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Abstract

Background: Widespread adoption of genomic technologies in the management of heterogeneous indications,
including Multiple Myeloma, has been hindered by concern over variation between published gene expression
signatures, difficulty in physician interpretation and the challenge of obtaining sufficient genetic material from
limited patient specimens.

Methods: Since 2006, the 70-gene prognostic signature, developed by the University of Arkansas for Medical
Sciences (UAMS) has been applied to over 4,700 patients in studies performed in 4 countries and described in
17 peer-reviewed publications. Analysis of control sample and quality control data compiled over a 12-month
period was performed.

Results: Over a 12 month period, the 70-gene prognosis score (range 0–100) of our multiple myeloma cell-line
control sample had a standard deviation of 2.72 and a coefficient of variance of 0.03. The whole-genome microarray
profile used to calculate a patient’s GEP70 score can be generated with as little as 15 ng of total RNA; approximately
30,000 CD-138+ plasma cells. Results from each GEP70 analysis are presented as either low (70-gene score <45.2)
or high (≥45.2) risk for relapse (newly diagnosed setting) or shorter overall survival (relapse setting). A personalized
and outcome-annotated gene expression heat map is provided to assist in the clinical interpretation of the result.

Conclusions: The 70-gene assay, commercialized under the name ‘MyPRS®’ (Myeloma Prognostic Risk Score) and
performed in Signal Genetics’ CLIA-certified high throughput flow-cytometry and molecular profiling laboratory is a
reproducible and standardized method of multiple myeloma prognostication.
Background
By coupling immunomagnetic and fluorescence-based
cell separation with microarray gene expression profiling,
researchers have dramatically improved the understanding
of how hematological malignancies, including Multiple
Myeloma (MM), develop, progress, and respond to ther-
apy. Multiple Myeloma accounts for 1% of all cancers,
affecting an estimated 22,350 people in the US in 2013
and resulting in 10,710 deaths (cancer.gov). Gene expres-
sion signatures, generated using tissue obtained at the time
of diagnosis, have been demonstrated to accurately predict
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patient outcome and stratify patients into clinically relevant
molecular subgroups in many types of cancers [1-5].
By performing large multidisciplinary studies of mul-

tiple myeloma, researchers at University of Arkansas for
Medical Sciences (UAMS) developed a 70-gene signa-
ture of aggressive disease (GEP70), corresponding to
increased risk of relapse and poorer overall survival
probability [6]. This signature was independently vali-
dated in separate patient populations for its ability to
predict risk of relapse and shorter overall survival in
newly diagnosed multiple myeloma and proved superior
to other prognostic risk scores in multivariate analyses.
In the post-relapse setting, GEP70 is able to stratify
patients into groups with highly significant differences
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in overall survival [7]. Since 2006, the UAMS GEP70
assay has been validated on patient cohorts totaling over
4,700 patients, described in the 17 publications listed in
Table 1. These validation studies, performed independ-
ently by German, French, Italian, British, Dutch, and
US-based clinical research groups, have repeatedly
shown that the prognostic significance the 70-gene
algorithm is superior to both conventional risk stratifi-
cation methods and other gene expression signatures in
multivariate analyses. Patients identified as high risk by
GEP70 (ranging from 15-30% of all patients, depending
on the characteristics of the patient population pro-
filed) may benefit from alternative treatment regimens
and/or referral to an appropriate clinical trial. Import-
antly, the vast majority of cases, defined as low risk,
might benefit from reduced intensity treatments.
In order to translate any gene expression signature from

the research setting to routine use in a clinical laboratory,
a number of logistical and technical challenges must be
overcome. These include defining the minimum amount
of patient specimen (e.g. bone marrow aspirate) required
to isolate sufficient plasma cell RNA for expression pro-
filing and establishing a comprehensive quality control
framework in order to monitor laboratory performance
over time and ensure reliability of results. Yet another
challenge is how best to present the gene expression
algorithm results in order to enable straightforward
interpretation by treating physicians and incorporation
into patient management regimens.
In this paper we describe the use of a high-throughput

process, combining cell isolation, flow cytometry and gene
expression profiling to provide physicians with personal-
ized prognostic assessments of multiple myeloma, using
bone marrow aspirate, based on the comprehensively vali-
dated GEP70 signature. Data are presented to describe the
stability of the assay over time as performed in a CLIA-
certified clinical laboratory diagnostic setting.

Methods
Plasma cell quantification and separation
Processing of bone marrow aspirate specimens submitted
for MyPRS® analysis occurs largely as previously described
[23]. CD138+ plasma cell isolation from red blood cell lysed
bone marrow aspirates is performed by immunomagnetic
bead selection with monoclonal mouse antihuman CD138
antibodies using the AutoMACS Pro automated separation
system (Miltenyi-Biotec, Auburn, CA). Minimum PC purity
of ≥80% homogeneity is confirmed by 2-color flow cytome-
try using CD38+/CD45− post-sort (after immunomagnetic
bead selection) criteria (Becton Dickinson, San Jose, CA).
Determination of CD138+ cell presence is performed

on the initial whole bone marrow aspirate by removing an
aliquot from the gently homogenized bone marrow aspir-
ate that was mixed with EDTA at the time of collection.
This aliquot is incubated with CD138 PE and CD45 FITC
antibodies (Miltenyi, CA), and then the red blood cells are
lysed. The remaining cells are washed with phosphate buff-
ered saline (PBS) and flow cytometry is performed. The
pre-sort cell percentage (prior to immunomagnetic bead
selection) is determined by identifying the CD138+/CD45-
cells from the total population after red blood cell (RBC)
lysis. This determination is performed on either the FACS
Calibur system or the FACS Aria III system (Becton Dickin-
son, NJ). Once the presence of CD138+ cells has been con-
firmed, the bone marrow aspirate undergoes RBC-lysis and
is washed with autoMACS Running Buffer (Miltenyi, CA).
Cell count is determined using the Nucleocounter

NC-100 (Chemometec, Denmark) according to manu-
facturer recommendations. Immunomagnetic beads are
then bound to the cells and the remaining unbound
beads are removed through a second Running Buffer
wash. The CD138+ cells are isolated from the remaining
cells using the AutoMACS Pro Separator (Miltenyi, CA)
according to manufacturer recommendations. If 80% cell
homogeneity is not obtained, the specimen either under-
goes a second immunomagnetic isolation and/or enriched
using CD38 PE and CD45 FITC antibodies on the FACS
Aria III (Becton Dickinson, NJ).
In keeping with institutional, federal, and Helsinki

Declaration guidelines, all identifiable patients gave writ-
ten informed consent for undergoing bone marrow sam-
pling for gene expression profiling and the institutional
review board of the University of Arkansas for Medical
Sciences approved the research studies. Consent was not
obtained from patients where data were analyzed an-
onymously and not associated with any identifiable or
longitudinal information.

RNA isolation and microarray analysis
Cell lysis and total-RNA isolation from purified CD138+
plasma cells is performed using the RNeasy Micro Kit
(Qiagen, Germany). RNA concentration and purity is
determined using a Nanodrop Spectrophotometer (Thermo
Scientific, Wilmington) and the integrity is assessed
using the Agilent Bioanalyzer 2100 system (CA). Double-
stranded complementary DNA (cDNA) and amplified bio-
tinylated antisense RNA (aRNA or cRNA) are synthesized
from total RNA using the Affymetrix 3′ IVT Express
Kit. The aRNA is fragmented and hybridized to whole-
genome U133 Plus 2.0 GeneChip microarrays (Affymetrix,
Santa Clara, CA), according to manufacturer recommen-
dations. Hybridized GeneChips are scanned with the Affy-
metrix GeneChip Scanner 3000DX V2, an FDA-cleared,
CE-IVD marked system. Scanned GeneChip files (CEL
files) are normalized and assessed for hybridization suc-
cess and sample quality by a proprietary gene expression
data quality control system (ResultsPX™), previously de-
scribed [2].



Table 1 Peer-reviewed publications describing the use of GEP70/MyPRS® gene expression profiling on patients with multiple myeloma

Date No. patients Patient series Publication

1-Jan-2006 351 Newly diagnosed patients with MM treated with
2 cycles of high-dose melphalan and autologous
stem cell transplantation [8].

Shaughnessy JD Jr, Barlogie B. “Using genomics to identify
high-risk Myeloma after autologous stem cell transplantation”.
Biol Blood Marrow Transplant 2006; 12 (1 Suppl 1):77–80.

25-May-2006 414 Newly diagnosed patients treated with high-dose
melphalan-based tandem transplants [9].

Zhan et al. “The molecular classification of multiple myeloma”.
Blood 2006; 108(6):2020–2028.

14-Nov-2006 532 Newly diagnosed patients with multiple myeloma
(MM) treated on 2 separate protocols [6].

Shaughnessy et al. “A validated gene expression model of
high-risk multiple myeloma is defined by deregulated
expression of genes mapping to chromosome 1”. Blood
2007; 109:2276–84.

9-May-2007 220 Newly diagnosed patients treated with TT2 [10]. Shaughnessy et al. “Testing standard and genetic parameters
in 220 patients with multiple Myeloma with complete data
sets: superiority of molecular genetics”. Br J Haematol 2007;
137:530–536.

22-Jun-2007 303 Newly diagnosed patients with myeloma treated
with Total therapy 3 (incorporating bortezomib into
a melphalan-based tandem transplant regimen) [11].

Barlogie et al. “Incorporating bortezomib into upfront
treatment for multiple myeloma: early results of total therapy
3”. Br J Haemotol 2007; 138:176-185

7-Sep-2007 71 Newly diagnosed multiple myeloma patients treated
with high-dose melphalan and stem cell transplant [12].

Chng et al. “Translocation t(4;14) retains prognostic significance
even in the setting of high-risk molecular signature”. Leukemia
2008; 22:459–61.

1-Dec-2007 326 Newly diagnosed patients with myeloma received a
tandem autotransplant regimen [13].

Haessler et al. “Benefit of complete response in multiple
myeloma limited to high-risk subgroup identified by gene
expression profiling”. Clin Cancer Res. 2007; 13(23):7073-7079

15-Jan-2008 156 Relapsed myeloma patients enrolled in the APEX phase
3 clinical trial that compared single-agent bortezomib
(B) to high-dose dexamethasone (HD) [14].

Zhan et al. “High-risk myeloma: a gene expression based
risk-stratification model for newly diagnosed multiple myeloma
treated with high-dose therapy is predictive of outcome in
relapsed disease treated with single-agent bortezomib or
high-dose dexamethasone.” Blood 2008; 111(2):968–969.

30-Jun-2008 250 Two hundred fifty patients with myeloma at diagnosis
with at least 500,000 available bone marrow CD138+
plasma cells [15].

Decaux etl al. Prediction of Survival in Multiple Myeloma Based
on Gene Expression Profiles Reveals Cell Cycle and Chromosomal
Instability Signatures in High-Risk Patients and Hyperdiploid
Signatures in Low-Risk Patients: A Study of the Intergroupe
Francophone du Myélome JCO October 10, 2008:4798–4805;

29-Mar-2009 290 Untreated myeloma patients with cytogenetic
abnormalities (CA) present in randomly sampled (RS)
or focal lesion (FL) bone marrow sites [16].

Zhou et al. “Cytogenetic abnormalities in multiple myeloma:
poor prognosis is linked to concomitant detection in random
and focal lesion bone marrow samples and associated with
high-risk gene expression profile”. Br J Haematol 2009;
145(5):637-641

25-Jun-2009 120 Myeloma patients previously enrolled in tandem
transplantation trial Total Therapy 2 [7].

Nair et al. “Gene expression profiling of plasma cells at myeloma
relapse from tandem transplantation trial Total Therapy 2 predicts
subsequent survival”. Blood 2009; 113:6572–5.

14-Mar-2010 258 Newly diagnosed patients with multiple myeloma
entered into the MRC Myeloma IX study [17].

Dickens et al. Homozygous Deletion Mapping in Myeloma
Samples Identifies Genes and an Expression Signature Relevant
to Pathogenesis and Outcome. Clin Cancer Res March 15, 2010
16:1856–1864;
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Table 1 Peer-reviewed publications describing the use of GEP70/MyPRS® gene expression profiling on patients with multiple myeloma (Continued)

12-Apr-2010 52 Patients newly diagnosed with MM [18]. Zhou et al. “High-risk myeloma is associated with global
elevation of MiRNAs and overexpression of EIF2C2/AGO2”.
Proc Natl Acad Sci USA 2010; 107(17): 7904-790

30-Sep-2010 757 Previously untreated patients undergoing high-dose
chemotherapy [19].

Hose et al. “Proliferation is a central independent prognostic
factor and target for personalized and risk adapted treatment
in multiple myeloma”. Haematologica 2011; 96(1):87–95.

20-Aug-2010 275 Newly diagnosed patients with symptomatic or
progressive myeloma [20].

van Rhee et al. Total Therapy 3 for multiple myeloma: prognostic
implications of cumulative dosing and premature discontinuation
of VTD maintenance components, bortezomib, thalidomide, and
dexamethasone, relevant to all phases of therapy. Blood 2010
116:1220–1227;

7-Oct-2010 320 Newly diagnosed patients with MM (Dutch-Belgian
Cooperative Trial Group for Hemato-Oncology [21].

Broyl et al. Gene expression profiling for molecular classification
of multiple myeloma in newly diagnosed patients. Blood 2010
116:2543–2553;

22-Aug-2011 45 Patients with myeloma receiving initial therapy with
lenalidomide and dexamethasone [22].

Kumar et al. “Impact of gene expression profiling-based risk
stratification in patients with myeloma receiving initial therapy
with lenalidomide and dexamethasone”. Blood 2011;
118(16): 4359–4362.

Publications listed are the first use of GEP70 to stratify patients in the relevant cohort as high or low risk for. Additional publications reanalyzing the same (or subsets of a) patient series are not shown.
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GEP70 risk scores are calculated using the method ori-
ginally described by Shaughnessy et al. [6], with the add-
itional modification of scaling the score to a range of 0 to
100 to assist in interpretation. This scaling is done using
the equation [original GEP70 + 1.6] * 20 = scaled GEP70.

Control sample analysis
Positive and negative control specimens are analyzed
alongside all clinical MyPRS® samples. Positive control-
sample analysis is performed using the multiple mye-
loma cell line H929 which is grown as recommended
(American Type Culture Collection, Chantilly, VA). To
prepare the cell line for repeated control sample use,
cells are consolidated and analyzed for homogeneity and
for CD138+ presence. Once +80% CD138+ homogeneity
is confirmed, the cells are pelleted, placed on RLT (plus
2-mercaptoethanol) buffer and frozen at −80°C. Each ali-
quot of H929 cells is tested over several months to gen-
erate sufficient data in order to calculate the standard
deviation of its GEP70 risk score. A Levy Jennings plot
is used to analyze the positive control specimen proc-
essed in parallel to each batch of clinical specimens, with
results outside of the median +/−3SD range being
rejected.
Negative control analysis is performed using aliquots

of RLT (+2-mercaptoethanol) buffer and frozen. The
negative control is inserted into a batch of samples at
RNA isolation and is carried all the way through aRNA
amplification. Detection of aRNA in the negative control
specimen prior to microarray hybridization results is a
sign of contamination and cause for rejection.

Replication of GEP70 signature between UAMS and Signal
Genetics laboratories
To evaluate the difference between GEP70 risk scores
generated in the original research laboratory (UAMS)
and the clinical laboratory (Signal Genetics LLC, AR) a
series of 99 bone marrow aspirates were analyzed. Speci-
men preparation, microarray hybridization and data
analysis methods were performed as described above.
GEP70 scores were compared by performing intra-class
correlation, Passing and Bablok regression and chi-
square analysis of high/low risk group classification in
MedCalc 12.7.8 (MedCalc Software bvba, Belgium) [24].

Interpretation of GEP70 score using personalized gene
expression heat maps
The GEP70 risk score for each MyPRS analysis per-
formed was visualized by creation of a personalized two-
dimensional heat map generated by the ResultsPX™
genomic data management platform developed by Signal
Genetics. This system uses Microsoft SQL Server (Red-
mond, WA) databases, R [25] and Bioconductor [26]
and custom scripts to display the expression profile of
the prognostic GEP70 gene score within the context of
the 559 multiple myeloma patients from two previously
published datasets, including data from patients used to
develop the algorithm [6]. The 5-year relapse status of
each patient is shown at the top of each gene profile
(red: relapse, blue: no relapse) along with the corre-
sponding risk score.
To generate a personalized gene expression data heat

map for each patient analyzed, the following steps are per-
formed by Signal Genetics ResultsPX™ analysis software:

i. Load the matrix of the MAS5 normalized gene
expression data for the 70 genes by 559 patients.

ii. Attach the 70 gene data from the patient being
analyzed to the matrix, making it 70 genes by 560
patients.

iii. Order 560 columns of the matrix (1 column = 1
patient) left-to-right by increasing GEP70 score.

iv. Order the 70 rows of the matrix (1 row = 1 gene)
using hierarchical clustering, as implemented by
‘hclust’ R library (http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/hclust.html).

No ‘batch effect’ modification is performed during this
procedure as the 70 gene x 559 patient dataset was that
used to originally develop the GEP70 algorithm. These
data were produced by the UAMS MIRT laboratory and
were used in the validation studies performed herein to
ensure the 70-gene assay produces statistically equiva-
lent results when performed in the Signal Genetics clin-
ical laboratory.

Results
Genomic profiling of paired aliquots of patient CD138+ cells
in research and clinical laboratories shows high correlation
of GEP70 scores
Ninety-nine patient bone marrow aspirate specimens
were split into two aliquots and processed as described
in both the UAMS research laboratory and at Signal
Genetics’ CLIA-certified laboratory (Figure 1). The intra-
class correlation coefficient for the set of 99 GEP70
scores generated by UAMS and Signal Genetics is 0.98
(95% CI: 0.97 to 0.99), indicating a high level of consistency.
The Cusum test for linearity revealed no significant devi-
ation from linearity (P = 0.17) [24].
In order to assess the clinical implications of the small

difference in risk scores observed between the two
laboratories, ROC analysis was performed using 5-year
relapse-free survival as the binary outcome metric. The
AUC of the UAMS risk score was 0.67 (95% CI 0.57 to
0.76) compared to the Signal Genetics AUC of 0.66 (95%
CI: 0.56 to 0.75), a statistically insignificant difference
(P = 0.402). This indicates that no significant difference
exists in the association of the GEP70 score with multiple

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html


Figure 2 Analysis of MyPRS Control Sample stability over time.
MyPRS Control Sample stability over time; (A) H929 Control sample
GEP70 scores generated bewteen August 2012 and August 2013
exhitit high stability over time. No gradual shift up or down in risk
score is observed. Standard deviation of risk scores in this analysies
was 2.72 and a CV of 0.03. (B) Control sample data from September
2013 to February 2014 (new aliquot of H929) shows further
improvements in assay stability. Standard deviation 1.70, CV 0.019.

Figure 1 Inter-laboratory reproduciblity; Analysis of GEP70
scores calculated on 99 clinical bone marrow aspirate
specimens analyzed in parallel by UAMS Myeloma Instiute for
Research and Treatment (MIRT) (1a. y-axis) and Signal Genetics
CLIA laboratory (1b x-axis). Lines at 45.2 correspond to the low/
high risk threshold.
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myeloma relapse risk based on the processing of a speci-
men in the research or clinical laboratory setting.

Analysis of control specimen GEP70 risk score shows high
level of consistency in MyPRS® analyses over time
Along with each batch of clinical bone marrow aspirate
samples analyzed, an aliquot of RNA from a multiple
myeloma cell-line (H929) is analyzed and its GEP70
score is assessed for stability. Over a twelve-month
period from August 2012 to August 2013, 102 control
sample analyses were performed. As shown in Figure 2,
the median value of the GEP70 score over time was
91.2, with a standard deviation of 2.7 and 3.0% coeffi-
cient of variance.
Next we sought to evaluate the reproducibility of the

GEP70 scores across the dynamic range of the assay (i.e.
low risk 0 to 45.2, high risk 45.2 to 100). Thirty speci-
mens of MM RNA were analyzed in duplicate, approxi-
mately one month apart (Figure 3). A high degree of
correlation was observed between the repeated measure-
ments (r2 = 0.99) with no statistically significant devi-
ation from linearity detected by the Cusum test (P =
0.98).

Variation in clinical bone marrow aspirate specimen
plasma cell content has negligible impact on RNA
isolation and gene expression profile quality
Bone marrow aspirate specimens of varying absolute
and relative CD138+ plasma cell content are submitted
for GEP70 analysis from treatment centers throughout
the United States. Immunomagnetic and fluorescence
based isolation of CD138+ plasma cells is routinely
performed using methods described on every specimen
to isolate, and if necessary enrich, the target plasma cells
in the specimen.
We investigated the association between the relative

malignant cell content, RNA integrity and the resulting
GEP70 risk scores by performing a retrospective analysis
of data generated from routine bone marrow aspirate
specimens submitted to Signal Genetics over a period of
twelve months. Agilent Bioanalzyer RNA integrity num-
ber (RIN; range 0–10) and the GEP70 risk score (range
0–100) data were compiled from 1000 randomly selected
specimens submitted to Signal Genetics for routine
GEP70 analysis between August 2012 and July 2013.
Within this series of 1000 specimens, the CD138+ cell

content ranged from the lower acceptance threshold of
0.25% to 96.2% (mean: 12.80%, median: 4.63%). Despite
this wide range of cellularity, skewed toward the lower



Figure 3 Intra-laboratory reproducibility; Comparison of GEP70
scores from 30 specimens analyzed in duplicate. Correlation
coefficient of 0.98 shows an extremely high degree of reproducibility
between experiments.
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end of the spectrum, Figure 4a and b show that only a
weak correlation exists between the RNA integrity num-
ber, GEP70 score and pre-sorted specimen percentage of
CD138+ cells (r2 = 0.13 and 0.010, respectively). After
cell sorting, specimens with less than 80% purity are
excluded from further analysis in order to ensure the
genomic profile represents the cells of interest rather
than other potentially contaminating material. Inspec-
tion of specimens with cell content between 80 and
100% revealed there is no significant association between
the relative CD138+ plasma cell content and RNA integ-
rity, or the GEP70 risk score, r2 = 0.017 and r2 = <0.001,
respectively (Figure 4c-d).
These data show that the specimen preparation methods

used to isolate the malignant cells from a patient’s bone
marrow aspirate are robust and not impacted by natural
variations in specimen quality and relative quantity of
malignant plasma cells. This ensures the GEP70 prognos-
tic risk score is an accurate and reproducible prediction of
patient prognosis, with negligible impact from biological
or other sources of specimen variation.

Determining the minimum amount of CD138+ plasma cell
RNA required for reliable gene expression profiling
As stated, patient bone marrow aspirate specimens vary
in terms of plasma cell number, viability and purity. To
determine minimum number of viable CD138+ plasma
cells necessary to generate a high quality GEP and repro-
ducible GEP70 score, we performed two titration studies
in which varying amounts of pooled MM aRNA were
hybridized to Affymetrix microarrays in triplicate.
By hybridizing varying amounts of pooled aRNA (range:
10 μg to 2 μg) to multiple GeneChip we were able to ex-
trapolate to a minimum number of CD138+ plasma cells
required to accept a specimen for routine GEP70 analysis.
GeneChip quality control metrics and GEP70 risk scores
were used to assess the impact of the using lower amounts
of aRNA compared to the amounts protocols used in previ-
ous studies [6,7,9]. After repeating the experiment twice, it
was apparent that there was negligible variation in the
GEP70 score, even using as little as 2ug of pooled aRNA, as
shown in Table 2. The variance of the GEP70 score in titra-
tion experiment 1 was 1.5% and in experiment 2 was 2.8%.
These data also showed no significant changes in GEP

data quality metrics across the range assessed. All
hybridizations successfully passed the automated series
quality control metrics developed by Signal Genetics,
which are comprised of chip and data assessments (with
associated pass/warning/fail thresholds) that have been
established by analyzing large databases GeneChip qual-
ity data generated using aRNA concentrations at or
above those recommended by the manufacturer [2].
Next we tested individual fresh or archival MM bone

marrow aspirate samples submitted for MyPRS® analysis
with RNA yields similar to those analyzed in the pooled-
sample titration study. Twenty-two cases where the
amount of either total RNA or aRNA obtained from the
patients CD138+ place cells was insufficient for GeneChip
hybridization were identified. These were hybridized using
standard methods and the resulting GeneChip quality
metrics were analyzed to refine the minimum RNA/aRNA
thresholds necessary to generate a high quality GEP
suitable for clinical use. As shown in Table 3, 12/13
specimens with > =3 ng/μL of total RNA and > =280 ng/
μL aRNA resulted in successful hybridizations, defined
as zero failed chip metrics and no more than three
warning metrics). Below these thresholds a drop in
hybridization quality was observed, indicating the GEP
from such cases may be unreliable for clinical use.
Consequently a threshold of > =3 ng/μL of total RNA

and > =280 ng/μL aRNA was set for routine MyPRS
testing. This amount of total RNA can be isolated from
approximately 20,000 CD138+ plasma cells. After Gene-
Chip hybridization, each profile must pass the ResultsPX
GeneChip QC model before being used to calculate a
patient’s GEP70 risk score, ensuring result integrity.

Personalized gene expression heat-map assists in
interpreting a patient’s GEP70 score in the context of
patients with known outcomes
For each MyPRS® specimen analyzed, the 70 gene ex-
pression values used to compute the patients risk score
are combined with a matrix of 70-gene data from 559 pa-
tients used to originally train and validate the prognostic
algorithm [9] (data available at NCBI GEO ID: GSE2658).



Figure 4 A-D: Analysis of bone marrow aspirate specimen variability vs. RNA quality and GEP70 risk score; The relative CD138+ cell
content (pre- and post- sorting) vs RNA integrity and GEP70 risk score of 1000 randomly selected clinical specimens submitted for
MyPRS analysis is shown above. The wide range in cellularity of specimens submitted for MyPRS analysis (0.25 - 96.2%) does not impact on the
quality of the RNA isolated for gene expression profiling, nor the final GEP70 risk score.
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These gene expression profiles were generated from newly
diagnosed patients who were enrolled in Total Therapy
2 (Thalidomide/Dexamethasone or Dex + high dose
melphalan (Mel) supported autologous stem cell trans-
plantation (ASCT)) or 3 (TT2; TT3; bortezomib-thalido-
mide-dexamethasone +Mel-ASCT) at UAMS prior to the
commencement of their treatment.
In order to visualize the relationship between direction

of differential gene expression and risk of relapse, hier-
archical clustering is used to arrange the matrix rows
(genes), while the columns (patients) are ordered by
increasing GEP70 risk score. The published relapse-free-
survival (RFS) times for patients in this trial are used to
label each patient as <5 yrs RFS (blue) or >5 yrs RFS (red),
allowing the physician to interpret the gene expression
patterns in context with the end point of interest.
As the example shown in Figure 5 illustrates, the GEP

profile of the test patient is highlighted (yellow line),
allowing the physician to visually compare the expres-
sion of the 70 prognostic genes in their patient com-
pared to a large number of other multiple myeloma
patients with known outcomes.

Discussion
The UAMS 70-gene expression profile has been estab-
lished as a powerful predictor of disease outcome in



Table 2 GeneChip QC metric summary and GEP70 scores for pooled aRNA titration experiments

Titration study
Experiment 1 Chip ID

μg aRNA hybridized
to chip

GEP70 risk
group

GEP70 risk
score

Mean
GEP70

Standard
deviation

Chip QC Metrics Fail/
Warning/Pass

RE13-000031-850291.CEL 10 Low 41.11 41.73 0.56 0/0/7

RE13-000032-850251.CEL 10 Low 42.19 0/0/7

RE13-000033-850371.CEL 10 Low 41.88 0/0/7

RE13-000034-850240.CEL 8 Low 41.20 41.25 0.29 0/0/7

RE13-000035-850377.CEL 8 Low 40.98 0/0/7

RE13-000036-850294.CEL 8 Low 41.55 0/0/7

RE13-000037-850370.CEL 6 Low 40.67 41.31 1.01 0/0/7

RE13-000038-850379.CEL 6 Low 42.47 0/0/7

RE13-000039-850245.CEL 6 Low 40.78 0/0/7

RE13-000040-850236.CEL 4 Low 40.90 41.42 0.54 0/0/7

RE13-000041-850376.CEL 4 Low 41.38 0/0/7

RE13-000042-850395.CEL 4 Low 41.98 0/0/7

RE13-000043-850397.CEL 2 Low 41.23 41.17 0.70 0/1/7

RE13-000044-850358.CEL 2 Low 41.85 0/0/7

RE13-000045-850369.CEL 2 Low 40.45 0/0/7

Mean: 41.37 0.62

Titration study
experiment 2 Chip ID

μg aRNA
hybridized

GEP70 risk
group

GEP70 risk
score

Mean
GEP70

Standard
deviation

Chip QC Metrics Fail/
Warning/Pass

RE13-000046-840059.CEL 10 Low 43.48 41.65 1.88 0/0/7

RE13-000047-840224.CEL 10 Low 41.76 0/0/7

RE13-000048-840239.CEL 10 Low 39.72 0/0/7

RE13-000049-840201.CEL 8 Low 43.95 43.46 0.43 0/0/7

RE13-000050-840219.CEL 8 Low 43.22 0/0/7

RE13-000051-840245.CEL 8 Low 43.20 0/0/7

RE13-000052-840243.CEL 6 Low 43.97 41.88 1.92 0/0/7

RE13-000053-840205.CEL 6 Low 40.19 0/0/7

RE13-000054-840242.CEL 6 Low 41.50 0/0/7

RE13-000055-840246.CEL 4 Low 42.71 43.20 0.96 0/0/7

RE13-000056-840051.CEL 4 Low 44.31 0/1/6

RE13-000057-840199.CEL 4 Low 42.59 0/0/7

RE13-000058-840213.CEL 2 Low 43.01 42.81 0.69 0/1/6

RE13-000059-840032.CEL 2 Low 42.04 0/1/6

RE13-000060-840236.CEL 2 Low 43.37 0/1/6

Mean: 42.60 1.18

van Laar et al. BMC Medical Genomics 2014, 7:25 Page 9 of 13
http://www.biomedcentral.com/1755-8794/7/25
newly diagnosed and relapsed multiple myeloma pa-
tients. To enable use of this GEP algorithm in a high
throughput clinical setting, a direct comparison of
GEP70 scores generated in two laboratories was per-
formed and minimum specimen requirements and qual-
ity control metrics were devised in order to ensure
reliable, high quality prognostic results.
Outcome prediction was found to be highly similar

for specimens analyzed in either the UAMS or Signal
Genetics’ CLIA-certified laboratories. Importantly, a
small number of cases in this study had discordant risk
group predictions between the laboratories. These
were cases where the risk score was very close to the
classification threshold (45.2), indicating that care
should be exercised when interpreting the risk score
when it is close to this value. The number of cases at
the threshold is exceedingly small as indicated by the
bi-modal distribution of risk scores [6]. Further valid-
ation work was subsequently carried out to determine
an appropriate confidence interval for the risk score,
based on the observed technical noise present in the
system.



Table 3 Low RNA-yield clinical specimens: Nanodrop RNA 260/280 ratio, aRNA concentration and GeneChip QC metrics

Case number Specimen type Post-sort no. of
CD138+ cells

RNA conc.
(ng/μL)

aRNA conc.
(ng/μL)

Chip QC Metrics
(Fail, Warning, Pass)

Pass/Fail
Chip QC

RE13-000082 Archival samples with low yield 36,000 11.0 1506.1 0,1,6 Pass

RE13-000079 Archival samples with low yield 32,000 5.3 708.6 0,1,6 Pass

RE13-000080 Archival samples with low yield 1,896,000 6.4 689.7 0,1,6 Pass

RE13-000076 Archival samples with low yield 40,000 3.1 545.1 0,1,6 Pass

RE13-000092 Fresh sample with low yield 22,000 10.4 533 0,0,7 Pass

RE13-000074 Archival samples with low yield 80,000 10.8 455.7 0,1,6 Pass

RE13-000063 Archival samples with low yield 76,000 8.1 426.4 0,0,7 Pass

RE13-000077 Archival samples with low yield 90,000 6.1 410.1 0,1,6 Pass

RE13-000089 Fresh sample with low yield 32,000 9.1 383.3 0,0,7 Pass

RE13-000064 Archival samples with low yield 180,000 5.5 339.9 0,1,6 Pass

RE13-000073 Archival samples with low yield 43,000 10.4 311.1 0,0,7 Pass

RE13-000075 Archival samples with low yield 80,000 2.4 304 0,1,6 Pass

RE13-000066 Archival samples with low yield 18,000 6.9 290.4 0,1,6 Pass

RE13-000085 Fresh sample with low yield 23,000 13.3 286 0,1,6 Pass

RE13-000069 Archival samples with low yield 24,000 8.3 281.1 0,1,6 Pass

RE13-000088 Fresh sample with low yield 20,000 9.6 227.8 0,1,6 Pass

RE13-000081 Archival samples with low yield 692,000 8.2 361.7 3,2,2 Fail

RE13-000084 Fresh sample with low yield 36,000 5.8 341.6 1,0,6 Fail

RE13-000067 Archival samples with low yield 188,000 6.2 271.2 0,3,4 Fail

RE13-000068 Archival samples with low yield 470,000 7.7 263.3 2,1,4 Fail

RE13-000071 Archival samples with low yield 20,000 7.7 254.6 0,3,4 Fail

RE13-000061 Archival samples with low yield 60,000 3.1 220 0,3,4 Fail

RE13-000083 Archival samples with low yield 192,000 5.4 215.5 2,4,1 Fail

RE13-000078 Archival samples with low yield 17,000 3.4 214.6 1,2,4 Fail

RE13-000065 Archival samples with low yield 36,000 5.5 208.4 1,2,4 Fail

RE13-000090 Fresh sample with low yield 18,000 4.8 166.6 0,3,4 Fail

RE13-000091 Fresh sample with low yield 9,000 6.2 144.7 0,3,4 Fail

RE13-000062 Archival samples with low yield 10,000 2.4 122.8 2,3,2 Fail

RE13-000070 Archival samples with low yield 30,000 2.5 100.5 3,2,2 Fail

RE13-000086 Fresh sample with low yield 5,000 0.9 94.5 1,5,1 Fail

Values in bold type correspond to those passing the minimum acceptance threshold. Hybridization success is predicted using post-sort number of cells (>20,000)
RNA concenctration (> = 3 ng/μL) and aRNA concentration (> = 280 ng/μL).
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The prognostic test was found to be highly stable over
time as evidenced by the GEP70 scores from the MM
cell line H929 control sample over a period of 12 months
(Figure 2a). The 3% CV observed in these data over a
twelve month period is similar to other microarray-
based prognostic assays such as MammaPrint® (Agendia,
CA.), a microarray based prognostic assay for breast
cancer [27]. Analysis of more recent control sample data
(late 2013- early 2014) shows further improvements to
the assays consistency over time; CV 1.9% (Figure 2b).
As a final and important observation from these control
samples, no gradual shift in the risk score over time is
detected, highlighting the long-term stability of the test.
Although the technical accuracy of MyPRS® is ex-
tremely high, samples close to the threshold have a
higher chance of misclassification than samples further
away from the threshold. However, the strong bi-modal
distribution of scores proves that such cases are ex-
tremely rare. In principle, the chance of a patient with a
poor clinical outcome incorrectly being assigned to a
good prognosis profile should be minimized. Based on
the known variation in the GEP70 risk profile, a small
proportion of samples with indices close to the predic-
tion threshold may be misclassified. For results that are
close to the classification threshold of 45.2, it is recom-
mended to evaluate the result in the context of the



Figure 5 Personalized MyPRS eene expression heatmaps; Generated for each MyPRS analysis performed to visualize the assocaition
between the individual gene expression levels (green = low expression, red = high expression), GEP70 score and patient outcome.
Yellow line indicates the expression profile of the patient currently being analyzed, with the horizontal position determined by the individual
GEP70 score. The red/blue panel at the top of the heatmap corresponds to 5 year relapse events, as observed in the algorithm training series.
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prognostic information present in the additional genomic
signatures included in the MyPRS® assay; i.e. Molecular
Subtype and Virtual Karyotype [9,28]. Additionally, a
second sample from a separate anatomical site might be
warranted. The implementation and validation of these
additional signatures will be described in a separate
publication.
By performing titration studies and analysis of low

cellularity clinical specimens with RNA yields below
manufacturer recommendations, we have determined
that the Affymetrix GeneChip platform is able to gener-
ate high quality, reproducible gene expression profiles
with RNA that can be isolated from as little as 20,000
CD138+ plasma cells in this context, even though the
RNA yield is lower than the amount previously consid-
ered necessary. Multiple comparisons have shown the
MyPRS® test is robust to the natural variation in clinical
specimens submitted for analysis.

Conclusion
GEP70 has been repeatedly demonstrated to be a statisti-
cally superior, standardized method of personalized mul-
tiple myeloma prognosis and molecular characterization,
with less subjectivity than conventional methods such as
FISH and cytogenetics. Even as the expression or muta-
tional status of single genes are shown to influence re-
sponse to specific myeloma treatments, e.g. expression
levels of the glucocorticoid receptor gene NR3C1 and
thalidomide [29], ‘treatment-independent’ risk-stratification
assays such as GEP70 are likely to remain an important
component in providing tailored treatment plans and
ensuring optional outcomes.
The reproducibility of the MyPRS® test and the simi-

larity of its results to those obtained from specimens
analyzed in academic research laboratories demonstrate
that it is an excellent tool to predict outcome of disease
in MM patients. Standardization of specimen processing
and the establishment of a comprehensive quality con-
trol program make the GEP70 assay highly suitable for
the routine diagnostic clinical setting. Despite the wide
variation in bone marrow aspirate specimen cellularity,
we describe a series of novel quality control measure-
ments that reliably produce high quality gene expression
data, suitable for clinical use.
The MyPRS test is a stable, objective and standard-

ized method for predicting prognosis in patients with
multiple myeloma, supported by extensive clinical and
technical validation data.
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