between Normal and PRE group.
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expression in PRE is increased. This means that the in-
terconnectivity between genes is higher on PRE over N.

Using the Dynamic Tree Cut method, 8 and 7 modules
were identified in CoP and CoN, respectively (Figure 3)
marked as follows: CoP) MP1 (53 genes), MP2 (203
genes), MP3 (186 genes), MP4 (104 genes), MP5 (52
genes), MP6 (84 genes), MP7 (310 genes) and MP8 (154
genes); CoN) MN1 (225 genes), MN2 (141 genes), MN3
(78 genes) MN4 (83 genes), MN5 (77 genes), MNG6 (410
genes) and MN7 (132 genes). The MN4 (grey) correspond
to those genes that are not grouped in any particular
community.

The comparative enrichment module analysis reveals
that all modules have a certain overlap between N and
PRE group (Figure 4 Left) to some degree, suggesting that
the genes are grouped in a similar fashion between the

two conditions. Furthermore, we note that the MP4 com-
prise genes with large differences in the expression values
(mainly up-regulated), suggesting that this module could
include genes of interest (at least in terms of expression).
In fact, the gene ontologies and pathways enrichment ana-
lysis indicates that biological processes like (p-value <
0.01): ovulation cycle, sexual differentiation, regulation of
hormone levels and the erythrocyte differentiation are sig-
nificantly enriched in the MP4 module, as well as meta-
bolic pathway related with the GnRH signalling pathway
that is closely related with the cytokine-cytokine receptors
interactions. Hormonal modifications and cytokine sig-
nalling processes are highly relevant in the PRE (see
Discussion).

Similar modules relevance can be considered for MP6
and MP8 because they comprise (especially MP6) mainly
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Figure 3 Dendrograms and module representations obtained in normal (Top) and preeclamptlc (Botton) co-expression networks.
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Figure 4 Left: Fisher's exact test in modules superposition where coloured cells represents p-value <0.05; Right: CoP modules differential

down-regulated genes. Genes in MP6 module enrich
biological processes as (p-value < 0.01): vascular develop-
ment, blood vessel development, vasoconstriction, cell
adhesion, regulation of endothelial cell proliferation as
well as metabolic pathways (p-value <0.01) like ECM-
receptor interactions and focal adhesion. All these pro-
cesses are relevant and well known in PRE.

Besides considerations of expression values we must
also consider the way in which genes are connected,
actually, even when the modules overlap is significant,
a different picture emerges by restricting the overlap
to genes with increased intra-modular connectivity
(K" > (k") + std (k[")). Table 2 shows the top 10 genes
with increased intra-modular connectivity (some mod-
ules do not have 10 tops and hence a reduced number is
displayed), where we may notice that a few genes overlap
between modules (only 28 genes of 145 selected higher).
These results suggest that a large amount of common
genes are not highly connected or, more importantly,
they are highly related, but only in one of the networks.

MP7 module showed 168 significant overlapped genes
with MNG6. However, after the connectivity restriction
few remained, even when both MP7 and MP6 are mod-
ules with higher intra-modular connectivity (Table 3).
This suggests that MP7 could be a potential module for
hubs identification. In addition, some of the selected
genes, for example in MP4, are well known in relation
with PRE (i.e. INHA, FLT, ENG see Discussion) and that
are not shared with the CoN modules.

The variation of (k") tend to be higher than <k> and
not necessarily expresses the same behaviour for both, i.e.
the MP5 modules showed the highest <k> values but
almost the minimal (k") ones. Modules with increased
intra-modular connectivity suggest genes involved in simi-
lar process, however, in terms of significance, the modules
(or differentiability) on the intra-modular connectivity can-
not be considered without global connectivity. In terms of
expression differentiability, MP4 module can be considered
relevant because of the higher expression differences

(Figure 4 right) but considering the connectivity aspects
we should include MP7 by the higher intra-modular con-
nectivity. It is precisely this dichotomy between expression
and connectivity that leads us to consider further based
gene analysis.

The enrichment analysis for the MP5 and MP7 modules
indicates less specific processes that can agree with the
highest <k> in both modules. The gene ontology database
has a hierarchical structure where the specificity of the

Table 2 Modular analysis

MP1  EEF2,GSTK1,ATP5,MRPL12 NME4,EFEMP2,PCOLCE,
RASL12,ADD1

MP2  AP2M1,AP2B1,TTC1,ACTRTAMED12,TAF10,VPS72,
CSNK2B,ATOX1,UBTF

MP3  CNIH,B3GNT2,RAN,GTF2E1,RB1,ME2,CRTAP,PNMAT,IDH1,

RPL15

MP4  FSTL3,FLT1,TPBG,NDRGT1,INHA HEXB,ENG,INHBA,FLNB,

oRE SPAG4

MP5  TSNAX,SYPL1,PSMAT1,PRDX3,DCKPUMT,CTNNB1,ZNF217,
PSMC6,CSNK1AT

MP6  TAGLN,MYH11,COLT1A2WFDC1,COLTATACTA2 ACTG2,
DPYSL3,CDH5,PDLIM3

MP7  DLD,SFRS10,UQCRC2,PRKRA,CCNG1,DNAJB4,STRAP,
SEPT2,RBBP7,SEPP1

MP8 EZRKRT19,CYP11A1,TECRDDR1,PPP1R13L,SLC35A2,
ILVBL,ARID3A,EPHB3

MNT  NAPTLTMGAT1,CMPK1,HOXA10,CTSD,RBBP7,UPF1,
ATP6VOBNRTH2,NPTN

MN2  ZFANDG,JAKT, TSNAX,KLF10,RRAS2 MAP4K3 PSMAT,
FNTA,SYPLTMAEA

MN3 CNIH,RB1,PMP22,DH1,CAV2,CRTAP,IL33,HPRT1,RPL1S5,
PDGFRA

NORMAL MN4 MS4A6A,CYBB,TLR7,FOSDUSP1,FOSB

MN5  CYP11A1EZRDDR1,LAD1,TECRKRT19,ELF3,CLDN7,ILVBL,
SPINT2

MN6  DLD,UQCRC2,MORF4L1,SEPT2,SNAP23,CCNGT1,ZNF12,

TWF1,NFE2L2,SEP15

MN7  TAGLN,MYH11,COL1A2, ACTG2,DPYSL3WFDC1,ACTA2,
PDLIM3,TNCRASL12

Selected genes with the highest intra-modular connectivity.
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Table 3 Modules statistics

CoP modules <k> <k{"> CoN modules <k> <k">
MP1 31.68 424 MN1 1.75 0.83
MP2 3241 13.31 MN2 1.25 0.58
MP3 33.61 11.61 MN3 0.95 0.29
MP4 3092 841 MN4 0.14 0.02
MP5 3515 4.29 MN5 1.08 0.39
MP6 31.28 520 MN6 229 1.62
MP7 34.04 2041 MN7 0.95 049
MP8 31.06 7.96

biological processes increases at each ramification level.
Modules such as MP4 and MP6 previously discussed are
significantly enriched in biological processes, even at level
4 or 5 leading us to specific (and therefore more relevant)
processes, while a different pattern emerges from MP7
and MP5.

Most of the statistically significant biological processes
enriched in MP5 module can’t go further than level 2 (i.e.,
cell cycle process and organelle organization), and there-
fore is expected a high <k> but lower <klm > as shown in
Table 3. Moreover, the genes in MP7 modules enrich a
great number of processes in the level 1 and level 2, but
also at level 4 and 5 likes (p-value < 0.01): protein folding,
DNA metabolic processes and protein transport. These
processes related with MP7 module even when specifics
are actually part of many central pathways and therefore
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we should expect a high <k> and <k;”> as shown in
Table 3.

Analysing nodes (genes) distance between the two net-
works (Figure 5), it can be noted that even for relatively low
values of distance cut-offs (expressed as percentage of the
maximum distance), the number of genes obtained were
statistically significant (p-value < 0.01 at 75%) compared to
the cut-off of the same randomized networks. For a cut-off
distance > 85, 90, and 95% we identified 261, 46 and 14
genes, respectively, distributed in several modules. As can
be seen the representative modules according to KDist are
the MP4 and MP7 considering the biggest differences be-
tween the node distances and also in correspondence with
the previous modules analysis. In fact, in the 14 genes with
maximum KDist values- NDRGI, FLT1, TPBG, FSTL3,
FLNB, INHBA, SPAG4, INHA, HK2, HEXB, TPI1, BCLS6,
LEP, QSOX1- we also found FLTI, FLNB, INHA, LEP and
INHBA, which are some of the nodes with greater intra-
modular connectivity.

The analysis of genes based on GA algorithms also in-
dicates a strong participation of MP4, but also including
MP1 with GADA (Table 4). Moreover, we found at least
one model with more than 97% of correct classification
using the GADA procedure while all models revealed a
LOO value higher than 90%, with 30 selected genes. The
MP1 inclusion as a relevant module is a result of expres-
sion exclusive analysis. This means, GA methods con-
sider only the expression values in the model generation
and selection of variables and therefore modules like

expressed as the percent of the maximal distance.
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Figure 5 Distance cutoff analysis (A) and genes distribution across modules (B) for different cutoff values. The distance cutoff is
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Table 4 Genetic algorithm methods results and genes distribution across PRE co-expression network modules

Methods <LOO> LOO.x MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
GANN 0.940 0.965 0.92 1.06 1.07 1.13 1.11 091 0.91 0.98
GADA 0.952 0.978 1.54 0.94 1.02 1.31 0.59 1.17 0.90 091

Notes: LOO: leave-one-out cross-validation procedure; <LOO> corresponds to the average LOO cross-validation value in the 25 runs; LOO,. is the maximum LOO
value obtained. The numbers in each of the CoP modules correspond to a ratio of modules that participate in the total 25 models.

MP7 with a higher intra-modular connectivity, but lower
differential expression may be underestimated.

Analysing all the genes covered by the 25 models we
have: 496 (GANN) and 337 (GADA). The overlap be-
tween the two methods led to 163 genes, but only 11
were also found with KDist >90%: FLT1, TPBG, FLNB,
INHBA, BCL6, QSOXI1, HILPDA, ENG, PROCR, TTCI1
and SLC6AS8. Most of these genes belong to MP4 mod-
ules (n=10), as expected, due to the influence of this
module in expression values, however, being in the top
list of KDist indicate that these genes also reveal some
connectivity contribution. Therefore, these genes are an
intermediate point comprising expression and connect-
ivity however, must be plausible to consider the ex-
tremes genes in both connectivity (like INHA, NDRGI,
FSTL3 and/or RBBP7) and expression differences (like
MMPI1, GCLM, and/or RARRES?2).

To facilitate further discussion we integrated the 163
genes obtained by GANN and GADA superposition in
different graphical representations containing informa-
tion about connectivity, KDist and expression (Figures 6
and 7).
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Figure 6 Variation of KDist with respect to DE for the 1146
considered genes. The black points correspond to 163 genes
obtained by GANN and GADA. There are 46 genes with KDist > 90%
located over the horizontal line. The DE represents the mean
difference between genes expression in the N and PRE groups.

Figure 6 shows that the 163 genes obtained by GADA
and GANN superposition actually cover a wide range of
behaviours expression (down-regulated and up-regulated)
and also some of the genes with the highest KDist value.
Interestingly, the most down-regulated gene (MAMPI) is
covered by GA but not the up-regulated (LEP) one. We
also can see that the highly up-regulated genes are not ne-
cessarily those with the highest topological differentiabil-
ity. This pattern is even frequent with low regulated genes.

Figure 7 clearly shows that genes with higher intra-
modular connectivity are not necessarily those with large
topological differences or prioritized by the procedures
of genetic algorithms. Even when in CoN there is a clear
trend toward for selecting genes with low intra-modular
connectivity, in CoP there is no clear trend. Genes with
KDist >90% revealed a preference for a minimum intra-
modular connectivity in N network but not the max-
imum in the PRE network.

Discussion

The lower genes connectivity correlation instead of gene
expression intensity between N and PRE groups indicates
that genes expression profile is similar in both situations
(also partially supported by the similarities between net-
work modules). This means that genes with high or low
expression in N are also high or low expressed in PRE.
However, the mode by which genes are interconnected or
correlated is not so conserved. This also suggests that we
have useful information for differentiating normal vs dis-
ease by analysing the connectivity network as a com-
plement to an exclusive analysis of genes expression
intensity. Furthermore, the increased connectivity degree
in the network of PRE group can be a reflection of a highly
systemic disorder involving multiple metabolic pathways.
This could justify the high probability of multifactorial
causes and also the possibility of preeclampsia to progress
through more complex clinical conditions [33].

The comparison of network modules between the two
conditions revealed that the genes were grouped similarly.
All modules revealed some similarities in genes compos-
ition between the two conditions. However, there are main
differences shown by the way (and strength) by which they
are connected. In this regard, the MP7 module is highly
similar to MN6 sharing several genes, and many of them
also with a high degree of connectivity (ie. DLD and
UQCRC?2) (see Table 2 and Figure 4 left), but it is still
more similar to MP6 and MN7 modules sharing a smaller
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number of genes, but most of them with highest connect-
ivity values (see Table 2 and Figure 4 Left). The average
connectivity (total or intra-modular) indicates that MP7
contain genes with strong inter-correlations, however, as
we noticed, intra-modular connectivity itself could have
misled the module selection in terms of prioritization.

Our results based on KDist together with modular ana-
lysis indicate that MP4 and MP7 modules comprise the
genes with the greatest potential differentiability (Figure 6
Left). In the group of 14 genes with KDist>95% (all of
them in the module MP4) we found FLT1, LEP, INHA and
FSTL3. These genes are well known related to preeclamp-
sia [34-43] and in fact FLT1 and INHA have been used as
potential early predictive markers in multivariate models
[41-43]. Inhibin B (INHB), however, has not been studied,
as well as INHA during preeclampsia or general pregnancy
hypertension and only a previous study indicating signifi-
cant differences in preeclampsia was found [44]. A similar
situation was observed for BCL6 [45]. Previous publica-
tions support an up-regulation of TPBG [46] and also
NDRGI [47]. However, these genes have not been well
studied during pregnancy. Other genes as SPAG4, HEXB,
TPI1 and QSOXI are basically unknown in preeclampsia
(and even during normal pregnancy). Interestingly, of the
50 genes previously identified in another study and using
other network approaches [8], 11 genes were consistent
with our KDist > 90%, including the little exploited TPBG,
NDRG1, BCL6, LYN and FLNB. Several of these proteins
are related to hormone/endocrine pathways (ie, LED
INHA, INHB), a significant process already highlighted by
the enrichment analysis.

The genetic algorithm procedures have led to a high
number of genes mainly by using GANN. The nearest
neighbour is a non-linear method; therefore, it was not
influenced by the variables distribution. However, it is
probably by the nearest neighbour approach to select
genes that are highly significant (in terms of classi-
fication) as a group rather than as individuals [48].

Therefore, given the high co-linearity between genes ex-
pression, is quite possible to select a wide range of genes
combination capable of achieving a good classification
and thus considerably increase the gene space through
different models [48]. Even when the best models were
obtained with GADA, we think that the main advantage
was not in LOO values but in the reduced gene space
compared to GANN. On the other hand, the mathemat-
ical bases of nearest neighbour classifications are quite
different from discriminant analysis. Therefore, the over-
lapping of both genes spaces, even when functional, may
be a drastic approach with risks of rejecting significant
genes detected by the methods in their own model
space.

Both of these methods GANN and GADA share a
large number of genes (163) and some (11) are also
present in the KDist > 90% group. In this reduced group
we found again FLTI, TPBG, FLNB, INHBA, BCL6 and
QSOX1 discussed above, but also other genes such as
ENG and PROCR [34-43,49] which are well documented
in preeclampsia. Interestingly some of these genes (ie.
FLT1, FLNB and ENG) are well known related with
signalling pathways involved in cytokines interactions
and angiogenesis according to the biological processes
and pathways enrichment analysis.

These results suggest that the consideration of dis-
tance based on the co-expression network connectivity
is promising for the identification of significant genes;
however, a cutoff of 95% excludes relevant genes. This
can be observed not only by the inclusion of genes ob-
tained by GA in the 90% cutoff but also by looking other
MP4 genes contained in the range of 90%. In this group
we have, for example, the HTRAI and ACVRI that have
been well documented in preeclampsia [50-52].

The genes obtained by GA procedures appear to com-
plement those obtained by KDist cutoff>90% in several
ways. Figures 6 and 7 suggest that highly up-regulated
genes are better resolved by KDist or general topological
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measurements, contrary to the down-regulated genes.
This preference of up-regulated gene to be highly focused
was reported by other authors, considering the network
interactions [53,54]. However, some of the down-regulated
genes, uniquely identified by GA procedures are well doc-
umented in studies during PRE as XBPI and MMPI
[55-57] and thus can also be significant to the understand-
ing of the disease and its characterization.

Our results indicate that co-expression network ana-
lysis combining both modular and gene centred ap-
proaches are capable to identify genes significantly
related to preeclampsia. Some of these genes are consist-
ent through genetic algorithms approaches where other
down-regulated genes were relevantly prioritized. We
were able to corroborate some of the identified genes
through manually literature revision in order to validate
the hubs identification. However, some other genes re-
main unexplored or unknown, not only in preeclampsia,
but also during pregnancy, leading to the need of further
experimental confirmation.

Conclusions

Genes in weighted co-expression network revealed a simi-
lar distribution between detected modules in N and PRE
conditions. However, major differences were obtained
considering the connectivity of nodules. Genes with more
connectivity or intra-modular connectivity were not al-
ways detected as network hubs and better results were ob-
tained by comparing the gene and its neighbourhood
between the two conditions. In addition, all models ob-
tained by genetic algorithms were consistent with a suc-
cessful classification higher than 90%, restricting the 30
variables to at least one model greater than 95%.

Gene prioritization from microarray data was improved
considering both, gene expression and genes co-expression
(connectivity) information. In this sense the co-expression
weighted network and genetic algorithms clearly provided
consistent and complementary results. Combining the two
methods we identified, it is well known preeclampsia
related genes like: FLT1, LEP, INHA, ENG, PROCR, MMPI,
XBPI and FSTL3. However, other genes as FLNB, INHBA,
BCL6, TPBG, NDRGI, LYN and QSOXI were also signifi-
cant in our analysis, but this has been little explored or is
unknown in the current state of the art of preeclampsia
pathophysiology. Therefore, these results indicate that more
experimental research is warranted to exploit the role of
these genes in the development of pregnancy.
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