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Abstract

Background: Understanding how genes are expressed specifically in particular tissues is a fundamental question in
developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases.
However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate
predictions of tissue-specific gene targets could provide useful information for biomarker development and drug
target identification.

Results: In this study, we have developed a machine learning approach for predicting the human tissue-specific
genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected
from UniProt database, and the expression data retrieved from the previously compiled dataset according to the
lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to
construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene
prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable
information for further experimental studies. Our approach was also applied for identifying tissue-selective gene
targets for different types of tissues.

Conclusions: A machine learning approach has been developed for accurately identifying the candidate genes for
tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for
developing new biomedical markers and improve our knowledge of tissue-specific expression.

Background
Understanding how different tissues achieve specificity is a
fundamental question in tissue ontogenesis and evolution.
Some genes are highly expressed in a particular tissue and
lowly expressed or not expressed in other tissues. These
genes are generally called tissue-selective genes. The genes
are responsible for specialized functions in particular tis-
sues, and thus can serve as the biomarkers for specific bio-
logical processes. In addition, many tissue-selective genes
are involved in the pathogenesis of complex human dis-
eases [1], including insulin signaling pathways in diabetes

[2] and tumor-host interactions in cancer [3]. Since the
majority of disease genes have the tendency to be
expressed preferentially in particular tissues [4], identifying
tissue-selective genes is also important for drug target
selection in biomedical research. Tissue-specific genes,
which are specifically expressed in a particular tissue, are
regarded as the special case of tissue selective genes. The
identification of tissue-specific genes could help biologists
to elucidate the molecular mechanisms of tissue develop-
ment and provide valuable information for identifying can-
didate biomarkers and drug targets.
Different methods have been used to identify and

characterize tissue-specific genes. Traditional experi-
mental methods, including RT-PCR and Northern blot,
are usually carried out at the single-gene level and thus
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time-consuming. High-throughput technologies, such as
Expressed Sequence Tag (EST) sequencing and DNA
microarrays, have the capacity to perform genome-wide
analysis with high efficiency. The DNA microarray tech-
nology can generate large amounts of gene expression
data from various tissues, and provide the useful data
source for analyzing tissue-specific genes. Several statis-
tical methods have been applied for identifying tissue-
specific genes using gene expression data. Kadota and
co-workers [5] described an unsupervised method to
select the tissue-specific genes using Akaike’s informa-
tion criterion (AIC) approach. Another method called
ROKU [6] has been developed by the same group for
detecting tissue-specific gene expression patterns. The
approach used Shannon entropy and outlier detection to
scan expression profiles for ranking tissue-specific
genes. Liang et al. [7] developed a statistical method
based on hypothesis testing procedures to profile and
identify the tissue-selective genes. However, the statisti-
cal methods for tissue-specific gene prediction suffer
from drawbacks. The microarray expression data are
generated from different experiments, both biological
variations and experimental noise result in significant
variations in data quality. The statistical methods usually
assigned an equal weight to each observation for predic-
tion. Thus, the methods do not work well for non-linear
models and may not detect the hidden expression pat-
terns from the noisy microarray data. Moreover, the sta-
tistical methods do not use biological knowledge for
prediction. The simple data-driven analysis may produce
some misleading results for further experimental studies.
Machine learning can automatically recognize hidden

patterns in complex data. It has been shown that machine
learning can be used to construct accurate classifiers for
tissue-specific gene prediction. Chikina et al. [8] used Sup-
port Vector Machines (SVMs) to predict tissue-specific
gene expression in Caenorhabditis elegans with whole-ani-
mal microarray data. The SVM classifiers reached high
predictive performances in nearly all tissues. It was shown
that the approach outperformed clustering methods and
provided valuable information for further experimental
studies. However, it is still unknown whether machine
learning methods can be used to predict tissue-specific
genes in human.
We previously compiled a large microarray gene expres-

sion dataset, which contained 2,968 expression profiles of
various human tissues, including brain, liver, testis, blood
and kidney samples [9]. A computational method was also
developed for identifying tissue-selective genes using the
integrated microarray dataset. However, the method
assigned an equal weight to each expression profile for
identification. In this study, a machine learning approach
was developed for human tissue-specific/selective gene
prediction using the available dataset. According to the

lists of known tissue-specific/selective genes, the gene
expression data were extracted from the compiled dataset
and used for classifier construction. Random Forests (RFs)
and Support Vector Machines (SVMs) were trained with
the expression data to construct accurate classifiers. The
results indicate that the RF classifiers achieved better pre-
dictive performance for tissue-specific gene prediction.
The approach generated large numbers of candidate genes
for brain and liver-specific expression. The examinations
of high scoring genes suggest that our approach can be
used to select candidate genes for experimental studies.

Methods
A schematic diagram of the approach used in this study
is shown in Figure 1. The microarray expression profiles
of various human tissues were compiled from previous
studies, and integrated into a single dataset through nor-
malization and transformation. The lists of known tissue-
specific genes were manually collected from UniProt
database. The tissue-specific gene expression data were
extracted from the integrated single dataset and labelled
as positive training instances. The remaining expression
data were randomly divided into two subsets. The nega-
tive dataset contained tenfold number of data instances
as the positive instances. Random Forests (RFs) and Sup-
port Vector Machines (SVMs) were trained with the
training instances to construct classifiers. The tenfold
cross-validation method was performed to evaluate the
classifier performance. The models were then used to
score the remaining data instances for prediction. The
classifier construction and prediction were repeated ten
times, and the candidate genes were prioritized according
to their average classifier outputs from ten predictions.

Microarray data collection and integration
The approach for compiling human microarray expres-
sion profiles was described in our previous study [9]. The
microarray gene expression profiles from 131 microarray
studies (different experimental batches) were collected
from the NCBI GEO database. These expression profiles
were generated using the Affymetrix HG-U133 Plus 2.0
Array with 54,613 probe sets. The statistical model-based
method, dChip [10], was used for microarray data nor-
malization. The raw data in CEL file format were divided
into different normalization groups. The invariant set
method [11] was used to normalize each group of micro-
array profiles to minimize the batch effect (variation
across different microarray studies). After normalization,
global median transformation was used to integrate the
microarray profiles into a single dataset. The dataset used
in this study contained 2,968 expression profiles of var-
ious human tissues, including brain (616 profiles), liver
(117 profiles), testis (36 profiles), blood (409 profiles) and
kidney (73 profiles).
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Training data preparation
Tissue-selective genes are defined as the genes whose
expression is enriched for one or a few similar tissue
types. The genes were manually collected from the

UniProt database. The particular tissue name was used
as a query and the reviewed human genes were selected
for preparation. The tissue-selective genes are defined as
the genes that are preferentially expressed in a particular

Figure 1 Schematic diagram of the approach for predicting tissue-specific genes.
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tissue from the descriptions of their annotations. Most
of the genes are identified by the experimental methods,
which are independent from the microarray expression
data in the list. In this study, 408 brain-selective genes,
96 liver-selective genes, 326 testis-selective genes, 324
blood-selective genes and 45 kidney-selective genes were
collected from UniProt database. Tissue-specific genes,
whose expression is specific to only one particular tissue
type, are considered as the special case of tissue-selec-
tive genes. 289 brain-specific genes and 69 liver-specific
genes were selected from the corresponding tissue-selec-
tive genes with the annotation that their expression is
specific to only brain or liver. Tissue specific-genes can
be used to construct the highly accurate classifiers.
Thus, the tissue specific-gene prediction is the focus of
the present study.
According to the known tissue-specific/selective gene

lists, the tissue-specific/selective gene expression data
was retrieved from the integrated microarray dataset and
labelled as the positive training instances. The probe sets
with detectable expression signals in corresponding tissue
samples were selected for classifier construction. For tis-
sue-specific gene prediction, the expression values for
403 probe sets of brain-specific genes and 90 probe sets
of liver-specific genes were used for input vector encod-
ing. 692 probe sets of brain-selective genes, 150 probe
sets of liver-selective, 430 probe sets of testis-selective
genes, 456 probe sets of blood-selective genes and 76
probe sets of kidney-selective genes were used for tissue-
selective gene prediction.
The negative examples were defined as the genes that

do not have preferential expression in particular tissues.
For this study, we randomly selected the data instances
from the remaining data and labelled as the negative
training instances. The number of negative instances was
set as tenfold with positive instances to make enough
data instances for training. The negative and positive
data instances were combined as the training dataset to
construct classifiers using machine learning algorithms.
The remaining probes were used as the candidate genes
for prediction with the classifiers constructed from the
training dataset.

Random Forests
The use of 2,968 expression profiles for input vector
encoding gives the same number of input variables. One
potential problem is model overfitting since there were
only a small number of positive instances (probe sets of
known tissue-specific genes) available for this study. We
thus used the Random Forest (RF) learning algorithm,
which could handle a large number of input variables
and avoid model overfitting through random feature
selection. The randomForest package in R [12] was used
in this study for classifier construction. The number of

trees in a classifier (ntree) and the number of variables
selected to split each node (mtry) were set to 1000 and 6,
respectively. The classifier performance did not show sig-
nificant improvement by using other values for the mtry
and ntree parameters.

Support Vector Machines
Support Vector Machines (SVMs) are widely used for
binary classification [13]. In this study, SVM classifiers
were constructed and compared with RF classifiers for
identifying human tissue-specific genes. The SVMlight
software package (http://svmlight.joachims.org/) was
used to construct the SVM classifiers with the linear
kernel function [14]. The polynomial and radial basis
function (RBF) kernels were also tested for classifier con-
struction, but the classifiers did not achieve high predic-
tive performances in cross-validation tests.

Classifier evaluation and prediction
In this study, a tenfold cross-validation approach was
used to evaluate classifiers with the following perfor-
mance measures:

Accuracy (AC) =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity (SN) =
TP

TP + FN
(2)

Specificiy (SP) =
TN

TN + FP
(3)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

where TP is the number of true positives; TN is the
number of true negatives; FP is the number of false
positives; and FN is the number of false negatives. The
Receiver Operating Characteristic (ROC) curve [15] and
the area under the curve (AUC) [16] were also used for
classifier evaluation and comparison.
The classifier construction and prediction were repeated

ten times. In each run, classifier performance was evalu-
ated using the above measures. The classifier was then
used to predict tissue-specific genes in the human genome.
The tissue-specific gene targets were sorted according to
the average value of classifier outputs from ten predictions,
and a higher value might indicate a higher probability of
being expressed predominantly in a particular tissue.

Go enrichment and promoter sequence analyses
DAVID (http://david.abcc.ncifcrf.gov/), a web-based tool
for go enrichment analysis, was used for integrating
functional annotations of predicted tissue-specific genes

Teng et al. BMC Medical Genomics 2013, 6(Suppl 1):S10
http://www.biomedcentral.com/1755-8794/6/S1/S10

Page 4 of 13

http://dire.dcode.org/
http://david.abcc.ncifcrf.gov/


[17]. The probe names of candidate targets were used as
the inputs, and “GOTERM_BP_FAT”, “GOTERM_CC_-
FAT” and “GOTERM_MF_FAT” were utilized as the
Gene Ontology search option.
The 500 bp upstream sequences of predicted tissue-

specific genes were downloaded from the UCSC Table
Browser (http://genome.ucsc.edu/cgi-bin/hgTables) with
the gene names of candidate targets as the inputs. The
promoter sequences were used to identify the regulatory
DNA motifs with SCOPE web server (http://genie.dart-
mouth.edu/scope/). SCOPE [18] applied three learning
algorithms to find different type of sequence motifs,
including non-degenerate motifs, degenerate motifs, and
bipartite motifs. The candidate regulatory motifs used in
this study are the high scoring motifs (motif width ≥ 6)
returned from the combination of the prediction results.
DiRE [19] (http://dire.dcode.org/) were used to analyse
the candidate transcription factors of predicted tissue-
specific genes. The gene names of candidate targets were
used as the inputs, and the transcription factors for the
regulatory elements of candidate targets identified with
the Enhancer Identification method were reported.

Results and discussion
Dataset validation
The known tissue-specific genes are expressed predomi-
nantly in particular tissues, so the transcripts of the genes
were expected to be detected in corresponding tissue
samples in the integrated microarray dataset. To visualize
the expression patterns of the known tissue-specific
genes, TM4 MeV [20] was used to generate the heat
maps for brain and liver-specific genes. As shown in Fig-
ure 2, the known brain-specific genes have expression
patterns in brain as well as retina samples. Since retina
shares a common embryonic origin with brain and trans-
lates visual images into nerve signals for brain, retina is
considered as the sensory part of the brain. Thus, the
known brain-specific genes may also have some expres-
sion levels in retina samples.
The transcripts of known liver-specific genes are

detected clearly in liver samples (Figure 2). The results
suggest that the expression data according to our lists of
known tissue-specific genes can provide useful informa-
tion for classifier construction using machine learning
methods. It is noteworthy that some probe sets of known
tissue-specific genes have high expression or no expres-
sion for all tissue samples. To improve the quality of clas-
sifiers, the probes without detectable expression signals
in all the samples are excluded from the training dataset.

Prediction of tissue-specific genes
Random Forests (RFs) and Support Vector Machines
(SVMs) were used to construct classifiers for predicting
brain and liver-tissue specific genes. The results suggest

that RF classifiers reached better predictive performance
than SVM models (Table 1 and Figure 3). We identified
1,408 brain-specific microarray probes (1,126 genes) and
493 liver-specific probes (357 genes) using RF classifiers
(Additional file 1 and 2), which are more than the tissue-
selective genes identified in the previous study (222
brain-selective genes and 69 liver-selective genes) [9].
High scoring gene targets with brain or liver-specific
expression have been examined (Tables 2 and 3), and the
results suggest that the approach can be used to identify
new gene targets for biomedical research. Moreover, it
was shown that the transcripts of candidate genes could
be detected clearly in corresponding tissue samples (Fig-
ure 4), and the functions of the predicted targets were
consistent with tissue origins in GO enrichment analysis
(Tables 4 and 5). The regulatory DNA motifs were identi-
fied based on the promoter sequences of the predicted
tissue-specific genes, and the candidate transcription fac-
tors were previously shown to regulate the specialized
functions in particular tissues (Figure 5).
In this study, we constructed both RF and SVM classifiers
for predicting brain and liver-specific genes. 403 probe
sets of brain-specific genes and 90 probe sets of liver-spe-
cific genes were used for classifier construction. For brain-
specific gene prediction, the RF classifier achieved the
AUC value at 0.9488 (Table 1), which is significantly
higher than the AUC value of SVM classifier (AUC =
0.8937). The RF classifier reached 53.73% sensitivity and
97.43% specificity, and MCC = 0.5676. For liver-specific
gene prediction, the SVM classifier gave MCC = 0.8350
and ROC AUC = 0.9854. The RF classifier achieved a
similar level of performance with MCC = 0.8290 and ROC
AUC = 0.9777. Thus, the results suggest that the RF algo-
rithm performs better for predicting tissue-specific genes
in this study.
The ROC curves of RF and SVM classifiers for predicting

brain-specific genes and live-specific genes have been com-
pared in Figure 2. The ROC curves of RF and SVM classi-
fiers are not significantly different for the prediction of liver-
specific genes (Figure 2b). However, The ROC curve of RF
classifier was clearly better than the SVM classifier for the
prediction of brain-specific genes (Figure 2a). The results
confirm that RF classifier outperforms the SVM models for
tissue-specific gene prediction. The possible reason is that
RFs can handle a large number of input variables and avoid
model overfitting. The use of 2,968 expression profiles for
input vector encoding results in the same large number of
input variables, which may lead to model overfitting. Inter-
estingly, the RF algorithm can handle the situation and
show better predictive performance in the present study.

Brain-specific gene expression
The human brain gives us the ability to think and sets
us apart from other animals. It has a highly complex
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structure which contains different regions with specific
functions. For example, the hippocampus is involved in
spatial navigation and long-term memories, whereas the
cerebral cortex plays key roles in language, attention
and consciousness. Any damage in these regions results
in various mental disorders including Alzheimer’s dis-
ease, Parkinson’s disease and Mood disorder. In this
study, the predicted brain-specific genes are expected to
have preferential expression in the brain, and may play
important roles in neuron functions such as synaptic
transmission and neuronal migration.

In the study, 1,408 candidate targets with positive
scores (the average value of classifier outputs from ten
predictions) were predicted as the brain-specific genes
(Additional file 1). In Figure 4, the expression patterns of
candidate gene targets using RF classifier are visualized
with the heat maps generated using TM4 MeV. The pre-
dicted targets show clear expression in brain samples,
which indicates that our approach is useful for brain-
specific gene prediction. Similar to the known brain-
specific genes, the transcripts of the predicted targets are
also detected in retina samples. GO enrichment analysis

Figure 2 Visualization of known tissue-specific gene expression patterns.

Table 1 Comparison of Random Forest and Support Vector Machine classifiers for predicting tissue-specific genes.

Tissue Method AC
(%)

SN
(%)

SP
(%)

MCC ROC
AUC

Brain SVM 92.07
(± 0.302)

54.23
(± 1.227)

95.82 (± 0.263) 0.5091 (± 0.015) 0.8937
(± 0.003)

RF 93.48
(± 0.240)

53.73
(± 1.485)

97.43 (± 0.153) 0.5676 (± 0.016) 0.9488 (± 0.002)

Liver SVM 97.29
(± 0.421)

84.11
(± 2.281)

98.61 (± 0.309) 0.8350 (± 0.025) 0.9854 (± 0.004)

RF 97.29
(± 0.341)

79.00
(± 1.355)

99.12 (± 0.255) 0.8290 (± 0.0213) 0.9777 (± 0.002)

The values outside and inside brackets are the average value and standard deviation of measures in ten classifier evaluations, respectively.
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of the candidate targets demonstrates that many candi-
date genes have basic neuron functions (Table 4). For
example, neurotransmission is an electrical or chemical
signal motion within synapses caused by transmission of
a nerve impulse. The predictions are enriched for neuro-
transmission-related GO terms such as “synapse”,
“synapse part”, “transmission of nerve impulse”, “neuron
projection”, “synaptic transmission” and “passive trans-
membrane transporter activity”. Some channel-related
GO terms including “ion channel activity”, “substrate
specific channel activity”, “gated channel activity” and
“channel activity” are detected in the enrichment analysis
of our predictions.

To understand the regulatory signals of human tissue-
specific genes, SCOPE [18] was used to search for the
overrepresented DNA motifs in the promoters of the pre-
dicted brain-specific genes (Figure 5a). Some transcription
factors might bind to the DNA motifs in the promoter
regions and regulate the tissue-specific gene expression.
DiRE [19] was used to identify the candidate transcription
factors of the predicted brain-specific genes (Figure 5b).
Interestingly, the identified transcription factors might be
involved in regulating neuron development and function.
For example, BRN2 and OCT belong to the POU domain
protein family, and are involved in the differentiation and
function of neural cells [21,22]. X-box-binding protein

Figure 3 ROC curves to compare the performances of RF and SVM classifiers for predicting tissue-specific genes.

Table 2 List of high-scoring genes with specific expression in the brain.

Probe Gene Description Score*

223654_s_at BRUNOL4 Bruno-like 4, RNA binding protein (Drosophila) 0.8753

227440_at ANKS1B Ankyrin repeat and sterile alpha motif domain containing 1B 0.8685

230280_at TRIM9 Tripartite motif-containing 9 0.866

238966_at BRUNOL4 Bruno-like 4, RNA binding protein (Drosophila) 0.8345

205143_at NCAN Neurocan 0.832

204762_s_at GNAO1 Guanine nucleotide binding protein (G protein), alpha activating activity polypeptide O 0.8201

232276_at HS6ST3 Heparan sulfate 6-O-sulfotransferase 3 0.8186

203619_s_at FAIM2 Fas apoptotic inhibitory molecule 2 0.8124

241998_at LOC389073 Similar to RIKEN cDNA D630023F18 0.8074

206381_at SCN2A Sodium channel, voltage-gated, type II, alpha subunit 0.8021

203069_at SV2A Synaptic vesicle glycoprotein 2A 0.7998

1557256_a_at AA879409 CDNA FLJ37672 fis, clone BRHIP2012059 0.797

229039_at SYN2 Synapsin II 0.7956

242651_at AI186173 Transcribed locus 0.7951

227453_at UNC13A unc-13 homolog A (C. elegans) 0.7888

203618_at FAIM2 Fas apoptotic inhibitory molecule 2 0.7744

229463_at NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 0.7728

214111_at OPCML Opioid binding protein/cell adhesion molecule-like 0.7722

214376_at AI263044 Clone 24626 mRNA sequence 0.7668

220131_at FXYD7 FXYD domain containing ion transport regulator 7 0.7662

* Score: the average value of RF classifier outputs from ten predictions.
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Table 3 List of high-scoring genes with specific expression in the liver.

Probe Gene Description Score*

206610_s_at F11 Coagulation factor XI (plasma thromboplastin antecedent) 0.7869

1554491_a_at SERPINC1 Serpin peptidase inhibitor, clade C member 1 0.7737

219465_at APOA2 Apolipoprotein A-II 0.7609

217512_at BG398937 Unknown 0.7559

207102_at AKR1D1 Aldo-keto reductase family 1, member D1 0.7466

207218_at F9 Coagulation factor IX 0.725

210168_at C6 Complement component 6 0.7239

204987_at ITIH2 Inter-alpha (globulin) inhibitor H2 0.7191

209978_s_at LPA/PLG Lipoprotein, Lp(a)/plasminogen 0.7191

214069_at ACSM2 Acyl-CoA synthetase medium-chain family member 2 0.7099

206345_s_at PON1 Paraoxonase 1 0.7004

206651_s_at CPB2 Carboxypeptidase B2 (plasma) 0.6959

241914_s_at ACSM2 Acyl-CoA synthetase medium-chain family member 2 0.6945

206840_at AFM Afamin 0.6846

206410_at NR0B2 Nuclear receptor subfamily 0, group B, member 2 0.6837

214842_s_at ALB Albumin 0.6809

217319_x_at CYP4A11 Cytochrome P450, family 4, subfamily A, polypeptide 11 0.6772

242817_at PGLYRP2 Peptidoglycan recognition protein 2 0.6765

207407_x_at CYP4A11 Cytochrome P450, family 4, subfamily A, polypeptide 11 0.6752

231398_at SLC22A7 Solute carrier family 22, member 7 0.6746

* Score: the average value of RF classifier outputs from ten predictions.

Figure 4 Visualization of predicted tissue-specific gene expression patterns.
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1 (XBP1) is activated in neural development and plays a
key role for the unfolded protein response in the endoplas-
mic reticulum [23]. Regulatory factor X1 (RFX1) can
enhance the expression of excitatory amino acid transpor-
ters (EAAT) to regulate the glutamate neurotransmission
[24]. The p53 protein is important for various cellular pro-
cesses, including apoptosis, differentiation, DNA repair
and cell-cycle arrest, in neurons [25]. The results suggest
that the approach developed in the present study can pro-
vide valuable information for studying the regulatory mod-
ules of tissue-specific genes.
The predicted targets have not been annotated as brain-

specific genes in the UniProt database. However, recent
studies suggest that some of the predicted targets, includ-
ing BRUNOL4, ANKS1B, TRIM9, NCAN, FAIM2, OPCML
and FXYD7 (Table 2), are expressed predominantly in the
brain. For example, the RNA-binding protein encoded by
BRUNOL4 plays an important role in many cellular pro-
cesses including RNA stability, pre-mRNA alternative spli-
cing, mRNA editing and translation [26,27]. It was shown
that the protein was predominantly expressed in the brain
with enrichment in the hippocampus [28]. In this study,
the probes of BRUNOL4 have the highest (223654_s_at,
0.8753) and fourth-ranked (238966_at, 0.8600) scores.
ANKS1B encodes Amyloid-beta protein which can

regulate the nucleoplasmic coilin protein interactions in
neuronal cells. Previous studies showed that the protein is
mainly expressed in brain and may be implicated in
Alzheimer’s disease [29]. Brain-specific E3 ligase encoded
by TRIM9 has a high level of expression in the cerebral
cortex and may be involved in the pathogenesis of Parkin-
son’s disease [30]. Neurocan (NCAN) modulates neuronal
adhesion and migration and is expressed preferentially in
the brain [31]. The protein encoded by FAIM2 could pro-
tect cells from Fas-mediated apoptosis and shows a high
level of expression in the hippocampus [32]. It was shown
that OPCML was expressed predominantly in cerebellum
and cerebral cortex [33], whereas FXYD7 was expressed
preferentially in the brain [34].
The other predicted targets were not previously shown

to have brain-specific expression. However, some of these
genes, including GNAO1, SV2A, SYN2, UNC13A and
NTRK2, are involved in basic neuron functions (Table 2).
Guanine nucleotide binding protein (GNAO1) mediates
the physiological effects of various neuronal receptors
[35]. SV2A, SYN2 and UNC13A encode proteins which
are important for synaptic transmission in the central and
peripheral nervous system [36,37]. NTRK2 encodes a neu-
rotrophic tyrosine kinase receptor for brain-derived neuro-
trophic factor (BDNF) and is implicated in childhood

Table 4 GO term enrichment analysis of predicted brain-specific genes.

Category Term Count* %* P-Value*

GOTERM_CC_FAT GO:0045202~synapse 103 11.41 1.37E-49

GOTERM_CC_FAT GO:0044456~synapse part 83 9.19 2.68E-45

GOTERM_BP_FAT GO:0019226~transmission of nerve impulse 80 8.86 5.25E-36

GOTERM_CC_FAT GO:0043005~neuron projection 85 9.41 4.00E-35

GOTERM_BP_FAT GO:0007268~synaptic transmission 73 8.08 6.82E-35

GOTERM_MF_FAT GO:0005216~ion channel activity 76 8.42 2.29E-30

GOTERM_MF_FAT GO:0022838~substrate specific channel activity 77 8.53 3.03E-30

GOTERM_MF_FAT GO:0022836~gated channel activity 68 7.53 4.80E-30

GOTERM_MF_FAT GO:0015267~channel activity 77 8.53 3.28E-29

GOTERM_MF_FAT GO:0022803~passive transmembrane transporter activity 77 8.53 3.87E-29

*Count: the number of genes involved in the given GO term; %: the percentage of involved genes in total genes; P-Value: the modified Fisher Exact P-Value.

Table 5 GO term enrichment analysis of predicted liver-specific genes.

Category Term Count* %* P-Value*

GOTERM_BP_FAT GO:0002526~acute inflammatory response 29 8.41 1.65E-24

GOTERM_BP_FAT GO:0009611~response to wounding 55 15.94 8.55E-23

GOTERM_CC_FAT GO:0005615~extracellular space 63 18.26 8.65E-23

GOTERM_CC_FAT GO:0005576~extracellular region 109 31.59 1.35E-21

GOTERM_BP_FAT GO:0007596~blood coagulation 25 7.25 5.55E-19

GOTERM_BP_FAT GO:0050817~coagulation 25 7.25 5.55E-19

GOTERM_BP_FAT GO:0007599~hemostasis 25 7.25 2.33E-18

GOTERM_BP_FAT GO:0055114~oxidation reduction 54 15.65 2.46E-18

GOTERM_BP_FAT GO:0006956~complement activation 18 5.22 2.70E-18

GOTERM_BP_FAT GO:0002541~activation of plasma proteins involved in acute inflammatory response 18 5.22 4.37E-18

*Count: the number of genes involved in the given GO term; %: the percentage of involved genes in total genes; P-Value: the modified Fisher Exact P-Value.
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mood disorder [38]. By contrast, the functions of some
high scoring genes in brain remain to be characterized.
HS6ST3 encodes a Heparan sulphate sulfotransferase
which plays a key role in the modulation of fibroblast
growth factor signalling [39]. The protein encoded by
SCN2A forms a voltage-dependent sodium channel and is
associated with generalized epilepsy with febrile seizures
plus [40]. The corresponding genes of three cDNA
sequences (LOC389073, AA879409 and AI186173) were
not determined, and their functions in the brain are not
clear. The results suggest that the machine learning
approach developed in the present study can be used to
identify some interesting targets for further experimental
studies.

Liver-specific gene expression
The liver is a vital organ for human metabolism, and plays
key roles in detoxification, plasma protein synthesis, glyco-
gen storage and hormone production. For example, liver is
the source and target organ of inflammatory mediators in

the pathogenesis of inflammatory response syndrome [41],
and it is responsible for the production of coagulation fac-
tors. Thus, the liver-specific targets identified in this study
might be involved in basic liver functions. We identified
493 liver-specific gene targets with positive scores in the
analysis (Additional file 2). The functional analysis of the
liver-specific gene targets using RF classifier confirms that
many of the predicted targets are enriched for liver-related
GO terms (Table 5). For example, the GO terms for
inflammatory response contained “acute inflammatory
response”, “response to wounding” and “activation of
plasma proteins involved in acute inflammatory response";
the coagulation-related GO terms included “blood coagu-
lation”, “coagulation” and “hemostasis”. The expression
patterns of the predicted liver-specific genes are visualized
with the heat map (Figure 3). Clearly, the transcripts of
the predicted targets are predominantly detected in liver
samples. Some DNA motifs overrepresented in the pro-
moter regions of predicted liver-specific genes have been
identified (Figure 5a), and the candidate transcription

Figure 5 Promoter sequence analysis of predicted tissue-specific genes. (A) Regulatory DNA motif over-represented in the promoter
sequence of candidate targets. (B) Candidate transcription factors (TFs) of predicted tissue-specific genes. Figures are generated using SCOPE
(http://genie.dartmouth.edu/scope/) and DiRE (http://dire.dcode.org/), respectively.
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factors may be involved in the regulation of the specialized
functions of liver (Figure 5b). For example, Chicken oval-
bumin upstream promoter (COUP) can reduce the expres-
sion of hepatocyte nuclear factor 4 (HNF4), which plays a
key role in blood coagulation and hepatic metabolism [42].
As listed in Table 3, 17 of the top 20 high-scoring

genes are involved in the metabolism of human liver.
The genes, including F11, F9, SERPINC1, APOA2,
AKR1D1, ACSM2, ITIH2, PON1, CPB2, AFM, NR0B2,
ALB, CYP4A11, PGLYRP2 and SLC22A7, have not been
annotated as liver-specific genes in UniProt. However,
recent studies suggest that some of these genes are
expressed preferentially in the liver. For example, F11,
F9 and SERPINC1 are involved in the regulation of
blood coagulation cascade [43]. APOA2 encodes apoli-
poprotein which is synthesized mainly in liver and
involved in the metabolism of high density lipoprotein
[44]. AKR1D1 encodes the aldo-keto reductase catalyz-
ing the reduction of steroid hormones [45], whereas
ACSM2 encodes enzyme catalyzing the activation of
medium-chain length fatty acids [46]. The expression
and functions of other three predictions (BG398937, C6
and LPA) have not been documented in the literature.

Tissue-selective gene prediction
Tissue-specific genes are considered as the special case of
tissue-selective genes. Our approach was developed for
tissue-specific gene predictions, but its application to tis-
sue-selective gene predictions is straightforward. In this
study, the RF classifiers were used to predict the genes
that are expressed preferentially in the brain, liver, testis,
blood and kidney. The RF classifiers reached high predic-
tive performance for tissue-selective gene prediction
(Table 6 and Additional file 3). For example, the classifier
for brain-selective gene prediction shows overall accuracy
(AC) at 92.70% with Matthews Correlation Coefficient
(MCC) = 0.4925. The classifier for liver-selective gene
prediction gave predictive performance with the overall
accuracy at 96.02% and MCC = 0.7378. It is noteworthy
that the classifiers used for tissue-specific gene prediction
achieved higher predictive performance than those for
tissue-selective gene prediction. For instance, the AUC
value of RF classifier for brain-specific gene prediction

(AUC = 0.9488, Table 1) is higher than that for brain-
selective gene prediction (AUC = 0.9178, Table 6),
whereas the RF classifier gave better predictive perfor-
mance for liver-specific gene prediction (AUC = 0.9777,
Table 1) than liver-selective gene prediction (AUC =
0.9547, Table 6). The possible explanation is that the tis-
sue-specific genes are expressed specifically in only one
particular tissue type, thus the clear expression patterns
of the genes may improve the quality of classifiers and
result in high predictive performance for predictions.
The RF classifiers gave high predictive performance

for predicting genes that have preferential expression in
other tissue types. The testis is the male sex gland,
which produces sperm, male reproductive cell and sex
hormones. The classifier for testis-selective gene predic-
tion reached predictive performance with overall accu-
racy at 91.00% and ROC AUC = 0.8433. The blood
transports oxygen and nutrients to other tissues and
carries away waste products from cells. The classifier for
blood-selective gene prediction showed overall accuracy
at 93.29% with MCC = 0.5109 and ROC AUC = 0.9170.
The kidneys play key roles in urinary system. The
organs filter waste products from the blood and excrete
them in urine. The classifier for kidney-selective gene
prediction achieved predictive performance with overall
accuracy at 93.62% with MCC = 0.4648 and ROC
AUC = 0.9300. The results suggest that our approach
can be used to identify the genes that have preferential
expression in different types of tissues.

Conclusions
A machine learning approach has been developed in this
study for identifying the human tissue-specific gene tar-
gets. Random Forests (RFs) and Support Vector
Machines (SVMs) were trained separately with the
microarray gene expression data to construct classifiers
for prediction. It was shown that the RF classifiers out-
perform SVM models for tissue-specific gene prediction.
1,408 brain-specific gene targets and 493 liver-specific
gene targets were identified using RF classifiers. The
predicted targets show clear expression patterns in cor-
responding tissue samples, and they have functions and
regulatory elements consistent with the tissues in GO

Table 6 Random Forest classifiers for predicting tissue-selective genes.

Tissue AC
(%)

SN
(%)

SP
(%)

ST
(%)

ROC
AUC

Brain 92.70 (± 0.273) 43.55 (± 1.212) 97.60 (± 0.211) 70.58 (± 0.675) 0.9178 (± 0.002)

Liver 96.02 (± 0.341) 65.6 (± 2.499) 99.07 (± 0.191) 82.33 (± 1.293) 0.95467 (± 0.003)

Testis 91.00 (± 0.033) 1.49 (± 0.405) 99.95 (± 0.038) 50.72 (± 0.193) 0.8433 (± 0.004)

Blood 93.29 (± 0.190) 40.20 (± 1.291) 98.53 (± 0.108) 69.37 (± 0.677) 0.9170 (± 0.002)

Kidney 93.62 (± 0.508) 26.43 (± 5.355) 99.73 (± 0.159) 63.08 (± 2.703) 0.9300 (± 0.003)

The values outside and inside brackets are the average value and standard deviation of measures in ten classifier evaluations, respectively.
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enrichment analysis and transcription factor prediction.
The analysis of high-scoring candidate genes for brain
and liver specific expression suggests that our approach
can select some interesting targets for further experi-
mental studies. Our approach could also provide useful
information for tissue-selective gene prediction. The
approach can be used to develop new drug targets for
biomedical research and expand our knowledge of tis-
sue-specific expression.

Additional material

Additional file 1: List of brain-specific gene targets. The full list of
candidate brain-specific genes identified in this study with positive
scores.

Additional file 2: List of liver-specific gene targets. The full list of
candidate liver-specific genes identified in this study with positive scores.

Additional file 3: Figure S1 ROC curves to show the RF classifier
performances for predicting different tissue-selective genes.
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