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Abstract

Background: Images embedded in biomedical publications carry rich information that often concisely summarize
key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer
valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the
potential of mining images embedded in biomedical publications for automatically understanding and retrieving
such images’ associated source documents. Within the broad area of biomedical image processing, categorizing
biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining
applications. Similar to any automatic categorization effort, discriminative image features can provide the most
crucial aid in the process.

Method: We observe that many images embedded in biomedical publications carry versatile annotation text.
Based on the locations of and the spatial relationships between these text elements in an image, we thus propose
some novel image features for image categorization purpose, which quantitatively characterize the spatial positions
and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation
(SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly
proposed image features.

Results: we randomly selected 990 images of the JPG format for use in our experiments where 310 images were
used as training samples and the rest were used as the testing cases. We first segmented 310 sample images
following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled
all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our
annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar
charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type “others”.
A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image
categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include
conventional image features and our proposed novel features indicate different categorizing performance, and the
results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine
classification method and our proposed sparse representation classification method. At last, our proposed approach
is compared with three peer classification method and experimental results verify our impressively improved
performance.
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Conclusions: Compared with conventional image features that do not exploit characteristics regarding text
positions and distributions inside images embedded in biomedical publications, our proposed image features
coupled with the SR based representation model exhibit superior performance for classifying biomedical images as
demonstrated in our comparative benchmark study.

Introduction
The literature in the broader biomedical domain presents
abundant image content. For example, a significant num-
ber of biomedical articles carry multiple images or graphs
in their main text. Popular types of embedded image con-
tent include microscopy images, gel electrophoresis
images, graphical tables, diagrams, and charts, which are
adopted for visually communicating the key research
ideas pursued, main theses argued, primary experimental
results produced, and central findings derived in a study.
Compared to their text counterpart, images and graphs
carried in biomedical articles can greatly facilitate the
intuitive grasp of an article’s main content through quick
browsing and navigation–a popular practice by many
researchers in reality to cope with the exploding volume
of the literature published in their fields at an ever accel-
erating rate. In addition to being able to summarize and
highlight key content of a study, an image can also report
a comprehensive set of results beyond the scope of dis-
cussion by text in a paper, e.g. the use of heatmap images
to report hundreds or thousands of records of experi-
mental results simultaneously at one place. For both
types of communication purposes, an image is indeed
worth a thousand words.
Despite the tremendous importance of images and

graphs in biomedical publications, previously only limited
efforts have been dedicated to mining such rich graphical
content, in contrast to the counterpart problem of mining
text content in the biomedical literature where an over-
whelmingly abundant body of studies have been contribu-
ted [2-4]. Fortunately, mining of images in the biomedical
literature has started receiving more research attention
recently [5-8]. Part of this emerging research interest in
mining biomedical images is fostered by the free availabil-
ity of large-scale image repositories to the general public.
For example, PMC [9] is a public database archive pro-
vided by National Library of Medicine under the U.S.
National Institutes of Health (NIH/NLM). PMC offers the
full text of more than 2.8 million articles in biomedical
and life sciences, including all images embedded in these
articles.
Two important problems of biomedical image mining

are: 1) extracting image features to characterize the con-
tent of a biomedical image and 2) biomedical image cate-
gorization, both of which can help computer gain deeper
understanding into the content of an image. Overall,
enhancing automatic image content understanding can

benefit a collection of applications in biomedical image
processing, such as content-based image retrieval, recom-
mendation, thematic topic detection, mining for trend dis-
covery, as well as image-based or facilitated biomedical
literature retrieval, navigation, content clustering, topic
extraction, and literature mining-based knowledge discov-
ery. It is noted that the image content characterizing fea-
tures can directly help categorize biomedical images more
accurately and reliably; while the machine learning proce-
dure deployed at the heart of an image categorization
method can also work with other image features for
accomplishing the same goal of image categorization as
well as other high-level, semantically-oriented image pro-
cessing tasks that involve machine learning techniques.
Therefore, the algorithmic advancements in overcoming
the two problems are mutually supportive.
Traditional image features, such as texture, color, and

shape-based features, only offer limited discriminative
power for characterizing the content of biomedical images;
while current general-purpose image classification meth-
ods do not achieve satisfactory precision in dealing with
biomedical images. Recognizing the technical limitations
of the-state-of-the-art regarding the above two important
problems, we conducted this study. To address the first
problem of designing effective features for characterizing
biomedical images, we propose a set of novel image fea-
tures that quantitatively explore and exploit the spatial dis-
tributions of text elements appearing inside a biomedical
image. To the best of our knowledge, none of these fea-
tures has been previously studied in the biomedical image
literature. To address the second problem of introducing
advanced categorization methods for biomedical images,
we propose an improved Sparse Coding Representation
(SCR) based technique to classify biomedical images using
our newly proposed image features. By using the novel
image features and the improved SCR-based classification
method both introduced at this paper, we can categorize
biomedical images with better accuracy and reliability
than the peer state-of-the-art practice, the conclusion of
which shall be verified through the experimental results
reported later in this paper.
The rest of the paper is organized as follows. We first

briefly review some work closely related to this study.
Next, we present the novel image features that we propose
for characterizing the categories of biomedical images. To
extract these image features, we then introduce some algo-
rithmic pre-processing procedures. In the next, we present
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our improved SCR method and apply the method for cate-
gorizing biomedical images using the novel image features
introduced earlier. To explore the effectiveness of the
newly proposed image features and the improved SCR
method based image categorization approach using these
features, we report results of benchmark experiments that
measure and compare the performance of the new
approach with that of the state-of-the-art peer practice.
After presenting the positive comparative experimental
results confirming the advantages of the new biomedical
image features and the companion categorization method
for biomedical images using these features, we conclude
the paper in the end.

Related work
In this section, we will briefly overview some previous
studies that closely relate to our work here, including
the design of image features and methods for image
categorization.

Image features
A fundamental problem of image processing is to repre-
sent an image’s content in a way that automatic computer
algorithms or programs can understand the representa-
tion. For this purpose, image features are often leveraged
to derive machine-readable representations of image con-
tent. To design and extract image features, many strategies
have been previously explored for multiple image-related
application fields. On the lowest level, pixel values in an
image provide some direct, low-level features for charac-
terizing an image’s content. For example, Kim et al. [10]
exploited distributions of pixel values of sub-regions in an
image as features for image scaling operations. They
provided a novel scaling algorithm, called “winscale,”
which uses a maximum of four pixels from an original
image to calculate a counterpart pixel in a scaled-down
version of the image. Above the pixel-level features, Jebara
[11] proposed image features based on bags-of-pixels for
modeling related visual objects in an image. For example,
they modeled gray scale images as a bag of pixel vectors.
This practice means a permutational invariance over the
features of bag of pixels, which is actually processed by
describing each image with a permutation matrix. Over
the past serval years, many researchers also explored visual
features of color for image application. Swain [12] devel-
oped a technique that matches color-space histograms for
recognizing objects through color indexing. They provided
a term of Histogram Intersection, which allows real-time
indexing in a large multicolored image database. Stricker
[13] also used the color to conduct image indexing. The
innovative aspect of their method lies in the design where
the method stores the first three moments of each color
channel in an image rather than stores the complete color
distributions in the image. Such treatment focuses on

capturing the dominant color elements in an image. Ger-
vers et al. [14] used color features to recognize visual
objects. Their approach works particularly well to robustly
recognize color objects that undergo substantial changes in
viewpoints, geometries, and illumination conditions. People
have also observed texture patterns in an image as formu-
lated by structural distributions of pixel values in the
image. Such type of texture based image features also work
at a higher level than pixel value based image features to
characterize image content for visual object recognition
and image regions of interest identification. Along this line
of research, Haralick et al. [15] exploited image textural
features for image classification. Weyand et al. [16] utilized
global textural features of an image for image retrieval.
Another type of image features popularly adopted in exist-
ing work is image edges, e.g. the edge analysis based algo-
rithm for medical image segmentation [17]. Among all
edge-based image feature extraction methods, SIFT [18]
and SURF [19] features are most eminently recognized. For
example, Ledwich and Williams [18] introduced a method
that reduces the size and complexity of SIFT features for
image retrieval. Yi et al. [20] matched SIFT features for
multi-spectral remote image registration. Wojnar and
Pinheiro [19] presented a method for annotating medical
images through using an image’s SURF descriptor, the
method of which can significantly improve the classifica-
tion accuracy of lung images. Wang et al. [21] also lever-
aged SURF features to develop a non-rigid method for
robust and efficient registration of medical images. Their
experimental results showed that their new SURF feature
based registration method performs much faster and more
robustly than conventional image registration approaches.
Recently, people have proposed many semantic-oriented,

high-level image features for image content representation,
e.g. extracting features from image regions around points
of interests [5,6] as well as a variety of bag-of-features
[22,23]. Cao et al. [24] designed a new class of bag-of-
features for addressing the particular application needs of
large-scale image retrieval. Their method proposed spatial
bag-of-features by projecting ordered bag-of-features from
multiple directions or points. Yanai [25] employed a
region-based bag-of-features representation and the multi-
ple instance learning method to implement a novel image
gathering system. Using these region-based features, their
method can more satisfyingly separate foreground image
regions from background regions for effectively deriving
image training data. Based on traditional bag of words,
Garg [26] explain this from a soft computing perspective.
Their results revealed that this fuzzy and possibilistic code-
word assignment significantly boosted the image classifica-
tion accuracy. In biomedical image application aspect, for
instance, Tommasi et al. [22] annotated medical images
using bags-of-features (BoF). In their work, medical images
are represented both by global and local descriptions.
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Rafkind et al. [27] introduced a biomedical image categori-
zation method that integrates image caption text with its
intensity histograms, edge-direction histograms, and edge-
based axis features. Shatkay et al. [5] introduced an
approach for biomedical image categorization that uses
image features based on gray-level histogram statistics,
edge direction histograms, as well as the image’s associated
source article’s abstract and full text. The most similar
method to our work here is probably the hierarchical
image classification method proposed by Kim and Yu [6],
who explored and analyzed image features strongly asso-
ciated with each type of images and developed a hierarchi-
cal image classification approach for categorizing an
arbitrary image into one of the five popular types–gel
images, images-of-things, images of graphs, images of
models, and images of mixed content. According to image
textural features, their method first separates all candidate
images into two broad groups, including texture rich
images and texture sparse images. For images falling into
the first group, the method further examines features
based on image entropy, skewness, and uniformity; for
images categorized into the second group, the method ana-
lyzes features based on image edge differences, uniformity,
and smoothness. After performing the second-stage feature
analysis, each image is finally classified into a specific
image type from among the five candidate types. The recall
of their hierarchical image categorization method is super-
ior to its predecessor methods because of the high accuracy
of the first stage image categorization operation. To our
best knowledge, text distribution patterns in an image have
not been previously explored as content-revealing image
features for categorizing biomedical images, which typically
carry inside abundant embedded text.

Image categorizing methods
A few collection of prior efforts has been dedicated to
the specific topic of biomedical image categorization.
Lehmann et al. [7] proposed a method for automatically
categorizing medical images into more than 80 categories
where previous approaches can only distinguish up to 10
categories of medical images. Giuld et al. [28] explored an
approach for automate medical image categorization by
using the optional tags provided by the DICOM 3.0 ima-
ging protocol to store indicative information regarding the
modality and specific regions in a medical image. Medical
informatics researchers also studied how to classify images
for assisting clinical diagnosis. For example, Zhang et. al.
[29] designed an auxiliary tool for analyzing functional
magnetic resonance images, which provides a number of
image classification methods for examining 3D brain
images. Balasubramanyam et al. [30] trained support vec-
tor machines (SVMs) to categorize images about healthy
joints from unhealthy ones. From the methodology’s per-
spective, in the early years, nearest neighbor-based

approaches were widely used, for example by Weyand
et al. in [16], for medical image classification and retrieval.
Alternative methods that also receive plenty of attention
include discriminative approaches such as log-linear mod-
els [31] and decision trees [32]. Later, SVM-based meth-
ods acquired more popularity because of their superior
performance to the traditional nearest neighbor-based
approaches. For example, Tommasi et al. [23] presented a
SVM-based approach for medical image annotation,
which is a problem directly related to image categorization
where the produced image annotation tags can be used as
essential clues for categorizing images. Similarly, Avni et
al. [33] exploited a SVM-based approach to medical image
retrieval and annotation. Recently, the sparse representa-
tion method attracted wide attention among the image
classification field, e.g. [34-37]. Wright et al. [34] viewed
the face recognition task as an image classification pro-
blem, for which they deployed the sparse representation
method in combination with multiple linear regression
models to obtain robust face recognition results through
facial image categorization. To perform image discrimina-
tion and texture segmentation, Mairal et al. [36] intro-
duced a cost function for a sparse representation-based
classification method, which can also be directly applied
for robust image categorization. Zuo and Zhang [37] pro-
posed a sparse representation based algorithm for general-
purpose image classification. Their algorithm considers
both intra-class variations and background clutter among
candidate images. Experimental results demonstrated that
even without performing time-consuming parameter opti-
mization, their sparse representation based method can
readily achieve superior performance to the traditional
methods.
Besides sparse representation-based approaches for

image classification, many other classification approaches
have also been explored in the research community. For
example, Zou et al. [38] put forward a structure-based
neural network with a back propagation through structure
algorithm for classifying high-resolution remote sensing
images. Experiment results show that the method provides
a viable solution for classifying high-resolution panchro-
matic remote sensing data. Hou et al. [39] presented a new
method based on manifold learning for hyperspectral
image classification. Genetic programming (GP) is another
popular choice for engineering image classification
algorithms. Li et al. [40] adopted the GP methodology for
multi-image classification in complicated application sce-
narios with a satisfying accuracy. Tseng et al [41] suggested
that images can be classified in two ways: i) classifying
according to the main objects included in an image, and ii)
classifying by the relationships between multiple objects;
while a large number of existing image classification meth-
ods only work with one of the above two classification
criteria. To address this overlook, they proposed a hybrid
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image classification approach that leverages both ways of
classification analysis. In [42], Wu et al. introduced a novel
visual language modeling method for content-based image
classification. Their method transforms each image into a
matrix of visual words and assumes that each visual word
is conditionally dependent on its neighbors. The new
method also subtly exploited the spatial correlation
between multiple visual words for the image classification
purpose.
In this work, we exploit an improved version of the

sparse representation method and apply the method in
combination of our proposed novel image features for
categorizing biomedical images. Our comparative experi-
mental results show that the new approach achieves better
performance than existing state-of-the-art practice.

Our method
In this section, we will look at our novel image features
for characterizing the category of a biomedical image. In
addition to the newly designed features, we will further
present a new image categorization method using these
new features. To categorize a biomedical image, we
adopt the taxonomy for biomedical images introduced
in our previous work [1]. In this taxonomy, biomedical
images were divided into five main categories, which are
further divided into eight sub-categories. Figure 1 illus-
trates this taxonomy graphically.

Multi-panel image segmentation as a pre-processing step
Before we define the new image features and introduce
their extraction method, we would like to first discuss a
pre-processing task of multi-panel image segmentation,
without which the reliability of the extracted image fea-
tures could be severely compromised. This pre-processing
step is particularly introduced to cope with images that

might belong to the category of mixed images in our
image taxonomy. When we design our image feature
extraction method initially, we did not realize the need of
special treatment for the mixed image category. From our
experimental results, we then noticed that this category of
images results in much lower image categorization perfor-
mance than other categories of images. A closer analysis
showed that when an image contains multiple panels or
sub-images, which is a necessary but not sufficient condi-
tion for the image to be recognized as of the mixed cate-
gory, the margins and non-uniform distribution of text
elements among and across the image’s multiple panels or
sub-images could lead to ambiguity in our text distribution
based image feature representation. To overcome this issue,
we therefore introduce the multi-panel image segmentation
procedure as a pre-processing step for our method.
Algorithm 1 lists the image segmentation procedure

used in our work, whose main idea is as follows: We first
apply the Gaussian filter function, whose implementation
is offered by the OpenCV 2.2.0 package, to remove local
noise in an input image I. We then convert the image
into its binary counterpart representation. After that we
scan the whole image I following all the horizontal and
vertical scanlines in the image respectively, one scanline
at a time. The goal is to find suitable horizontal and/or
vertical scanlines that can segment the image I into its
constituent panels or sub-images. For each scanline we
consider, we calculate the number of foreground pixels
Np in the image that lie on the line. When the number of
Np is larger 5, we empirically regard the line as a candi-
date image segmentation line. After all the candidate
image segmentation scanlines are detected, we then
apply them collectively to divide I into multiple sub-
regions. At last, we retain those divided sub-regions
whose respective areas are no smaller than 1/20 of the

Figure 1 Image taxonomy. Taxonomy employed in our work for images embedded in biomedical publications.
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total image area. Figure 2 shows an example image seg-
mentation result generated by the above procedure.
Algorithm 1 Our image segmentation algorithm
Input:

A unprocess image I
Output:
Segmented image Is

1: convert I into a binary image;
2: Derive the number of foreground pixels Np resting

on each horizontal(vertical) scanning line in I;
3: if Np ≤ 5 pixels then
4: add scanning line into candidate horizontal

(vertical) segment line set;
5: end if
6: I is segmented into grid cell regions by candidate

segment lines, i.e. S = {Si};
7: Calculate their area Area(S) and Area(Si);
8: if Area(Si) ≥ 1

20Area(S) then
9: consider Area(Si) as a valid segmentation

region;
10: end if
11: return

Novel biomedical image features
It is easy to notice that many biomedical images contain
some highly complex textural patterns or image back-
ground; in addition, visual objects displayed in a biomedi-
cal image can show low image contrast (see (a), (c), (d) in
Figure 3 for examples). These visual characteristics of
biomedical images render major challenges for image
content understanding and categorization using tradi-
tional pixel, texture, or edge-based image features. Fortu-
nately, as mentioned at the beginning of this paper,
biomedical images possess a salient content composition
property that distinguishes themselves from images in
other application domains such as personal photos taken
by digital cameras–the majority of biomedical images
carry abundant embedded text, which is introduced
either for annotating other visual objects in an image or
as a primary source of content elements by itself. This
image composition characteristic suggests a new oppor-
tunity for understanding the content of biomedical
images–by quantitatively exploring the spatial distribu-
tion of text information inside a biomedical image, peo-
ple may gain much high-level understanding of the
image, such as the image’s content type. To exploit this
new type of image features for content characterization,
we first need to detect the presence and locations of text
regions inside a biomedical image. In this work, we
deploy the algorithm by Xu et al. [8] for the purpose of
image text region detection and localization. Based on
the spatial distribution of the detected text regions, we
can then extract the aforementioned novel image features
for categorizing biomedical images.

Entropy distribution of text regions
In our prior work [1], we have preliminarily explored the
entropy distribution of text regions as a novel type of image
feature. The entropy associated with the scanline li can be
computed according to the number of pixels encountered
by the scanline across the whole input image. In our
study, we empirically notice that the false recognition of
image noises as foreground pixels can significantly com-
promise the overall accuracy of image categorization.
To avoid this negative influence from image noises, we
adopt a minimum foreground pixel interval threshold 5.
That is, if a detected consecutive sequence of foreground
pixels is shorter than 5 pixels in a row, we will discard the
whole sequence as noise. Overall, image features we derive
according to the entropy distribution of text regions

include two 10 − dimension vectors Hentropy
h,j (I) and

Hentropy
v (I), which are respectively derived by horizontally

and vertically examining the entropy distributions of text
regions in an input image.
Structural patterns regarding the spatial distributions of
text regions
Another set of image features we propose to leverage is
defined according to structural patterns exhibited by spa-
tial distributions of text regions in biomedical images.
Such set of features can be particularly useful and reliable
for indicating biomedical images displaying structurally
formated elements such as tables and flow charts. This
new image feature set explores two sub-groups of struc-
tural patterns [1], which we will look at respectively in
the following:
The first sub-group of image features consists of a family

of five four-dimensional vectors Vfreq,h,j (j = 1, · · ·, 5), which
describe structural patterns along the horizontal direction
of an image, and another family of five four-dimensional
vectors Vfreq,v,j (j = 1, · · ·, 5), which examine structural pat-
terns along the vertical direction of an image. Let ψfreq,h,j be
the set of the j-th Fourier coefficients derived from each
horizontal scanline li ∈ I . Let LQ(ψx), Mean(ψx), Median
(ψx), and HQ(ψx) respectively represent the lower quartile,
mean, median, and higher quartile values of a given num-
ber set ψx. We can then construct the two vectors
mentioned in the above as follows: Vfreq,h,j = {LQ(ψfreq,h,j),
Mean(ψfreq,h,j), Median(ψfreq,h,j), HQ(ψfreq,h,j)} and Vfreq,v,j =
{LQ(ψfreq,v,j), Mean(ψfreq,v,j), Median(ψfreq,v,j), HQ(ψfreq,v,j)}.

The second sub-group of image features consists of a
ten-dimensional vector Hstructure

h (I) and another ten-
dimensional vector Hstructure

v (I). For each horizontal scan-
ning line li ∈ I , we derive a value denoted as ϑh(li), which
is used for measuring the strength of the spatial structure
regularity along the horizontal scanline li. In particular, we
introduce the notation ϑh(li, τ) to measure the regularity of
spatial structure patterns exhibited following the horizon-
tal scanline li where τ is a threshold used to terminate the
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cluster merging process. For more details regarding the
definition of ϑh(li, τ), readers are referred to [1]. We then
further construct a ten dimensional vector Hstructure

h (I) by
computing a ten-bin histogram that equally divides the

value ranges formulated by ϑh(li) for li ∈ I into ten bins.
Each component Hstructure

h,i (I) of the histogram vector
Hstructure

h,i (I) indicates the percentage of horizontal scan-
ning lines that fall into the bin. Similarly, we can also

Figure 2 Image segmentation result by our implemented method. (a) A sample image from the aritlce [48], (b) sub-images decomposed
from the sample image, which consists of a line chart and a bar chart.
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derive vector Hstructure
v (I) by analyzing the structural dis-

tribution of text intervals along vertical scanning lines of
the input image I . For more details regarding the defini-
tion and extraction of these two groups of image features,
readers are referred to an earlier preliminary publication
of our work [1].
Distance distribution of text regions to their closest
neighbours
Given a pair of text regions< Reci,Recj ∈ I >, our method
uses their mutual distance to indicate the distance between
an arbitrary pixel on the boundary of Reci and another
arbitrary pixel on the boundary of Recj. Let dmax(I) be the
largest distance between any pair of text regions. The
method then constructs a five-band histogram, whose form

is as follows: [
dmax(I)j

5 , dmax(I)(j+1)
5 ] (j = 0, · · · , 4). For each

text region, we can calculate its distances to the K closest
neighbouring text regions. To keep track of these distance,
we introduce the vector Hdis(Reci) where its j − th compo-
nent, denoted as Hdis,j (Reci), records the percentage of dis-
tances between Reci and its k nearest neighbouring text
regions that fall into the j-th bin of the five-band histogram
constructed in the above. Following this way of construc-
tion, we can derive five sets ψdist,j (j = 0, · · ·, 4) where
ψdist,j � {Hdis,j(Reci)|Reci ∈ I}. Furthermore, we can compute

the vector Vdis,j � {LQ(ψdist,j),Mean(ψdist,j),Median(ψdist,j),HQ(ψdist,j)).
Let nRec be the total number of text regions involved in the
above calculation. In our study, k = nRec

3 contribute a set
of most discriminative features, Vdis,j (j = 0, · · ·, 4), for our
image categorization target.
Table 1 lists the novel image features introduced in this

work for categorizing biomedical images.
Categorizing images embedded in biomedical publications
using sparse coding representation
In our work, we leverage a sparse coding based technique
to categorize images embedded in biomedical publications
due to its widely reported success in solving pattern cate-
gorization problems. In general, the learning method [43]
considers a training set of signals X = [x1, · · ·, xn] Î RK × n

where K is the total number of image features considered
and n is the total number of training images available. The
goal is to optimize the following function [43]:

gn(D) =
1
n

n∑

i=1

f (xi,D), (1)

where D Î RK × n is a dictionary wherein each column
represents a basis vector; l is a loss function such that the
more precisely D represents the signal x, the smaller f(x, D)

Figure 3 Eight examples of image classes used in this paper. Eight image classes and sub-classes in our image taxonomy, which are
organized as a two-level class hierarchy. On the top level, images are categorized into the classes of flow charts, experimental images, graph
images, mix images, and others. On the bottom level, images are further divided into eight categories where the class of experimental images is
categorized into microscopy and gel electrophoresis images; the class of graph images into line charts, bar charts, spot charts, and tables.

Table 1 Summarization of our proposed novel image features

features title features dimension

1. text region entropy distribution: Hentropy
h (I), Hentropy

v (I) 20

2. structural patterns: Vfreq,h,j (j = 1, · · ·, 5), Vfreq,v,j (j = 1, · · ·, 5), Hstructure
h,i (I), Hstructure

v,i (I), 60

3. distance distribution closest neighbours: Vdis,j (j = 0, · · ·, 4) 20
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becomes. Under the sparse representation scheme, the loss
function can be formulated as [43]:

f (x,D) = min
α ∈ Rn

1
2

||x − Dα||22 + λ||α||1, (2)

where l is a tradeoff parameter. This issue is considered
as basis pursuit [44] or the Lasso [45]. Enforcing the pen-
alty term ||a ||1 generates a sparse solution. By employing
the LARS-lasso approach [46], this kind of problem can
tend to be solved efficiently. To prevent D from being too
large, which would make the learning problem more diffi-
cult to solve with too many degrees of freedoms, it is com-
mon practice to constrain the column vectors in the
dictionary dj (j = 1, · · ·, n) to have an l2 norm less than or
equal to one. Adopting this constraint, we can formulate a
convex set Ω of matrices as follows:

� = {D ∈ RK×n, s.t. ∀j = 1, · · · ,n; dTj dj ≤ 1}. (3)

In our aforementioned optimization problem, the empiri-
cal cost function gn(D) is not convex. Instead, the problem
can be reformulated as a joint optimization problem con-
cerning variable D and the a = [a1, ..., an] associated with
the sparse decomposition. The newly formulated problem
becomes convex concerning either one of the two variables
D and a under the condition that the other variable
among the two is fixed. Formally, we can write the new
optimization objective function as (4):

min
D∈�,αi∈ Rn×1

1
n

n∑

i=1

(
1
2

||xi − Dαi||22 + λ||αi||1). (4)

By alternatively using the sparse coding on a given D to
solve a and then updating the dictionary D with the
derived value assignment for a, we can solve the problem
iteratively. In our work, we employ the iterative proce-
dure proposed by Mairal et al. [35] to obtain the optimal
values of D and a.
According to Ramirez et al. [47], ideally, dictionaries cor-

responding to different image classes shall be as indepen-
dent as possible. Assuming X(j) (j Î [1, C]) is a specific class
of images and D(j) is the class’ corresponding dictionary.
We can then state the above desired dictionary indepen-
dency property as follows:

min
{D(j),A(j)}j=1,··· ,C

C∑

j=1

(||X(j) − D(j)A(j)||22+λ

mi∑

r=1

||α(j)
r ||1) + η

∑

j1 �=j2;j1,j2=1,··· ,C
||(D(j1))TD(j2)||22 , (5)

where A(j) = [α(j)
1 , · · · ,α(j)

mi ] ∈ RK×mi in which each col-
umn vector α

(j)
r (r ∈ [1, · · · ,mi]) is the sparse coding

representation for the r-th image in X(j) and mi is the
total number of images contained in the image class X(j).
Feature importance weights
Given a training sample image xi, we denote the image’s
class label as si Î [1, C]. Let k Î [1, K] be an index variable

for a specific image feature; j Î [1, C] be a certain class
label value; and i Î [1, N] be an index variable for a speci-
fic sample in an image class. For each training example
image xi, after extracting its spare coding representation,
we denote the corresponding representation coefficient of
xi for the k-th image feature and the j-th candidate image
class as α̂k

j,i. We further denote the k-th image feature of xi
as xki . Based on the above notations, we can therefore mea-
sure the representation or reconstruction error for xi with
respect to its k-th image feature and the j-th candidate
image class as follows:

Rk
i,j = ||xki − D(j)

k α̂k
j,i||2. (6)

where D(j)
k

is the version of the dictionary that corre-
sponds to the k-th image feature of sample images
belonging to the j-th image class. For more details
regarding the dictionary derivation procedure, readers
are referred to [46]. Let ωk be the importance weight
associated with the k-th image feature. {ωk}k = 1,··· ,K
are the weights that measure the importance of different
features in an image’ overall categorization decision.
In our method, all feature weights are chosen in such a

way that
∑K

k=1
ωkRk

i,si ≤
∑K

k=1
ωkRk

i,j − ε (∀j �= si)where ε

is some marginal parameter. Essentially, ε indicates the
minimum value gap between the expression term
∑K

k=1
ωkRk

i,j when xi’s class categorization is determined

correctly versus erroneously. For each xi, we further
intro-duce a slack variable ξi in case the above antici-
pated inequality does not hold in general. That is, instead

of expecting
∑K

k=1
ωkRk

i,si ≤
∑K

k=1
ωkRk

i,j − ε (∀i,∀j �= si),

we now accept a more relaxed condition that
∑K

k=1
ωkRk

i,si − ξi ≤
∑K

k=1
ωkRk

i,j − ε (∀i,∀j �= si). Putting

everything together, we can formulate the overall optimi-
zation problem to determine and derive the optimal fea-
ture weight assignment {ωk} in the form of the following
linear programming problem:

min
∈,ξ ,ω

Objection Function = (
1
N

N∑

i=1

ξi) − ε

s.t.
K∑

k=1

ωkRk
i,si − ξi ≤

K∑

k=1

ωkRk
i,j − ε (∀i; j = 1, · · · ,C; j �= si)

K∑

k=1

ωk = 1;

ε ≥ 0;

ξi ≥ 0, ωk ≥ 0 (∀i, k).

(7)

The above problem can be efficiently computed by
applying a general linear programming solver. In our
implementation, we adopt the solver provided by the
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Matlab package to derive the solution. To predict whether
a target image xi belongs to the j-th candidate image
class according to the image’s k-th feature xki , we can rely

on the multiplication of the dictionary element D(j)
k

and

the image’s corresponding sparseness parameter α̂k
j,i, the

value assignments for both of which are derived from the
above optimization procedure. That means, we wish to
approximate the value of the k-th image feature xki through

D(j)
k α̂k

j,i. And the target image will be categorized into the

ĵ-th image class that maximizes such value approxima-
tions for all the features. Mathematically, this image cate-
gorization process can be stated as follows:

ĵ = arg min
j∈[1,C]

K∑

k=1

ωk||xki − D(j)
k α̂k

j,i||22. (8)

In our work, all the image features considered have
been introduced in the earlier part of this manuscript;
so does the number of different image classes consid-
ered in the categorization task. Numerically, this setup
amounts to having the number of image features K set
to 100 and the total number of candidate image classes
C set to 5.

Results
In our experiments, prior to image categorization, we
first introduce a new image segmentation procedure as
our first step of image classification target. Once an input
image is decomposed into multiple potential sub-image
regions, we then extract the novel image features and
apply the new image classification method both proposed
in this paper. Lastly, we conducted a series of evaluation
efforts to quantify the performance of the new features
and categorization method.

Image pre-processing results
To categorize biomedical images, we first need to iden-
tify a proper image taxonomy. In our work, we employ
the two-level biomedical image taxonomy [1] shown in
Figure 1.
To cope with images that might belong to the category

of mixed images in our image taxonomy, before we apply
the actual image categorization procedure, each input
image is segmented, if multiple sub-images can be detected
from the input image. As confirmed by our experimental
results, the overall image categorization performance can
be significantly improved by applying the image segmenta-
tion operation as a pre-processing step prior to the image
categorization step. Figure 2(a) illustrates a sample image
that consists of several sub-images. Figure 2(b) displays
sub-images decomposed from the sample image, which
consists of a line chart and a bar chart.

Novel image features results
In our work, we extract three types of distribution of
image text region which include: (1)improved distribution
of text region entropy, (2)structural patterns of text region
distribution, and (3)distance distribution closest neigh-
bours. From Table 1 we can easy to see that the first and
third groups of image features are all 20 − dimension vec-
tor. The second group of image features is 60 − dimension
vector. Each image features vector consists of sub-vector
of horizontal direction features and sub-vector of vertical
ones.

Categorizing experimental results
To acquire images to be used in our experimental work,
we obtain all materials provided by PMC [9]by the end of
year 2012. We can see some samples in Figure 3. We
arbitrarily chose 990 images from our downloaded repo-
sitory, among them 310 images were serve as training
samples, and the rest were serve as the testing cases.
We first segmented 310 sample images by using our
proposed procedure. This step produced a total of
1035 sub-images. We then manually labeled all these
sub-images according to image taxonomy. Among our
annotation results, 316 are microscopy images, 126 are gel
electrophoresis images, 135 are line charts, 156 are bar
charts, 52 are spot charts, 25 are tables, 70 are flow
charts, and the remaining 155 images are type of others.
In our experiment, parameter l is set to 0.10.
We employ standard metrics such as recall, precision,

and F-score for measuring image categorization perfor-
mance. Confusion matrix result first demonstrates in
Table 2. From this table, we can obviously find that the
numbers in diagonal line of table are the true values of
categorization. Among classes of images, the class of flow
chart owns more number of true positive image. Table 3
exhibits the performance of each class. We employ the
TP, FP, and FN to measure the categorization results. TP,
FP, and FN respectively respectively indicates true positive,
false positive, and false negative. According to the F-scores
values, this model does best on distinguishing flow chart
class. Table 3 reveals that the class of flow chart still
remains the good performance.

Table 2 Confusion matrix for our image categorization
results

Predicted categories

True categories flow chart experiment graph mix others

flow chart 136 1 5 0 4

experiment 0 82 0 12 8

graph 2 0 204 24 16

mix 0 2 4 90 4

others 1 0 3 10 63
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To verify our extracting novel features, we employing
both traditional image features and our proposed novel
features to implement the test. Traditional image feature
in our experiment consists of edge-direction histogram,
intensity histogram and texture. Using our proposed
improved SCR categorization method, we first only use
the traditional image features to conduct categorizing
image task. Then, we add our novel image features with
traditional image features to carry out the experiment.
The results of our comparative experiments are exciting.
Table 4 lists the test results. Our outcomes prevail in
three indexes including precision, recall, F-score.
To more thoroughly evaluate the performance of our

proposed weighted sparse coding representation (SCR), we
conduct a case-control experiment where in control
experimental setting, we employ the traditional SVM
based method for image categorization; while in the case
experimental setting, we apply our proposed weighted
SCR method for image categorization. In the experimental
process, we also explore the impact on image categoriza-
tion performance by using different image features
through a second case-control comparative setting. More
specifically, in the control setting, we employ the conven-
tional image features such as edge-direction histograms,
texture-features, and intensity histograms for biomedical
image categorization using the SVM method and the
weighted SCR method respectively; in the case setting, we
apply our proposed image features alone as well as apply
both conventional image features and our new features to
categorize biomedical images using the SVM method and
the weighted SCR method respectively. Table 5 reports
the results of the above, comprehensive, comparative stu-
dies. According to the performance numbers listed in the
table, we can clearly see that our proposed SCR based
image classification method coupled with the novel image
features proposed in this paper can jointly achieve superior
image classification accuracy to the traditional SVM based
method using the same set of image features.

Table 6 indicates our method compared with peer
methods (M1 [27], M2 [5], M3 [6]). We adopt accuracy
to measure each method performance. Our novel fea-
tures and proposed classification method are impress-
ively effective.

Conclusions
To accurately categorize biomedical images, in this paper,
we propose a novel type of biomedical image features
that exploit the spatial distributions of text information
inside an image for image content representation and
semantics characterization. We also introduce a new
weighted sparse coding based representation method for
image categorization. By jointly leveraging merits of the
new image features and the image categorization method,
we can significantly improve the performance of biome-
dical image categorization task, whose effectiveness is
confirmed by the results of all our experimental results.
According to the results of comparative studies reported
in Table 6 it is clear to see that the performance pro-
duced by our new method has significantly outperformed
all existing methods based on traditional image features
and conventional image categorization methods. Our
improved image categorization approach can benefit
many applications in retrieving and content mining
biomedical images.
Our method is designed for categorizing biomedical

images, for which we notice that one of the salient charac-
teristics of such images is their abundant embedded text

Table 3 performance of image categorization using our newly proposed image features

Category TP FP FN Precision Recall F-score

flow chart 136 3 10 0.9784 0.9315 0.9544

experiment 82 3 20 0.9647 0.8039 0.8770

graph 204 12 42 0.9444 0.8293 0.8857

mixed 90 46 10 0.6618 0.9000 0.7627

others 63 22 14 0.7412 0.8182 0.7778

Table 4 Image categorization performance using the conventional image features alone versus with our novel
image features

features Precision Recall F-score

conventional image features 0.500 0.480 0.489

conventional image features+ our novel image features 0.8581 0.8567 0.8457

Table 5 Accuracy of image categorization achieved using
different sets of image features and by the traditional
SVM method versus our SCR based method

Features SVM SCR

conventional image features 0.65 0.67

our novel image features 0.74 0.73

conventional image features+ our novel image features 0.77 0.846
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information. By exploring and quantifying the spatial distri-
butions of these text elements embedded inside an image,
we can effectively boost the performance of image cate-
gorization. We, however, notice that for more common
categories of images, which only carry sparse or no text
information, the new image features proposed in this paper
do not possess advantages than the traditional features. In
our future research, we plan to investigate dynamic feature
selection and weighted classification method to adaptively
engage proper types of image features for categorizing
images in a broader domain.
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