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Abstract

Background: One of the challenges in classification of cancer tissue samples based on gene expression data is to
establish an effective method that can select a parsimonious set of informative genes. The Top Scoring Pair (TSP),
k-Top Scoring Pairs (k-TSP), Support Vector Machines (SVM), and prediction analysis of microarrays (PAM) are four
popular classifiers that have comparable performance on multiple cancer datasets. SVM and PAM tend to use a
large number of genes and TSP, k-TSP always use even number of genes. In addition, the selection of distinct gene
pairs in k-TSP simply combined the pairs of top ranking genes without considering the fact that the gene set with
best discrimination power may not be the combined pairs. The k-TSP algorithm also needs the user to specify an
upper bound for the number of gene pairs. Here we introduce a computational algorithm to address the
problems. The algorithm is named Chisquare-statistic-based Top Scoring Genes (Chi-TSG) classifier simplified as TSG.

Results: The TSG classifier starts with the top two genes and sequentially adds additional gene into the candidate
gene set to perform informative gene selection. The algorithm automatically reports the total number of
informative genes selected with cross validation. We provide the algorithm for both binary and multi-class cancer
classification. The algorithm was applied to 9 binary and 10 multi-class gene expression datasets involving human
cancers. The TSG classifier outperforms TSP family classifiers by a big margin in most of the 19 datasets. In addition
to improved accuracy, our classifier shares all the advantages of the TSP family classifiers including easy
interpretation, invariant to monotone transformation, often selects a small number of informative genes allowing
follow-up studies, resistant to sampling variations due to within sample operations.

Conclusions: Redefining the scores for gene set and the classification rules in TSP family classifiers by
incorporating the sample size information can lead to better selection of informative genes and classification
accuracy. The resulting TSG classifier offers a useful tool for cancer classification based on numerical molecular data.

Background
With the availability of high throughput genomics data,
methods for cancer class classification and prediction
based on molecular information have been vigorously pur-
sued in recent years. The objective of this study is to find
important molecular markers and/or build a classifier

such that the classifier with selected markers as the inde-
pendent variables can accurately classify the diagnostic
disease status of a sample using expression data. Popular
methods for this problem include Prediction Analysis of
Microarrays (PAM, [1]), Top Scoring Pair (TSP, [2]),
k-Top Scoring Pair (k-TSP, [3]), Support Vector Machine
(SVM, [4]) etc. There are also many other endeavors such
as individual-gene-ranking by evaluating the discriminat-
ing power of classes (see [5,6] and the references therein),
gene filtering through relevance and correlation analyses
[7,8], gene selection for classification based on the Bayes
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error [9], comparing the distributions of within-class cor-
relations with between-class correlations via Kullback-
Leibler divergence [10], recursive feature addition with
Lagging Prediction Peephole Optimization to choose the
final optimal marker set [11], SVM based recursive feature
elimination [12,13], random forests [14] and random sub-
space search [15,16], among others.
There are a few challenges associated with such study.

One of them is that the number of independent variables
(markers) is typically much more than the number of
available samples, often referred as curse of dimensional-
ity. To identify possibly nonlinear effects of many variables
and their interactions, it is often necessary to estimate a
large number of modeling parameters. A direct conse-
quence of the curse of dimensionality is that the total
number of parameters that the data can estimate is
restricted by the number of the samples. When the total
number of parameters greatly exceeds the number of
samples, overfitting occurs such that the prediction of the
phenotype works well for the learning data but the perfor-
mance of the classifier applied to independent test samples
exhibit poor classification accuracy. The informative mar-
ker selection process unfortunately needs to consider
modeling with each possible combination of all markers in
order to find the globally best marker set, which has the
best discriminating power for the different disease cate-
gories and may or may not be the primary biological and
pathological driving factors underlying disease progres-
sion. Hence, an effective practice is to first reduce the
dimensionality of the marker space.
The TSP and k-TSP classifiers are two simple algorithms

that select gene pairs with top scores to build classifiers.
They were shown to perform well for binary classification
with gene expression data [2,3]. The gene pairs were
selected based on simple pairwise comparisons between
two marker expression levels within the same sample. Spe-
cifically, let pij(C1) be the percentage of training samples in
class 1 that the expression of one marker is less than that
of the other marker in the same sample and let pij(C2) be
similarly defined. The score for a gene pair is defined as
the estimated difference between the two percentages pij
(C1) - pij(C2). Then the gene pair that received the highest
score is selected as the marker set for TSP classifier and
the top k gene pairs with highest scores are used for the k-
TSP classifier. Tan et al. [3] extended the two classifiers to
multi-class classification through one-vs-others, one-vs-
one, and hierarchical classification (HC) schemes. They
reported that the HC schemes for TSP and k-TSP gave
better performance than the other two schemes.
There are advantages and disadvantages with the TSP

and k-TSP classifiers. Some advantages of the two classi-
fiers are that they are simple to implement and the
resulting classifiers are easy to interpret. They are also
invariant to monotone transformations as they only

depend on relative rankings of gene expressions within
the same sample. The overfitting problem is largely
avoided due to simple comparisons. In addition, they are
different from most algorithms in that comparisons in
other algorithms were mostly between expressions from
different samples. Comparison of expressions within the
same sample in TSP and k-TSP helps to eliminate the
influence of sampling variability due to different subjects.
A disadvantage is related to how the scores for gene

pairs are defined. As the scores were calculated from per-
centages, the sample size information was not fully uti-
lized in TSP and k-TSP. For example, suppose 4 out of
10 samples in class 1 and 6 out of 10 samples in class 2
satisfy the condition: Marker 1 has smaller expression
value than marker 2. The score for the pair with markers
1 and 2 is 0.2, which is the absolute difference between
the two percentages. In another case, suppose all the
counts are multiplied by 10, i.e. 40 out of 100 samples in
class 1 and 60 out of 100 samples in class 2 satisfy the
condition. Then the score for the marker pair is identical
to the previous case. So the additional information with
extra sample size is completely ignored in TSP and k-
TSP classifiers.
The multi-class classifiers HC-TSP and HC-k-TSP are

two versions that showed best performance among all
TSP family classifiers [3]. They were derived from a
scheme that performs sequential binary classification. At
the root node, the training samples are partitioned into
two classes, the largest class and the composite class. The
largest class containing the largest number of samples is
treated as a leaf node for final classification of the pheno-
type. The composite class is then further partitioned simi-
larly as the root partition. This scheme intends to balance
the two classes during each binary partition. However, the
markers selected at each binary partition with TSP or
k-TSP are not necessarily the best marker set to separate
all the classes since they are selected based on their differ-
entiating ability to separate the largest class from the com-
posite class at the node. In addition, the selection of
markers at each partition does not have a mechanism to
control the redundancy of the candidate marker set. For
example, in prostate cancer LNCaP cells, forkhead tran-
scription factor (FOXO3a) that is the phosphatidylinositol
3-kinase (PI3K/Akt) downstream substrate, is a positive
regulator for the induction of androgen receptor (AR)
gene expression. The blocking of AR functions by AR
interfering RNA leads to dramatic LNCaP cell death.
Hence the inhibition of the PI3K/Akt pathway may result
in the activation of the FOXO3a transcription factor,
which may then induce the AR gene expression to protect
cells from apoptosis of LNCaP prostate cancer cells. The
PI3K/Akt and FOXO3a could both be selected in the mar-
ker selection algorithm of HC-TSP or HC-k-TSP. Appar-
ently, they are highly correlated.
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In this article, we propose a new algorithm to overcome
the above problems of TSP family classifiers. We intro-
duce a new definition of the score for each marker set so
that the sample size information is fully utilized. In addi-
tion, it is unrealistic to assume that the number of infor-
mative genes is always even as in TSP family classifiers.
We present a new algorithm that performs sequential
search and do not restrict the informative markers to be
even numbered. The binary class and multi-class cases are
unified into a single framework. The algorithm was
applied to 9 binary class and 10 multi-class cancer geno-
mics datasets. The TSG classifier achieved better leave-
one-out cross validation accuracy for the binary classifica-
tion than TSP or k-TSP classifiers. For the multi-class pro-
blems, our TSG classifier gives comparable performance
or outperform TSP family and other popular classifiers
with a big margin in independent test accuracy for several
cancer datasets. Beyond high accuracy, our new algorithm
also has the advantage of giving small number of informa-
tive marker set and all the advantages of the TSP family
classifiers.

Methods
For generality, we describe the method in terms of mar-
kers, which could represent genes, probe sets, or other
molecular units whose intensity is measured with high
throughput instruments. Consider expression data from P
markers and suppose there are N samples. The data can
be expressed as a matrix X of dimension NxP. The (i, j)
element xij of the matrix gives the expression value of the
jth marker in the ith sample. Let (y1,..., yN) be the class
labels for the N samples, where yk takes one of the values
in the set of all possible classes {C1,..., CM }. Ci represents
the class phenotype that may be cancerous tumor, normal,
or cancer subclasses such as different stages of a cancer.
Denote xi = (xi1,..., xiP) to be the P expression values from
the ith sample. The P is typically much larger than N, and
could be in the neighborhood of exponential order O(eN)
with high density microarrays. The objective is to use Ω =
{ (xi , yi), i = 1,..., N} to select a parsimonious set of infor-
mative markers and build a classifier with these markers
such that the diagnosis status of a test sample can be accu-
rately classified by modeling the expression data of the
selected markers.

Score of a marker set
To consider the differentiating power of a set of markers
consisting of k markers, we first define the score of the
marker set. A normal sample contains normal proto-
oncogenes that promote cell growth and mitosis and
tumor suppressor genes that discourage cell growth.
During cancer development, proto-oncogenes can be
mutated by carcinogenic agents to become oncogenes,
which produce excessive levels of growth promoting

proteins. Cancer results from cumulative mutations of
proto-oncogenes and suppressor genes which together
allow the unregulated growth of cells. Hence, cancer
development involves uncontrolled cell division resulting
from a series (progression) of gene mutations that typi-
cally involve two categories of function: promotion of cell
division and inactivation of cell cycle suppression. The
expression values of excessive growth genes tend to be
much higher than the same genes of a normal sample.
Similarly, the level of tumor suppressor genes of a cancer
sample tends to be much lower than a normal sample. It
is relatively rare that a single marker alone could offer
sufficient power to differentiate all the classes well in
multi-class data. So we consider marker sets with at least
two markers keeping in mind that over-growth of some
genes and inactivation of other genes often happen
together in cancer cases. Later stages of cancer involve
tissue invasiveness, during which malignant cells travel
among tissues via the circulatory and/or lymphatic sys-
tem and grow and thrive in their new locations. There-
fore the relative amount of two or multiple markers in a
sample could be an indication of the cancer stages.

Score of marker pairs
For markers i and j, we use the following notation. Let
f1mij , m = 1,... M, represent the frequency count of sam-
ples in class Cm that satisfy the condition: the expression
value for marker i is less than the expression value of
marker j. Similarly, let f2mij , m = 1,... M, be the fre-
quency count of samples that satisfy the condition: the
expression value for marker i is greater than or equal to
the expression value of marker j. These counts can be
presented in a cross-tabulation table as shown in Table
1, where f1mij , m = 1,... M, are the entries in the first
column and f2mij , m = 1,... M, are the entries in the sec-
ond column.
Based on the cancer mechanism that there is excessive

growth in tumor cells and inactivation of suppressor
genes, the best informative genes would consist of some
genes overly expressed and some other genes that are
down-regulated. In particular, a marker pair with genes
i and j become increasingly more informative of the

Table 1 Frequency counts of samples in each class for
marker pairs.

Ei < Ej Ei ≥ Ej Total

Class C1 f11ij f21ij n1 = f11ij +f21ij
⋮ ⋮ ⋮ ⋮

Class CM f1Mij f2Mij nM =f1Mij +f2Mij

Total T1 = �M
m=1f1mij T2 = �M

m=1f2mij N

The Ei and Ej represent the population of expression values for markers i and j
respectively.

The ni are the total number of samples in class Ci, i = 1,..., M.
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cancer status as the difference of their expression values
diverges away from the corresponding difference
between the same marker pairs of a normal patient.
Consequently, for two markers encoding genes or pro-
teins that are important to differentiate the cancer sta-
tus, their relative magnitude of the expressions are
inter-related and whether the expression value for mar-
ker i is less than the expression value of marker j is not
independent of the class status. To incorporate the sam-
ple size information, the Chisquare statistic defined in
equation (1) can be used to assess whether the pair of
markers i and j are informative for classification of can-
cer status:

χij
2 =

(
�2

q=1�
M
m=1

(fqmij − nmTq/N)2

nmTq/N

)
= N

(
�2

q=1�
M
m=1

f 2qmij

nmTq
− 1

)
, (1)

where nm and Tq are the row and column totals from
the mth row and qth column, respectively. If all the counts
in Table 1 are large and all cell counts are at least five, a
traditional way to declare significance for the pair is to
compare the calculated statistic with the chi-squared-
distribution with M -1 degrees of freedom. However, the
significance level for declaring significance of a single test
needs to be adjusted for multiple comparisons. There are
various directions including family-wise error rate control,
false-discovery rate (FDR) control, among others. The
family-wise error rate control tends to be conservative
while the FDR control could lead to high false positive
rates. In this work, we do not use the chi-squared-distribu-
tion and do not decide how many pairs are significant.
Instead, we only use the Chi-square statistic in (1) as an
indication of how much departure from independence
between the class and the chance of observing marker i
expression value less than that of marker j. As the depar-
ture from independence increases, the chi-squared statistic
value increases. We select the top pair of markers that
yield the highest value of the chi-squared statistic. Addi-
tional marker selection will follow the algorithm in section
2.2.

Score of a k-marker set
For a set that contains k markers, we consider the cross
tabulated Table 2 that contains frequency counts of all
unique pairwise comparisons among the k markers. There
are k(k-1) columns of counts. The sum of counts in each
column remains to be the same as that for two-marker
case. The row totals are now k times that of the sample
sizes in corresponding classes. We calculate the Chisqure
statistic as in equation (2).

χ2
i1...ik = �k−1

a=1 �k
b=a+1�

M
m=1�

2
q=1

(
fqmiaib − knmTq

N

)2

knmTq/N
= N

(
�k−1

a=1 �k
b=a+1�

M
m=1�

2
q=1

f 2qmiaib

knmTq
− 1

)
, (2)

Note that the χ2
i1...ik only differs from �k−1

a=1 �k
b=a+1χ

2
iaib

by the division factor k in the first term. So comparison of

χ2
i1...ik and χ2

j1...jk for two sets of k-markers {i1,..., ik} and

{j1,..., jk} is equivalent to comparing �k−1
a=1 �k

b=a+1χ
2
iaib and

�k−1
a=1 �k

b=a+1χ
2
jajb . The latter can be calculated easily with-

out much computational cost after the statistics for mar-
ker pairs have been computed. The statistics given in
equation (2) should be restricted to comparing marker
sets with the same number of markers. All the k-marker
sets can be ranked according to the magnitude of the
Chisquare statistic values. The k-marker set with the high-
est Chisquare value is the most informative set among all
k-marker sets.

Comparing marker sets of different sizes or identical
Chisquare statistic
For comparing multiple sets with different numbers of
markers, the Chisquare statistics given earlier can not be
used because they accumulate different numbers of terms.
In such case, we use the leave-one-out cross validation
(LOOCV) accuracy within the training data obtained with
the procedure below as the objective function.
Suppose the training data contains Ntr samples. With-

out loss of generality, we use Ωtr = {S1,..., SNtr} to denote
the collection of these samples. For a marker set {i1,...,
ik}, the LOOCV is performed within this training sam-
ple. In particular, we

1. Leave out one training sample Sl to be used as the
test data and use the rest of the training samples Ωtr\
Sl as training data.
2. For class m, (1 ≤ m ≤ M), assign Sl to this class and
calculate the Chisquare statistic for the marker set

{i1,..., ik}. We obtain M Chisquare statistics {χ2(m)
i1...ik ,

m = 1,..., M}. The predicted class m̂(Sl)for Sl is the
class that has the maximum Chisquare statistics, i.e.,

m̂(Sl) = arg max
1≤m≤M

χ2(m)
i1...ik .

3. Repeat 1 and 2 for all the samples in Ωtr to get
the prediction of all samples in Ωtr: m̂(Sl) , l = 1,...,
Ntr.
4. The LOOCV accuracy for marker set {i1,..., ik} is
LOOCV(i1,..., ik) = the proportion of correctly classi-
fied samples in Ωtr.

The comparison of marker sets of different sizes can be
based on the LOOCV accuracy within the training data.
The marker set with highest LOOCV is more informative
than other marker sets. For marker sets with the same
number of markers and identical Chisquare statistic value,
we also use the LOOCV accuracy as a measure of their
differentiating power toward the different cancer classes.
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Marker selection algorithm
For a given upper bound B on the cardinality of the mar-
ker set, the marker selection process first selects the top
scoring pairs and then sequentially adds additional mar-
kers into the active set until the total number of markers
in the active set reaches the upper bound B. This is done
following the algorithm below: Denote the set of remain-
ing markers as ẞ. The initial value of ẞ is the list of all
markers.

1. Calculate and record the Chisquare statistics for
all marker pairs using the training data.
2. If the highest value of the Chisquare statistics is
achieved by a unique marker pair, select this pair
and denote it as TS2. Calculate the LOOCV for this
pair of markers and denote it as LOOCV2. Update
the remaining marker set ẞ by removing the mar-
ker pair selected.
3. If there are multiple marker pairs that have identical
maximum Chisquare statistic value, calculate the
LOOCV accuracy of these marker pairs using the train-
ing data. Keep the marker pairs that have the highest
LOOCV accuracy. If the highest accuracy is achieved
by more than one pairs, denote the different pairs as
TS2,1, TS2,2, etc.
4. Find the top scoring triplets by adding additional
marker to the top scoring pairs. This is done as fol-
lows. For each of the top scoring pairs resulting from 2
and 3, find the marker from the list of remaining mar-
kers ẞ such that the triplet has the highest Chisquare
statistic value. If there are multiple triplets with identi-
cal maximum Chisquare value, calculate the LOOCV
accuracy of these triplets and record those triplets that
yield the highest LOOCV accuracy. Denote the top
scoring triplet as TS3 if it is unique, and TS3,1, TS3,2,
etc otherwise if multiple sets achieved identical accu-
racy. Record the LOOCV accuracy of the top scoring
triplets.
5. For k = 4, 5,..., B, find TSk and their correspond-
ing LOOCV accuracy LOOCVk. As k increases, the
set TSk tend to be unique.
6. Select the smallest k-marker set such that the
LOOCV is maximized over all TSk, k = 1,..., B. If the
marker set is not unique, randomly select one of them
as the final set. Denote the final selected informative

marker set as TSG, where G = arg max1 ≤ k ≤ B

LOOCVk.

As discussed in section 2.1.2, the comparison of the

Chisquare statistics for χ2
i1...ik can be simplified by com-

paring the summation of all Chisquare statistics from

unique marker pairs �k−1
a=1 �k

b=a+1χ
2
iaib .

As an illustration, Figure 1 shows the the accuracy of
the training and test data for k = 2,..., 100 for the 6-class
DLBCL cancer microarray data [17]. It can be seen that
the training accuracy reached maximum when k = 16.
So the selected marker set is TS16.
Our experience suggests that it is sufficient to set the

upper bound B to be 50 if the total number of classes
M ≤ 4, 100 if 5 ≤ M ≤ 8, and 150 if M ≥ 9.

Prediction with TSG classifier
To predict the class information for each sample in the
test data, we use the selected marker set and calculate
the scores of this sample belonging to each class. A
large value for a class suggests that putting this sample
in that class helps to increase the separation of different
classes. The predicted class is set to be the one that has
the largest score. In particular, suppose the selected
marker set consists of markers m1, m2,..., mk, the train-
ing data is Ωtr, and the sample to be predicted is xnew.

Letχ2
i1...ik|Ci

be the Chisquare statistic value when we

put the sample in class Ci, i = 1,..., M. There are M
Chisquare values. We assign the sample to the class
with the largest Chisquare value:

Class of xnew = arg max
i=1,...,M

χ2
i1...ik|Ci .

If multiple classes reach the same maximum Chis-
quare value, we further calculate the LOOCV accuracy
for these classes. The final prediction is based on which
class achieves the highest LOOCV accuracy.

Results and discussion
Microarray data and method of comparison
The performance of the proposed TSG marker selection
and classifier is evaluated on both binary and multi-class
microarray expression data. We consider the 19 datasets
that were used for evaluation of TSP, k-TSP and their
multi-class version classifiers in Tan et al. 2005. There

Table 2 Frequency counts of samples in each class for a set of k markers.

Class Ei1 < Ei2 Ei1 ≥ Ei2 ... Eik−1 < Eik Eik−1 ≥ Eik Total

C1 f11i1 i2 f21i1 i2 ... f11ik−1 ik f21ik−1 ik kn1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
CM f1Mi1 i2 f2Mi1 i2 ... f1Mik−1 ik f2Mik−1 ik knM

Total T1 = �M
m=1f1mi1 i2 T2 = �M

m=1f2mi1 i2
... T(k−1)k/2−1 = �M

m=1f1mi1 i2 T(k−1)k/2 = �M
m=1f2mi1 i2

KN

Wang et al. BMC Medical Genomics 2013, 6(Suppl 1):S3
http://www.biomedcentral.com/1755-8794/6/S1/S3

Page 5 of 14



are 9 binary and 10 multi-class datasets. These datasets
are related to human cancers including colon cancer,
leukemia, central nervous system, diffuse large B-cell
lymphoma, breast cancer, lung cancer, and prostate can-
cer. The reference, sample size, number of genes in each
dataset, and the number of samples in each class are
summarized in Tables 3 and 4. The number of classes
ranges from 2 to 14. The number of markers ranges
from 2000 to 16063. Average number of samples per
class ranges from 13 to 140. The ratio between the
number of samples per class and the number of markers
ranges from 0.000845 to 0.0155.
First, we consider comparison of TSG and k-TSP clas-

sifiers for binary datasets based on 5-fold cross validation.
The subjects in each class are randomly partitioned into
5 parts, 4 of which form the training data and the rest of
the subjects constitute the test data. The feature selection
and modeling were conducted on the training data and
prediction for each subject in the test data was given. For
the results to be comparable to the TSP family classifiers,
we also follow the same comparison methods as in Tan
et al. [3]. In particular, we perform LOOCV for binary

datasets and perform independent test for multi-class
datasets. In the LOOCV, each sample is taken out and
the remaining N-1 samples are used to train the classifier,
which is then used to predict the class label of the leave-
out sample. The LOOCV accuracy is the proportion of
correctly classified samples. Each of the multi-class data-
sets is partitioned into training and test data. We follow
exactly the same partition scheme as in Tan et al. [3].
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Figure 1 Accuracy of TSk for training and test data from DLBCL cancer (Alizadeh et al., 2000).

Table 3 Binary class gene expression datasets

Dataset Platform No. of
Genes

No. of
samples
in class I

No. of
samples
in class II

Source

Colon cDNA 2000 40(T) 22(N) [18]

Leukemia Affy 7129 25(AML) 47(ALL) [19]

CNS Affy 7129 25(C) 9(D) [20]

DLBCL Affy 7129 58(D) 19(F) [21]

Lung Affy 12533 150(A) 31(M) [22]

Prostate1 Affy 12600 52(T) 50(N) [23]

Prostate2 Affy 12625 38(T) 50(N) [24]

Prostate3 Affy 12626 24(T) 9(N) [25]

GCM Affy 16063 190(C) 90(N) [26]
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Since an objective of this research is to improve the
TSP family classifiers, we present the percent of increase
in classification accuracy in barplots. The percent of
increase for TSG over TSP is defined as (accuracy of
TSG - accuracy of TSP)/accuracy of TSP x 100%.
The percent of increase for any two classifiers are simi-

larly defined. As TSP classifier uses two genes, k-TSP and
TSG use at least two genes, we are particularly interested
in comparing the improvement in accuracy for TSG over
TSP and k-TSP over TSP in binary classifications. Simi-
larly, in the multi-class cases, we are interested in compar-
ing the increase in accuracy for TSG over HC-TSP and
HC-k-TSP over HC-TSP.
For reference, we also include the classification accu-

racy of decision trees (DT), Naive Bayes (NB), k-nearest
neighbor (k-NN), Support Vector Machines (SVM) and
prediction analysis of microarrays (PAM) in our compari-
son tables when they are available from the literature.
These results were reported in Tan et al. [3] for leave-
one-out cross validation for binary data and independent
test for multiclass data. We include them only for conve-
nience of discussion. DT and PAM have feature selection
function while NB, k-NN and SVM perform classification
using the entire set of features. Since DT, k-NN, and NB
in general have lower accuracy than the other classifiers,
we focus our discussion on other classifiers.

Accuracy for binary cancer data
In this section we present the comparison of the TSG
marker selection algorithm with other algorithms using
9 benchmark binary class cancer expression datasets.
These data have been analyzed extensively by many
authors with wrapper, filtering and ensemble methods.
Comparison of TSG and k-TSP classifiers based on 5-fold
cross validation
Here we present our comparison of TSG and k-TSP
classifiers based on 5-fold cross validation. For each bin-
ary cancer dataset, we randomly split the subjects in

each class into 5 parts. One part will be left out as the
test data and the remaining 4 parts are used as the
training data. We then train the TSG, k-TSP and TSP
classifiers using the training data to select features and
build models. TSP is included for reference purpose
since both TSG and k-TSP extend the TSP classifier.
The resulting features and models are further used to
predict the class of each subject in the test data. Each of
the 5 parts in turn serves as the test data. We record
the accuracy of the prediction calculated as the propor-
tion of correctly classified subjects among all collected
subjects. The procedure is repeated 10 times. The aver-
age and standard error of the accuracy are reported in
Table 5.
In five of the nine datasets (CNS, DLBCL, Leukemia,

Lung, Prostate3), TSG has slightly better performance
than k-TSP. In the remaining four datasets, k-TSP has
slightly better performance. On average, TSG and k-TSP
have comparable 5-fold cross validation performance.
The k-TSP improvement over TSP is also marginal in
this 5-fold cross validation setting for most of the
datasets.
LOOCV accuracy
Among the LOOCV accuracy reported in the literature,
we find that TSP, k-TSP, PAM and SVM are often the
top performing classifiers.
The LOOCV accuracy of the proposed TSG and afore-

mentioned competing classifiers for the 9 datasets are
presented in Table 6. In terms of accuracy, TSG consis-
tently gives the best performance for all but the leukemia
dataset, for which NB yields an accuracy of 100% while
TSG gives 98.61%. For the CNS data, TSG and k-TSP
have tied performance of 97% that is much better than
the rest of the classifiers (all below 83%). For the prostate
1 data, TSG and TSP have equally best performance. For
the prostate 3 data, TSG and SVM both have 100%
accuracy.
To assess how much improvement the TSG classifier

achieves by considering arbitrary number of genes instead
of only top scoring pairs as in TSP and k-TSP, we give the
percent of increase in LOOCV accuracy in Figure 2. The
first bar in each panel is the percent of improvement in
accuracy for k-TSP over TSP classifier; the second gives
that for TSG over k-TSP and the third gives that for TSG
over TSP. Comparing the bar heights of the first and third
bars in each panel gives us an idea of whether k-TSP and
TSG improve TSP with similar performance. The second
bar in each panel tells how much improvement TSG
achieves over k-TSP. For the CNS data, TSG and k-TSP
have same improvement over TSP. The much taller
heights for the third bar in all panels except for the CNS
data suggest that TSG gained much more accuracy than
k-TSP. There are two reasons for this observed accuracy
gain: (1) the set of informative genes could be odd

Table 4 Multi-class gene expression datasets

Dataset Platform No. of
Classes

No. of
Genes

No. of
samples

in
training

No. of
samples
in test

Source

Leukemia1 Affy 3 7129 38 34 [19]

Lung1 Affy 3 7129 64 32 [27]

Leukemia2 Affy 3 12582 57 15 [28]

SRBCT cDNA 4 2308 63 20 [29]

Breast Affy 5 9216 54 30 [30]

Lung2 Affy 5 12600 136 67 [31]

DLBCL cDNA 6 4026 58 30 [17]

Leukemia3 Affy 7 12558 215 112 [32]

Cancers Affy 11 12533 100 74 [33]

GCM Affy 14 16063 144 46 [26]
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numbered but k-TSP can only use even number of genes;
(2) selection of additional genes after the top pair by the
TSG classifier considers the joint effect of all selected
genes on differentiating the cancer classes whereas the k-
TSP classifier only consider the marginal effect of pairs.
Without considering the joint effect, collection of top
scoring pairs in k-TSP could easily accumulate redundant
genes. So TSG naturally gives better performance than k-
TSP.
To ease the discussion about how the performance of

TSG, k-TSP, HC-k-TSP, SVM, and PAM classifiers com-
pare to each other, we plot the LOOCV accuracy of TSG,
k-TSP, and SVM relative to that of PAM in the left panel
of Figure 3. It can be seen that TSG, k-TSP, and SVM are
in general better than PAM for binary data since most of
the accuracy values for TSG, k-TSP, and SVM are above
the straight line. The performance of TSG is consistently
the best as its values are highest for all datasets. SVM has
similar accuracy as k-TSP in four datasets. SVM is worse
than k-TSP clearly in two datasets (Colon and CNS) and
k-TSP is obviously not as accurate as SVM in the Leuk,

GCM and Pros3 datasets. On average performance, k-TSP
and SVM are comparable in binary classifications with the
9 datasets. In summary, the TSG classifier outperforms k-
TSP and SVM in LOOCV accuracy for the 9 binary classi-
fication problems, the latter two have comparable perfor-
mance and are both better than PAM in accuracy.

Accuracy of independent test for multi-class cancer data
For the multi-class datasets, the accuracy of classifiers on
independent test data is presented in Table 7.
The percent of increase in accuracy for HC-k-TSP and

TSG over HC-TSP is shown in Figure 4. The similar bar
heights for the first and third bars in Leuk1, Leuk2,
SRBCT, and GCM datasets indicate that HC-k-TSP and
TSG improve upon TSP with similar amount for these
datasets. For the Breast, DLBCL, Leuk3 datasets, TSG
achieved a lot more accuracy gain over HC-TSP than
HC-k-TSP. For these three datasets, the gain of accuracy
of TSG over HC-k-TSP is 30%, 12%, and 10.87% respec-
tively. For Lung1, Lung2 and on average, TSG also has
better accuracy than HC-k-TSP but the gain of TSG over

Table 5 Average and standard error of accuracy from 5-fold cross validation based on 10 runs.

TSG k-TSP TSP

Dataset Average Standard error Average Standard error Average Standard error

CNS 81.1 1.61 77.0 1.48 67.0 2.48

Colon 84.8 0.85 87.4 0.31 86.7 1.85

DLBCL 95.2 0.69 94.6 0.88 92.9 2.25

GCM 81.7 0.66 81.9 0.41 76.0 1.04

Leukemia 93.7 0.75 91.8 1.13 89.4 1.56

Lung 100 0 98.6 0.15 96.3 0.69

Prostate1 90.2 0.72 91 0.75 89.3 1.27

Prostate2 74.4 0.6 77.9 0.69 70.4 2.25

Prostate3 100 0 95.4 0.79 95.1 1.44

Average 89.0 88.4 84.8

Table 6 LOOCV accuracy and the number of genes used in classifiers (in parenthesis) for binary class expression
datasets

Method Colon Leuk CNS DLBCL Lung Pros1 Pros2 Pros3 GCM Aver

TSG† 93.55
(2)

98.61
(2)

97.06
(2)

98.7
(2)

100
(2)

95.1
(2)

86.36
(10)

100
(2)

87.5
(7)

95.21

TSP* 91.10
(2)

93.80
(2)

77.90
(2)

98.10
(2)

98.30
(2)

95.10
(2)

67.60
(2)

97.00
(2)

75.40
(2)

88.26

k-TSP* 90.30
(2)

95.83
(18)

97.10**
(10)

97.40
(2)

98.90
(10)

91.18
(2)

75.00
(18)

97.00
(2)

85.40
(10)

92.01

DT* 77.42
(3)

73.61
(2)

67.65
(2)

80.52
(3)

96.13
(3)

87.25
(4)

64.77
(4)

84.85
(1)

77.86
(14)

78.90

NB*‡ 56.45 100 82.35 80.52 97.79 62.75 73.86 90.91 84.29 80.99

k-NN*‡ 74.19 84.72 82.35 89.61 98.34 74.51 73.86 93.94 86.79 84.26

SVM*‡ 82.26 98.61 82.35 97.40 99.45 91.18 76.14 100 93.21 91.18

PAM* 89.52
(15)

94.03
(2296)

82.35
(4)

85.45
(17)

97.90
(9)

90.89
(47)

81.25
(13)

94.24
(701)

82.32
(47)

88.66

*Results reported in Tan et al. [3]†Results obtained with our method (TSG) ‡NB, k-NN, SVM used entire set of genes

**The 97.10 reported in Tan et al. [3] may be a result of rounding 97.06, which is the accuracy of correctly classifying 33 of the 34 samples.
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HC-k-TSP is not more than 5%. For the cancers dataset,
TSG lost 3.27% accuracy than HC-k-TSP. In summary,
TSG gains more accuracy than HC-k-TSP in all except
for one dataset. We remark that there are three schemes
of extending binary classifier TSP to multi-class classi-
fiers (1-vs-1, 1-vs-others, and hierarchical classification
schemes). The HC-k-TSP and HC-TSP results reported
in Tan et al. [3] are with the hierarchical scheme that
performs best out of all three schemes. Therefore, TSG
classifier has even better performance than the 1-vs-1
and 1-vs-others multi-class extensions of TSP family
classifiers.
The accuracy based on independent test samples for

TSG, HC-k-TSP, and SVM relative to the accuracy of
PAM is presented in the right panel of Figure 3. For half
of the datasets SVM has better performance than PAM
and for the other half of the datasets, PAM performs bet-
ter than SVM in accuracy. So on average, SVM and PAM
are comparable. The accuracy of HC-k-TSP in majority of
datasets is below that of PAM. On average, HC-k-TSP has
accuracy slightly lower than PAM. TSG has better accu-
racy than PAM in five of ten datasets, and TSG is not as
accurate as PAM in four datasets. On average, TSG, PAM

and SVM have comparable performance with TSG only
slightly better. In summary, for multi-class problems,
TSG, SVM and PAM are better than HC-k-TSP in
accuracy.

The number of genes used in classifiers
For comparison of classifiers with finite number of sam-
ples, the number of genes used by each classifier is an
important factor. Classifiers using more genes tend to over-
fit the data. Hence classifiers with small number of genes
are preferred. Since SVM, k-NN, and NB use the entire set
of genes in their classification algorithm, we eliminate
them from further discuss on number of genes used and
restrict the rest of the discussion in this subsection to TSP,
HC-TSP, DT, k-TSP, HC-k-TSP, TSG, and PAM. For
these classifiers, we plot the number of genes used in each
dataset for each classifier. For quite many datasets, PAM
used hundreds or thousands of genes in the final classifiers.
So we set the upper limit of the vertical axis in Figure 5 to
be 50 in binary cases and 140 in multi-class cases so that
the numbers used by other classifiers can be seen. The
numbers for the same classifier under different datasets are
connected for convenience of viewing.
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It can be seen from Figure 5 that TSP classifier has
the lowest number of genes in binary data classification.
PAM used much more number of genes than other clas-
sifiers. The classifier that has the second smallest num-
ber of genes in binary data classification is TSG,
followed by DT that uses the third smallest number of

genes. The k-TSP classifier in general used more num-
ber of genes than TSP, TSG, and DT.
For multi-class data, DT uses the least number of genes

followed by HC-TSP in the second place. However, as
discussed in Section 3.1, DT and HC-TSP are not as
accurate as SVM, PAM, HC-k-TSP, and TSG. In 4 out of
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Table 7 Accuracy of classifiers and the number of genes used in classifiers (in parenthesis) for the independent test
set for multi-class expression datasets

Method Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Leuk3 Cancers GCM Aver

TSG† 97.06
(6)

81.25
(20)

100
(44)

100
(13)

86.67
(63)

95.52
(60)

93.33
(16)

91.07
(95)

79.73
(81)

67.39
(112)

89.20

HC-TSP* 97.06
(4)

71.88
(4)

80
(4)

95
(6)

66.67
(8)

83.58
(8)

83.33
(10)

77.68
(12)

74.32
(20)

52.17
(26)

78.17

HC-k-TSP* 97.06
(36)

78.13
(20)

100
(24)

100
(30)

66.67
(24)

94.03
(28)

83.33
(46)

82.14
(64)

82.43
(128)

67.39
(134)

85.12

DT* 85.29
(2)

78.13
(4)

80
(2)

75
(3)

73.33
(4)

88.06
(5)

86.67
(5)

75.89
(16)

68.92
(10)

52.17
(18)

76.35

NB‡* 85.29 81.25 100 60 66.67 88.06 86.67 32.14 79.73 52.17 73.2

k-NN‡* 67.65 75 86.67 30 63.33 88.06 93.33 75.89 64.86 34.78 67.96

PAM* 97.06
(44)

78.13
(13)

93.33
(62)

95
(285)

93.33
(4822)

100
(614)

90
(3949)

93.75
(3338)

87.84
(2008)

56.52
(1253)

88.5

1-vs-1-SVM‡* 79.41 87.5 100 100 83.33 97.01 100 84.82 83.78 65.22 88.11

*Results reported in Tan et al. [3]†Results obtained with our method (TSG) ‡: NB, k-NN, 1-vs-1-SVM used entire set of genes in classification. That is, 7129, 7129,
12582, 2308, 9216, 12600, 4026, 12558, 12533, 16063 for the ten data sets respectively.
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10 datasets TSG used more genes than HC-k-TSP and in
5 datasets TSG used fewer genes than HC-k-TSP. On
average across all 10 datasets, TSG uses 51 genes and
HC-k-TSP uses 53.4 genes. PAM consistently uses a lot
more genes than other classifiers except in Lung1 data.
In fact, the number of genes used by PAM is in the mag-
nitude of thousands in order to reach comparable accu-
racy as TSG. Recall that on average TSG, PAM and SVM
have comparable accuracy for independent test data and
HC-k-TSP has lower performance. Now combining the
accuracy and the number of genes used, TSG outper-
forms the rest in that it uses smaller number of genes to
reach high accuracy. Smaller number of genes makes it
feasible to perform follow-up studies and further experi-
mental verification after the informative genes selection.

Interpretation of the TSG classifier
The TSG classifier has an easy interpretation. Recall that
the main rule to classify a sample is based on which class
gives the highest Chisquare statistic value when the sam-
ple is assigned to that class (see section 2.3). Note that
there is a one to one correspondence between the Chis-
quare statistic values and the degree of departure from

independence between the class label and the column
variables in Table 2. The bigger the Chisquare statistic,
the further the departure is from independence and vice
versa. So the class label assignment tries to maximize the
dependence between the classes and the selected vari-
ables for a given set of training data and a test sample.
The TSG classifier has the same interpretation as the

TSP classifier. In particular, suppose the expression
values for these two genes are E1 and E2 for a sample, the
prediction of the class label of this sample depends on
whether E1 < E2. For Leuk, CNS, and pros3 data, TSG
achieved accuracy 98.61, 97.06, and 100 for these three
datasets respectively using 2 genes. Also using 2 genes,
TSP only achieved 93.80, 77.90, 97.00 in LOOCV accu-
racy for these three datasets. Therefore, TSG finds genes
that are even more informative than TSP classifier in
these three datasets. When the selected informative
genes have more than 2 genes, then the class prediction
of a sample depends on all pairwise comparisons of the
expression values Ei1 , · · · ,Eik for the selected genes i1,
i2,..., ik from this sample, i.e., which of the inequalities
Ei1 ≥ Ei2 , Ei1 ≥ Ei2 ,......, Eik−1 < Eik , Eik−1 ≥ Eik are true.
Due to the similar interpretation to the TSP family
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classifiers, we do not reiterate for TSG and refer the
readers to Tan et al. [3] for details.

Conclusions
In this article, we presented the TSG classifier, an
improved version of TSP family classifiers for both binary
and multi-class cancer classification. The TSP family clas-
sifiers only consider even number of genes and the gene
selection process is based on the marginal comparison of
pairwise expression values without honoring the fact that
some of the marginally important genes may have similar
effects as others and therefore could be redundant. We
solved aforementioned shortcomings of TSP family classi-
fiers by allowing both even and odd number of genes
through newly defined score functions and a new selection
algorithm. After some genes have been selected, our gene
selection process assesses the importance of additional
genes by considering the overall contribution of all the
genes included in the informative set. As the joint effects
of multiple genes are evaluated together, we expect that
the final list of genes selected by TSG is more parsimo-
nious than k-TSP and HC-k-TSP classifiers.
The TSG classifier is in a simple unified form for both

binary and multi-class cases. This is different from the
TSP family classifiers in that three binary to multi-class
extension schemes (1-vs-1, 1-vs-others, hierarchical clas-
sification) lead to three different classifiers. As reported
in Tan et al [3], the hierarchical classification scheme
extension HC-TSP and HC-k-TSP perform the best out
of the three schemes. Our TSG classifier is in a single
form and in general has equal performance or outper-
forms k-TSP, HC-TSP and HC-k-TSP in the 19 datasets
in terms of accuracy and number of genes used. We also
compared the performance of TSG with PAM and SVM.
In binary classification problems, TSG has better
LOOCV accuracy than PAM and SVM; in multi-class
problems, TSG, PAM, and SVM give comparable accu-
racy for independent test data. All three classifiers are
more accurate than TSP family classifiers. In terms of the
number of genes used, TSG clearly uses much less num-
ber of genes than PAM and SVM. PAM often selects
thousands of genes in its final classifier and SVM uses
the entire set of genes.
An obvious advantage of the TSG as well as the TSP

family classifiers is that they are based on the simple pair-
wise comparisons of expression values between genes
from the same sample. Such comparison is robust to
monotone transformation and eliminates the concern
about variations among different patients, platforms, or
bias from preprocessing different samples. Therefore, we
expect that the results from TSG are more reliable and
robust compared to many other methods that pool the
data from different samples to filter genes.
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