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Abstract

Background: Structure and function of the human brain are subjected to dramatic changes during its
development and aging. Studies have demonstrated that microRNAs (miRNAs) play an important role in the
regulation of brain development and have a significant impact on brain aging and neurodegeneration. However,
the underling molecular mechanisms are not well understood. In general, development and aging are
conventionally studied separately, which may not completely address the physiological mechanism over the entire
lifespan. Thus, we study the regulatory effect between miRNAs and mRNAs in the developmental and aging
process of the human brain by integrating miRNA and mRNA expression profiles throughout the lifetime.

Methods: In this study, we integrated miRNA and mRNA expression profiles in the human brain across lifespan
from the network perspective. First, we chose the age-related miRNAs by polynomial regression models. Second,
we constructed the bipartite miRNA-MRNA regulatory network by pair-wise correlation coefficient analysis between
miRNA and mRNA expression profiles. At last, we constructed the miRNA-miRNA synergistic network from the
miRNA-MRNA network, considering not only the enrichment of target genes but also GO function enrichment of
co-regulated target genes.

Results: We found that the average degree of age-related miRNAs was significantly higher than that of non
age-related miRNAs in the miRNA-mRNA regulatory network. The topological features between age-related and
non age-related miRNAs were significantly different, and 34 reliable age-related miRNA synergistic modules were
identified using Cfinder in the miRNA-miRNA synergistic network. The synergistic regulations of module genes were
verified by reviewing miRNA target databases and previous studies.

Conclusions: Age-related miRNAs play a more important role than non age-related mrRNAs in the developmental
and aging process of the human brain. The age-related miRNAs have synergism, which tend to work together as
small modules. These results may provide a new insight into the regulation of miRNAs in the developmental and
aging process of the human brain.
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Background

Structure and function of the human brain change dy-
namically during its development and aging. The molecu-
lar and structural transformations, which form the human
cognitive function, occur mainly in the period between
birth and adulthood, and some developmental processes
extend into adulthood, such as cortical axon myelinization
[1-3]. The aging process of human brain begins at early
adulthood. The aging-related changes include a decrease
of brain volume, loss of synapses, and cognitive decline
[2,4-6]. In later life, the brain starts to change in a more
destructive manner, which leads to a continuous cognitive
decline and a rise in the frequency of neurological dis-
orders including Alzheimer’s disease and Parkinson’s dis-
ease [7-9]. Although the changes in the developmental
and aging process of the human brain are clearly observed
in histology and cognitive function, the underlining mo-
lecular mechanisms are not well understood.

MicroRNAs (miRNAs) are a class of small non-coding
RNAs that regulate gene expression by promoting degra-
dation or repressing translation of target mRNAs in post-
transcriptional level. Moreover, some miRNAs have also
been observed to activate transcription and translation of
the targets [10,11]. Many studies have demonstrated that
miRNAs play important roles in many biological functions
and human diseases, such as cell proliferation, differen-
tiation, development, apoptosis, neuronal development,
differentiation, synaptic plasticity, and tumor development
[12]. In the developmental process of the human brain,
several lines of evidence indicated that miRNAs contrib-
ute to the control of the development, functional and
structural reorganization of the human brain [13]. For
example, neuron-specific miR-124 promotes neuronal dif-
ferentiation by directly targeting PTB, which encodes a
global repressor for alternative pre-mRNA splicing in
non-neuronal cells [14]. MiR-134, which is localized to
the synaptodendritic compartment of hippocampal neu-
rons, regulates synaptic plasticity by inhibiting translation
of Lim-domain—containing protein kinase 1 (LIMK1) [15].
Interestingly, accumulated evidence indicated that specific
miRNAs have been shown to be involved in brain aging
and other neurodegenerative pathologies [16-18]. miRNAs
can regulate pathways involved in aging, and are sig-
nificantly up- or down-regulated in their expression levels
[19]. There are around 1100 miRNAs in the human
genome [20,21], which potentially regulate the majority of
all human genes [22]. Therefore, these miRNAs may guide
many important biological processes ranging from pro-
liferation, differentiation to senescence and apoptosis
[23-25]. It has been shown that one miRNA could regulate
hundreds of target genes [26]. Moreover, the limited
miRNAs are able to regulate a large number of genes
through synergism, in which multiple miRNAs work
synergistically to regulate individual genes [27]. For
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example, Krek et al. [28] found that gene Mtpn was simul-
taneously regulated by miR-124, let-7b and miR-375,
which is the positive evidence for cooperative miRNA
control in mammals. Wu et al. [29] showed that
28 miRNAs could substantially inhibit the expression
of p21Cipl/Wafl. Therefore, the regulations between
miRNAs and predicted targets could be understood more
comprehensively from the network perspective. The cha-
racteristic, that one miRNA regulates a larger number of
genes and one target gene is jointly regulated by multiple
miRNAs, implies a complex regulatory network between
miRNAs and mRNAs. Studying this complex regulatory
network and the synergism of miRNAs would provide
new insights into the molecular basis of miRNA functions
at a system level.

Traditionally, development and aging are studied sepa-
rately, which may not completely interpret the phy-
siological mechanism over the entire lifespan. It was
recently found that the majority of miRNAs and gene
expression changes occurring in aging represent rever-
sals or extensions of developmental patterns [30]. Thus,
it is necessary to study the regulatory effect between
miRNAs and mRNAs in the developmental and aging
process of the human brain.

In this study, we first constructed a bipartite miRNA-
mRNA regulatory network by analyzing pair-wise corre-
lation coefficients between miRNA and mRNA expression
profiles in the prefrontal cortex of humans throughout the
lifetime. The miRNA-miRNA synergistic network was
then built from the miRNA-mRNA network. The work-
flow of procedure is shown in Figure 1. The generated two
networks will be explored to reveal the regulatory charac-
teristics of miRNAs in the whole life of the human brain.

Methods
Data used in the study
The mRNA and miRNA expression data (GSE18069) in
the prefrontal cortex of humans was downloaded from
the GEO database [30]. It contains 23 cognitively healthy
individuals with ages ranging from 2 days to 98 years
old. The mRNA expression profile was measured using
the Affymetrix Human Gene 1.0 ST platform and its
normalized data set was downloaded. In the mRNA data,
probe set identifiers (IDs) were mapped to ensemble
gene IDs and mean expression level from multiple probe
sets corresponding to the same gene was used to repre-
sent its expression level. The miRNA data was generated
using Illumina high-throughput sequencing, which was
derived from the analysis of the miRNA expression in 12
subjects selected from the individuals studied at the
mRNA level. The abundance of miRNAs was normalized
as RPM (reads per million reads) [31].

Candidate human miRNA-target relationships were
acquired from miRNA target databases: TargetScan [32],
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Figure 1 The workflow of procedure. 1) The workflow to construct the miRNA-mRNA regulatory network. The bipartite miRNA-mRNA regulatory
network was constructed by pair-wise correlation coefficient analysis between miRNA and mRNA expression profiles. 1) The workflow to construct
the miRNA-miRNA synergistic network. The miRNA-miRNA synergistic network was constructed based on co-regulation of target genes and GO
function enrichment of co-regulated target genes. l) The analysis of the mMIRNA-miRNA synergistic network. We compared topological measurements
between age-related-miRNAs and non age-related-miRNAs, and identified miRNA synergistic modules from the miRNA-miRNA synergistic network

miRanda [33], DIANA-microT [34], PicTar5 [28], RNA-
hybrid [35], RNA22 [36], PITA [37], MirTarget [38],
TargetMiner [39] and mirSVR [40]. In order to improve
the reliability of the predicted miRNA regulations, the
regulations that were stored in at least three databases
were extracted for our study.

Selection of age-related miRNAs

To test the effect of age on miRNA expression level for
selecting the age-related miRNAs, polynomial regression
models were applied [30]. For each miRNA, the best
regression model with the highest “adjusted r*” value
from families of cubic polynomial regression models was
selected [41]. More specifically, we fit a third degree

regression model with age for each miRNA:

(1)

where y;; is the expression level for gene i with i=1, -,
m and sample j with j =1, -, n, A; is the age of the sam-
ple j, and e; is the error term.

Then, we further calculated the six possible submodels
of Equation (1), for example:

yij = bOi + bll’A]‘ + bziAjz + b3l‘14}r»3 + €l‘]'

Yy = boi + buid; + €,y
= bo,’ + bliAj + l’)giAjZ + €ij, etc.

Finally, we compared all seven models to the null
model,
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yij = bOi + eij7 (2)

by means of an F-test. We chose the model with the
highest “adjusted r*” value as the best choice.

To generate the “age-related” miRNAs, the signifi-
cance of the chosen regression model was estimated
with the F-test, and the FDR was calculated by 1000 ran-
dom permutations of age. The median of the permu-
tation distribution was used as the null expectation. For
the miRNA data set, miRNAs with an age-test FDR < 0.1%
were defined as “age-related”. Analyses were conducted in
the R environment. The R code used in the analyses can
be found at www.picb.ac.cn/Comparative/data.html [42].

Construction of the miRNA-mRNA regulatory network
MiRNAs can regulate mRNAs through binding to its
3'UTR, and can also regulate other miRNAs through
indirect regulation. To comprehensively interpret the
possible miRNA-mRNA regulatory effects at the whole
genome scale, we constructed the miRNA-mRNA regu-
latory network by performing pair-wise spearman correl-
ation coefficient analysis to evaluate potential correlations
between 554 miRNA and 12,281 mRNA expression levels
on 12 human brain samples. False discovery rate q value
(gFDR), computed by the QVALUE software [43], was
used to evaluate the statistical significance of miRNA-
mRNA pairs. The miRNA-mRNA regulatory network was
constructed by assembling all the significant miRNA-
mRNA pairs (qQFDR <0.05), in which nodes represented
miRNAs and mRNAs, and edges represented their poten-
tial regulatory correlations.

Construction of the miRNA-miRNA synergistic network
According to the miRNA-mRNA regulatory network, we
constructed miRNA-miRNA synergistic network based
on enrichment analysis. In the miRNA-miRNA syner-
gistic network, two miRNAs were connected if they sig-
nificantly co-regulated common mRNAs, which were
significantly enriched in at least one GO biological
process term. The enrichment analysis was performed
by cumulative hypergeometric distribution. The two
connected miRNAs were considered to have synergistic
relationships. The formula was as follows:

.(‘,)(jl)(ml_jl) in( I)(jz)(mz—jz)
in(m ) | s . min(na j,) | 77 L
Ab/j\m-u ) <0.05 $n{ E, Z &< 0.05
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{ > 2 (m
ny

iy=ky m
n

(3)

The first part is the set of miRNA pairs, which signifi-
cantly co-regulated mRNAs. Here, k; is the number of
mRNAs regulated by both miRNAs, m1; denotes the total
number of mRNAs that were regulated by all miRNAs, 7,
represents the number of mRNAs that were correlated
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with one miRNA, and j; denotes the number of mRNAs
that were correlated with the other miRNA. The second
part is the set of miRNA pairs whose target mRNAs were
enriched in a GO biological process. Here, k, is the num-
ber of mRNAs included in GO terms, #1, is the number of
mRNAs significantly co-regulated by miRNA pairs, #, is
the number of mRNAs that could not be annotated to any
GO terms, and j, is the number of mRNAs that are not
significantly co-regulated by miRNA pairs and are also
annotated to the GO terms.

Topological measurements of network

For the two constructed networks, we analyzed several
topological features. For the whole network, we examined
the degree distribution of the network. The nodes degree
distribution N(k) was defined to be the number of nodes
with degree k. We also calculated degree, clustering coef-
ficient and average shortest path length of nodes. The
degree of a node is the number of edges linked to the
node [44]. The average degree of nodes was the mean de-
gree value of all nodes in a certain set. The shortest path
is a path with the smallest number of links between two
nodes. The average shortest path length of a node is the
average length of the shortest paths between the node and
any other nodes. For a given subset of nodes, we defined
its characteristic path length as the average shortest path
length between any two nodes of the set.

Identification of age-related miRNA synergistic modules
We applied the Cfinder [45], a software based on the
clique percolation clustering method, to identify miRNA
synergistic modules from the miRNA-miRNA synergistic
network. We defined modules as cliques, which are
maximal complete subgraphs in the network. In each
clique, every two miRNAs in the subgraph were con-
nected by an edge.

For the purpose of selecting the age-related miRNA
synergistic modules, we calculated the proportion of
age-related miRNAs in modules and tested the correl-
ation between the expression levels of the modules and
age. The average expression of all miRNAs in a module
was used to represent the overall expression level of the
module. We used Pearson’s correlation coefficient to
evaluate the correlation between the expression levels of
the modules and age.

We evaluated the significance of the proportion of
age-related miRNAs in modules and the correlation of
the expression levels of the modules with age by ran-
domly selecting miRNAs as miRNA modules. For each
miRNA module, we randomly selected 1000 modules
with the same number of miRNAs, calculated the pro-
portion of age-related miRNAs in modules and eva-
luated the correlation between the expression levels of
the modules and age. Modules with both the proportion
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and the correlation greater than the value in the real
condition were recorded. The significance P-value was
the fraction of these modules in 1000.

Results

Age-related-miRNAs

Using polynomial regression models, following Somel et al.
[30] (see ‘Methods’ section), we found 98 age-related
miRNAs (FDR < 0.001), whose expression levels showed
significant changes with age.

MiRNA-mRNA regulatory network

The preliminary miRNA-mRNA regulatory network was
first constructed by performing pair-wise spearman cor-
relation coefficient analysis between miRNA and mRNA
expression profiles. In this network, we detected 36618 sig-
nificantly correlated miRNA-mRNA pairs (qFDR < 0.05).
These significant miRNA-mRNA pairs were then assem-
bled to form the final miRNA-mRNA regulatory network.
The resulted network consisted of 36618 regulations bet-
ween 401 miRNAs and 7175 mRNAs which represented
potential regulatory correlation between miRNAs and
mRNAs at the whole genome-scale. 93.5% of the miRNAs
regulated at least two mRNAs and 70.4% of mRNAs were
co-regulated by over two miRNAs. These results demon-
strated a complicated combination in terms of target-
mRNA multiplicity.

We also examined the degree distribution of miRNAs
and mRNAs in the network, and observed a power law
and an exponential distribution, respectively (Figure 2).
Moreover, the miRNA-mRNA network displayed scale-
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free characteristics, suggesting that the miRNA-mRNA
network was characterized by a core set of organizing
principles in its structure [46]. This feature implied that
the miRNA-mRNA network accorded with general bio-
logical networks.

The differences of degree distribution between age-
related miRNAs and non age-related miRNAs were signifi-
cant according to the Wilcoxon rank sum test (p < 2.2e-16)
(Figure 3). The average degree of age-related miRNAs was
277.0753, whereas that of non age-related miRNAs was
35.22727. The result suggested that age-related miRNAs
could regulate much more mRNAs than non age-related
miRNAs.

To further investigate whether age-related miRNAs
played more important roles in the network, we deleted
each age-related miRNA and non age-related miRNA
from the miRNA-mRNA network, respectively, and
compared the number of connected components in the
remaining networks. By comparison, the measures of
each remaining network after deleting the age-related
miRNAs were significantly larger than those of non age-
related ones (p <2.2e-5) (Figure 4), which implied that
age-related miRNAs connected and regulated more
mRNAs in the miRNA-mRNA network. These results
above indicated that age-related miRNAs played more
important roles in the developmental and aging process
of the human brain.

MiRNA-miRNA synergistic network
Most mRNAs were co-regulated by over two miRNAs in
the miRNA-mRNA network suggested the synergism of
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miRNA. To study the synergism of miRNAs at the sys-
tem level in the developmental and aging process of the
human brain, we constructed a miRNA-miRNA syner-
gistic network from the miRNA-mRNA regulatory net-
work. In the network, there were 324 miRNAs and 3141
edges (Figure 5). The connected miRNA pairs were shown
to work synergistically through co-regulated mRNAs in

special biological process. Furthermore, the miRNAs de-
gree in the miRNA-miRNA synergistic network followed
the power law distribution with a slope of -0.5386 and
R? = ~0.8153 and displayed scale-free characteristics.

To further evaluate synergy of miRNAs in the network,
we generated random miRNA-miRNA synergistic net-
work by keeping the degree of each node unchanged using
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the ‘RandomNetworks’ plugin of Cytoscape. The cluste-
ring coefficients of the random network were significantly
smaller than those of the actual network (p < 2.2e-16).
The average clustering coefficient of the actual network
was 0.5221 compared to 0.1605 of the random network,
suggesting the dense local neighborhoods of the actual
network. The immediate neighbors of a miRNA tend to
be synergistic, which are functional synergistic partners.
The dense neighborhood feature of the network could be
used to predict synergism, as has been shown in previous
studies [47].

The further investigation of the expression pattern of
connected miRNA pairs by calculating their correlation

coefficients supported the above hypothesis. It was found
that 69% of miRNA pairs had positive co-expression
values. This result indicated that most miRNA pairs with
synergistic regulations tend to be co-expressed in the
developmental and aging process of the human brain. We
concluded that the similar expression tendency might
ensure synergistic regulations among multiple miRNAs.
In addition, we analyzed the topological properties of
the miRNA-miRNA synergistic network between age-
related miRNAs and non age-related miRNAs. The
average degree and clustering coefficient of age-related
miRNAs were much higher, and the average shortest path
was much shorter than those of non age-related miRNAs
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(Table 1). These results suggested that age-related miRNAs
tend to be more important and have more synergism
within the context of the entire network.

At last, we calculated the characteristic path length
among age-related miRNAs to evaluate the communica-
tion efficiency in the network. We randomly selected the
same number of miRNAs from the miRNA background
set and computed the characteristic path length. This pro-
cedure was repeated 1000 times. The characteristic path
length of the age-related miRNAs was significantly lower
than that derived in the random conditions (Figure 6).
The result indicated that age-related miRNAs were closer
to each other and communicated quicker than non
age-related miRNAs. Thus, it suggested that age-related
miRNAs tend to have direct or indirect functional synergy
in the developmental and aging process of the human
brain.

Age-related miRNA synergistic modules

Since age-related miRNAs had the higher clustering co-
efficients and lower characteristic path lengths, and were
close to each other, they appeared to implemente regu-
lations as modules. To identify these modules in the
synergistic network, we applied Cfinder. All miRNAs in
one module were fully connected with each other.

To identify the miRNA synergistic modules related to
human brain development and aging, we evaluated the sig-
nificance of the proportion of age-related miRNAs in each
module and tested the correlation of the expression levels
of the modules with age by randomly selecting miRNAs as
miRNA modules (see the ‘Methods’ section). As a result,
53 age-related miRNA synergistic modules were identified
(p<0.05). The synergistic regulations of modules were
then validated by searching target-mRNAs regulated by
multiple miRNAs in miRNA synergistic modules. The
reliability of regulations between targets and miRNAs
was tested by comparing the regulations derived from
our work with miRNA-target relationships from ten
miRNA target databases. The regulation relationships
were reliable if they could be found in at least three
databases. For example, miRNA clique 103 (Figure 7)
consisted of six miRNAs: hsa-mir-29a, hsa-mir-29b, hsa-
mir-1255a, hsa-mir-1266, hsa-mir-452 and hsa-mir-29c.
All of them were age-related miRNAS(pyge pro = 0.001).

Table 1 The topological properties of age-related miRNAs
and non age-related miRNAs

Mean of Mean of Mean of
AverShortPath degree ClusgCoeff
Age-related 2987047 3292391 05999161
Non age-related 3320577 14.02155 04912704
P_value 4988e-11 <2.2e-16 0.0003065
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Figure 6 The characteristic path lengths among age-related
miRNAs is shorter than those in randomization tests. The red
arrow represents the characteristic path length of the age-related
miRNAs in the actual network.

The correlation coefficient between the expression level of
the module and age was r = 0.801717991 (ppearson = 0.038).

We found 34 target-mRNAs regulated by at least two
miRNAs in clique 103. The regulations between miRNAs
and mRNAs were validated by miRNA target databases.
This result indicated that miRNAs in clique 103 have syn-
ergistic regulations. Furthermore, these 34 target-mRNAs
were regulated by hsa-mir-29a, hsa-mir-29b, hsa-mir-29c,
hsa-mir-452 and hsa-mir-1266, and were all related to
neuronal development, neurodegenerative diseases and
aging-related disorders.

Figure 7 The miRNA clique 103. All miRNAs in the clique were
fully connected with each other in the miRNA-mMIiRNA synergistic
network. All miRNAs in this clique are age-related and related with
neuronal development, neurodegenerative diseases and
aging-related disorders.
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Hsa-mir-29a, hsa-mir-29b and hsa-mir-29¢c are mem-
bers of the miR-29 family. It is reported that hsa-mir-29a
and hsa-mir-29b were down-regulated in the frontal cor-
tex of Alzheimer’s disease (AD), which affected neurode-
generative processes [48]. Moreover, mir-29a, mir-29b and
mir-29c were significantly up-regulated, which suggested
that they are most likely to play important roles in the
developmental and physiological processes during brain
development [49]. Hsa-mir-452 was reported to be over-
expressed in the WNT signaling associated medulloblas-
tomas [50]. Hsa-mir-1266’s target site spans the rs27072
SNP locus, which was significantly associated with bipolar
disorder [51].

The gene NAV3 was synergistically regulated by hsa-
mir-29a, hsa-mir-29b, hsa-mir-29¢ and hsa-mir-452. It
was shown that NAV3 expression was enhanced in dege-
nerating pyramidal neurones in the cerebral cortex of AD,
while miR-29a was found significantly down-regulated.
This observation suggested that under-expression of
miR-29a affected neurodegenerative processes by en-
hancing neuronal NAV3 expression in AD brains [48].
In neuroblastomas, the expression of NAV3 decreased but
were up-regulated in nerve cells after brain injury, indica-
ting that NAV3 is involved in neuron growth and rege-
neration as well as neural tumorigenesis [52]. The gene
ARFGEF2 was synergistically regulated by hsa-mir-29a,
hsa-mir-29b and hsa-mir-29c. Mutations in ARFGEF2 im-
plicated vesicle trafficking in neural progenitor prolifera-
tion and migration in the human cerebral cortex, which
was an important regulator of proliferation and migration
during human cerebral cortical development [53]. The
gene ITPKB was synergistically regulated by hsa-mir-29b
and hsa-mir-452, which involved in neuronal calcium
dependent signaling, a cellular process related to both AD
and aging [54].

Discussion

In this study, we integrated miRNA and mRNA expres-
sion profiles generated from the samples of the human
brain across lifespan to construct the miRNA-mRNA
regulatory network and the miRNA-miRNA synergistic
network. By exploring these two networks, we found
that there were significant differences in terms of topo-
logical features between age-related miRNAs and non
age-related miRNAs. We also found that age-related
miRNAs played more important roles than non age-
related miRNAs in the developmental and aging process
of the human brain. Moreover, the age-related miRNAs
tended to work together as modules to affect multiple
target mRNAs and have direct or indirect functional
synergy in the developmental and aging process of the
human brain and in neurodegenerative diseases. Our re-
sults were verified by reviewing miRNA target databases
and the previous studies.
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Most importantly, we revealed the comprehensive regu-
latory relationships throughout the lifespan. Studying both
development and aging simultaneously could revolu-
tionize the methodology in studying structure and func-
tion of the human brain and improved our understanding
of the physiological regulatory mechanism. Furthermore,
we examined the miRNA-mRNA correlations at the whole
genome-scale by performing pair-wise spearman cor-
relation coefficient analysis. The relationships based on
miRNA target databases can obtain direct regulation bet-
ween miRNAs and mRNAs, while merely measuring tar-
get gene expression may not be sufficient to understand
the regulatory effects of miRNAs. As a result, correlation
analysis could reveal associations between miRNAs and
their target genes as well as non-target genes. Obviously,
the synergism of miRNA was implied by the evidence that
most mRNAs were co-regulated by over two miRNAs in
the miRNA-mRNA network. We obtained the reliable
synergism of miRNAs at a system level in the develop-
mental and aging process of the human brain. We consi-
dered not only the co-regulation of target genes but also
GO function enrichment of co-regulated targets when we
constructed the miRNA-miRNA synergistic network, be-
cause miRNAs are synergistic in complex diseases and
physiological processes, and regulate genes with the same
or similar functions.

Our study throws a new light on miRNAs in the deve-
lopmental/aging system. Also, this work can be extended
to study other human tissues if the data is available.

Studying the complex regulatory network between
miRNAs and their target genes and the synergism of
miRNAs provided more comprehensive understanding
of the molecular basis of miRNA functions at a system-
wide level.

There are some limitations in our study. First, the
miRNA-mRNA correlations are based on pair-wise cor-
relation coefficient analysis. Although we examined the
miRNA-mRNA correlations at the whole genome-scale,
the identified regulatory correlations might contain false
positives. Second, with the limited knowledge of regula-
tion between miRNAs and the developmental and aging
process of the human brain, we were unable to complete
biological evidences for age-related miRNA synergistic
modules. Third, the sample size of the expression profiles
was too small. We hope that more comprehensive data
could be obtained in the future. Despite these limitations,
our study still provides a new insight into the regulation
of miRNAs in the developmental and aging process of the
human brain.

Conclusions

In conclusion, age-related miRNAs play more important
roles than non age-related miRNAs in the developmental
and aging process of the human brain. The age-related
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miRNAs have synergy effect, and tend to work together as
modules.
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