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Abstract

eQTL analyses.

studied should be used for transcription analysis.

Background: Expression quantitative trait loci (eQTL) are genomic regions regulating RNA transcript expression
levels. Genome-wide Association Studies (GWAS) have identified many variants, often in non-coding regions, with
unknown functions and eQTL provide a possible mechanism by which these variants may influence observable
phenotypes. Limited access and availability of tissues such as brain has led to the use of blood as a substitute for

Methods: Here, we evaluate the overlap of eQTL reported in published studies conducted in blood and brain
tissues to assess the utility of blood as an alternative to brain tissue in the study of neurological and psychiatric
conditions. Expression QTL results from eight published brain studies were compared to blood eQTL identified in
from a meta-analysis involving 5,311 individuals. We accounted for differences in SNP platforms and study design
by using SNP proxies in high linkage disequilibrium with reported eQTL. The degree of overlap between studies
was calculated by ascertaining if an eQTL identified in one study was also identified in the other study.

Results: The percentage of eQTL overlapping for brain and blood expression after adjusting for differences in
sample size ranged from 13 - 23% (mean 19.2%). Amongst pairs of brain studies eQTL overlap ranged from 0 - 35%,
with higher degrees of overlap found for studies using expression data collected from the same brain region.

Conclusion: Our results suggest that whenever possible tissue specific to the pathophysiology of the disease being

Background

The combination of expression profiling and genotyping
from microarrays has led to estimation of correlations
between genetic variants such as Single Nucleotide Poly-
morphisms (SNPs) and RNA transcript expression levels
[1-3]. Expression quantitative trait loci (eQTL) are the
genomic loci that influence RNA transcript expression
levels. The contribution of eQTL to underlying variation
in complex traits such as disease susceptibility has been
studied extensively since expression levels were first de-
scribed as quantitative traits with a genetic basis. Gene
expression is the primary detectable phenotype in the
development of complex traits; therefore expression
levels act as an intermediate phenotype between genetic
architecture and observable multifactorial traits such
as common diseases. It has been shown that SNPs
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associated with common diseases identified by genome-
wide association studies (GWAS) are enriched for
expression-affecting SNPs (eSNPs) [4,5]. Furthermore,
most associated variants are not located in protein coding
regions and are instead highly enriched for regulatory re-
gions of the genome [6], suggesting that for many variants,
the functional mechanism by which they affect disease
susceptibility is through gene regulation. The majority of
eQTL that have currently been identified are located
within the cis-region (typically +/- 1 MB) of the transcrip-
tion start site (TSS). Expression-QTL located outside of
the cis-region are termed trans-eQTL and likely reflect an
indirect relationship of the SNP on gene expression. Cis-
eQTL tend to have larger effect sizes [6], are more often
replicated across multiple studies [7] and more likely to
reflect a direct functional relationship between the SNP
and the measured expression levels.

The pathophysiology of most common diseases is re-
stricted to a limited number of tissue types or organ sys-
tems. Therefore, to understand the mechanisms of disease
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susceptibility and develop preventative and targeted ther-
apies, we ultimately require knowledge of genetic control
of regulatory variation in many different tissues. A com-
mon limitation in disease genomics studies is availability
of pathologically relevant tissue on which to measure ex-
pression. Most studies instead rely on inferences drawn
from readily available (‘proxy’) tissues, typically whole
blood. However, the genetic control of RNA transcription
is known to vary between tissues [5,8-11], and the pheno-
typic correlations and co-expression can be low [12].
Expression-SNPs that are also associated with disease sus-
ceptibility are more likely to affect expression levels in a
tissue-specific manner compared to eSNPs with no known
disease association [5]. Due to mainly study-design limita-
tions most eQTL analyses focus on gene expression mea-
sured in a single tissue type [9,13-18], posing limitations
when attempting to study more inaccessible tissues, such
as the brain.

Using expression levels measured from brain tissue for
eQTL analysis poses several unique problems. First, the
brain is a collection of numerous cell types meaning that
gene expression levels are not consistent throughout the
entire structure [7,19]. This introduces cell type specifi-
city within the brain itself. Secondly, collection of tissue
samples in post-mortem requires consideration of sev-
eral novel factors not relevant when examining other tis-
sue types — such as cause of death, post-mortem RNA
integrity and post-mortem interval [20]. This has led to
the search for alternate methods for evaluation of eQTL
within the brain.

One approach is to use expression levels measured from
more accessible tissues, such as blood, as a substitute to
gain insight into gene regulation underlying brain-related
traits such as psychiatric and neurological disorders
[21-25]. When such approaches are used an important
question is: To what degree is the genetic control for ex-
pression the same in brain and blood tissues? Difficulties
in the collection of expression data from both blood
and brain tissue for the same individuals mean methods
are required to assess the overlap of genetic control. Using
results from published studies represents a practical solu-
tion. Here we report a comprehensive evaluation of the
degree of eQTL overlap between blood and brain and aim
to determine the validity of using blood as a surrogate for
brain tissue. We have sought to account for differences in
expression and genotype platform arrays as well as to cor-
rect for differences in sample size and thus differences in
statistical power between studies.

Methods

eQTL results

Published eQTL results and supporting information were
obtained from eight eQTL studies carried out on expres-
sion levels measured in the brain using high-throughput
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arrays [7,10,26-31]. Full details of each study are given in
Additional file 1: Table S1. Each of these studies evaluated
the association between transcript probe expression levels
and SNP genotype using linear regression models. Signifi-
cant eQTL were determined at a p-value threshold that
was specific to the study. Studies used different metrics
and protocols to identify eQTL and so we sought to
standardize results between studies by producing lists of
eQTL and eSNPs that reached the study-wide significance
level of @ = 0.05. The number of significant eQTL reported
ranged from 52 to 2,975, which represents between <1 -
19% of the probes analyzed in each study. This range most
likely reflects differences in sample size, protocols and stat-
istical analyses between the studies. Three studies [10,26,30]
reported cis associations only, while the remaining five
reported both cis and trans associations (trans eQTL are
those located outside of the cis-region definition of the
study), including SNPs distal to the associated transcript
[7,27-29,31]. Details of the significant eQTL and eSNPs
reported in each study are given in Table 1.

All brain tissue samples were collected post-mortem.
Some studies reported eQTL for expression collected in
multiple brain regions or from samples with different neu-
ropathologies. Where possible, eQTL overlap was evalu-
ated for separate tissues and neuropathologies, however,
most studies pooled results from different tissues or from
individuals with different neurological/psychiatric condi-
tions. Therefore, separate analysis was not always possible.
For example, two of the studies included samples from in-
dividuals diagnosed with schizophrenia, bipolar disorder,
or major depressive disorder [27,28], whilst others pooled
samples with pathologies such as Alzheimer’s disease and
progressive supranuclear palsy [29,30]. Only four studies
used expression data collected from a single region of the
brain [10,26,28,30], whilst the remainder, with the excep-
tion of Gibbs et al. [7], combined data acquired from sev-
eral brain regions.

The eQTL results from the eight brain studies were
compared to results from a large meta-analysis of eQTL
in for expression levels measured in whole blood [32]. The
Westra et al. analysis is the largest eQTL study published
to date and comprises of a meta-analysis of 5,311 indi-
viduals in a discovery phase and 2,775 individuals in a
replication phase. All expression levels were measured in
peripheral blood and corrected for batch effects and cell
counts. SNP effects were estimated using a weighted Z-
score of the beta values calculated using a linear re-
gression model in each study cohort. Significance was
determined using permutations and a study-wide thresh-
old of false discovery rate (FDR) of 0.05. Cis-eQTL were
identified for a total of 4,909 genes (33% of all tested) and
trans-eQTL for 430 genes (3%).

This study used previously published data. The re-
search was approved by the University of Queensland
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Table 1 Summary of each study included in the comparison
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Study Sample Size Tissue(s) Number of  Percentage of Total number
genes with  probes with of probes
an eQTL an eQTL

Westra et al. [ 32] 5311 Peripheral blood 4,909 33 14,586

Colantuoni et al. [26] 269 Prefrontal Cortex 455 2 30,176

Gibbs et al. [7] 150 Caudal Pons 997 278 5 22,184

Cerebellum 318
Frontal Cortex 331
Temporal Cortex 385
Heinzen et al. [10] 93 Frontal Cortex 52 <1 ~22,000
Kim et al. [27] 165 Cerebellum, Frontal Cortex, Thalamus, Temporal Cortex 648 211 *
Hippocampus, Frontal Cortex 594
Liu et al. [28] 127 Prefrontal Cortex 1,063 15
Myers et al. [31] 193 Cortex (Pooled data from 20% frontal, 70% temporal 2,975 19
and 1% parietal)
Webster et al. [29] 364 Cortex (Pooled from 21% frontal, 73% temporal, 2% parietal 743 9 8,650
and 3% cerebellar)
Cortex (Pooled from 18% frontal, 60% temporal, 10% parietal
and 13% cerebellar)
Zou et al. [30] 374 Cerebellum 686 3 24,526

*Exact number of transcripts tested is not given.

Human Ethics Review Board and the QIMR Berghofer
Medical Research Institute Institutional Review Board
for Research on Human Subjects.

eQTL overlap

The eQTL studies included in this analysis used a variety
of high-throughput expression arrays (Additional file 1:
Table S1). We sought to overcome the degree of probe
overlap between by comparing eQTL for probes that
tag the same gene exon. We evaluated the overlap of
eQTL identified in blood [32] and each of the brain
studies as well as between each pair of brain studies.
The latter allows us to draw conclusions on eQTL
overlap for different brain regions or tissues as well
as potential impact of psychiatric or neurological dis-
orders. The following procedures were followed to as-
certain the overlap of eQTL between peripheral blood
and each brain study and between each pair-wise com-
parison of brain studies.

The list of significant (study-wide a =0.05 eQTL for
studies i and j were first assessed for probes containing
an eQTL in both studies. For each eQTL present in
studies i and j, overlapping eQTL were determined using
two approaches. Firstly, SNPs with the smallest p-value
(eSNPs) from eQTL were compared based on their re-
corded presence in both studies. This provides a basic
comparison of all overlapping eQTL that can be iden-
tified from standard reported results. However, the
mean overlap between i and j is expected to be biased

downwards due to differences in SNP array platforms and
inconsistencies in linkage disequilibrium (LD) between
study populations. We accounted for this by applying a
second approach that used known SNP proxies [33] from
the 1000 Genomes study (CEU panel). SNP proxies were
defined as SNPs in high LD (** > 0.8) and within 100 kb of
the original genotyped eSNPs. A list of SNP proxies for
each eSNP was generated for all studies. The SNP proxies
for eQTL in studies i and j were then compared to find
overlapping proxy eQTL (hereon termed eQTLy,oyy). This
approach provides a realistic estimate of the true eQTL
overlap that would be expected if all studies had used the
same genotyping platform.

The power to detect eQTL is partly a function of sam-
ple size. Thus, comparison of eQTL between two studies
of different sample sizes is expected to downwardly bias
the estimate of the true proportion overlapping due to
the lower power of the smaller study. We addressed this
problem by using a method presented by Ding et al. [32]
that adjusts for the difference in samples sizes, and thus
statistical power, to re-estimate eQTL overlap expected
under the scenario of equal sample size [34]. Following
the notation of Ding et al., the estimate of power-adjusted
overlap, we start with the lists of eQTL identified in stud-
ies i and j. EQTL are determined based on significance
threshold, a, which corresponds to a false discovery rate
(FDR) of 0.05. From these lists we determined the ob-
served percentage of eQTL overlapping between studies
(7T,4w)- Because both eQTL lists are inevitably incomplete,
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7,4 Will be an underestimate of the true level of overlap,
. If study j is of smaller sample size than i, then the
power to detect ‘true’ overlapping eQTL will be lower.
The power-adjusted expected overlap in significant eQTL
(T agjustea) is calculated as [32]

ﬁmw_a’j
1-FDR;) (power;-a;)

(1)

ﬁadjusted = (
where power; is determined from the effect sizes of the
overlapping eQTL, the sample size and a;,

power; ., —FDR; * a;
1-FDR;

power; = (2)

POWer; ;4 is defined as the statistical power of study i
with a sample size matching study j to detect all identi-
fied eQTL from study i. Since the blood-based eQTL
analysis was the largest study by far, we used this sample
to estimate power; ,,,, by:

1. From the Westra et al. list of eQTL we sampled two
mutually exclusive and independent datasets (i; and i5),
with the sample size of both i; and i, equal to that of
study j.

2. EQTL were identified in datasets i; and i,, assuming
significance threshold of study-wide FDR of 0.05.

3. power; ,,,, was calculated as the proportion of eQTL
identified in i; that are also significant in i,.

4. 7 4qjustea Was calculated (equations 1 and 2) between
each brain study and the Westra et al. blood eQTL
study.

Functional characterization of overlapping eQTL

A KEGG pathway enrichment analysis was used to
assess shared biological functionality amongst genes with
either overlapping or independent eQTL. From each
pairwise comparison of blood and brain eQTL, genes
listed as having either overlapping or non-overlapping
eQTL were analyzed for shared functionality using DA-
VID [35]. Significance of pathway enrichment was deter-
mined from a modified Fisher’s test, which represents
the probability that a set of genes of related terms are
presented at a given percentage in the list. Multiple test-
ing was accounted for using a Benjamini-Hochberg FDR
of 0.05 [36].

Results

Blood and brain eQTL overlap

For cis-acting eQTL only, the overlap of eQTL between
blood and brain studies ranged 0.1-14.2% (mean 4.3%)
(Table 2). In total 4,909 cis-eQTL were found for blood
gene expression, of which 156 were also identified for
cerebellum and temporal cortex expression [29]. Overlap-
ping trans-eQTL were identified from 5 studies, but the
number of genes was low (2-35) (Table 2). Trans-eQTL
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typically have smaller effect sizes than cis-eQTL and suffer
from a greater multiple testing burden, resulting in lower
power for detection compared to cis-effects. These esti-
mates of overlap are likely to be an under-estimate of
the true level of overlap as the ‘replication’ studies in
brain tissue have smaller sample sizes and thus lower
power than Westra et al. [32]. Indeed, if we use the brain
studies as the ‘discovery’ and Westra et al. as ‘replication’
the proportion of cis-eQTL overlap ranges 5.7-70% (mean
22%). These results are from analyses where the probes
are matched to gene exons and using SNP proxies of
eSNPs. Verification of the robustness of our results to
deviation in the SNP proxy LD threshold is shown in
Additional file 2: Table S2. We believe our results pro-
vide an estimate of the proportion of overlap that is as
accurate as possible given the limitations of the pub-
lished data. Using the method published by Ding et al.
[34] we attempted to account for differences in the sample
sizes between the blood and brain studies (see Methods).
Accounting for the smaller sample sizes of brain stud-
ies, the expected proportion of blood eQTL that would
be identified had the brain studies be of equal size (n=
862), 7 adjusted> ranges 13% -23% (mean = 19.2%) (Table 3),
suggesting that observed estimates (rm,,,) are under-
estimates due to lower sample sizes in brain studies. It is
important to note that the method used to estimate the ad-
justed overlap assumes that the distributions of eQTL ef-
fect sizes are similar for overlapping and non-overlapping
eQTL [34]. There is evidence to suggest this assumption
may be incorrect and the implications of this are discussed
below.

Functional characterization

To investigate if both overlapping and non-overlapping
eQTL have a shared functionality we performed a path-
way analysis using DAVID [35]. The lists of overlap-
ping and non-overlapping eQTL genes are given in
Additional file 3: Table S4. For both sets of genes with
overlapping and non-overlapping eQTL no statistically
significant enrichment was found for functional anno-
tation or Gene Ontology (GO) terms. This suggests that
the genes with overlapping eQTL have similar func-
tional roles in brain and blood cell types and tissues.
Amongst the eight comparisons, 268 independent genes
were found to have overlapping cis-eQTL with blood.
Of these 55 (21%) had an eQTL observed in more than
two brain studies. The genes that most consistently re-
ported an overlapping eQTL were NSFLIC and PEX6 (re-
ported in six of the brain eQTL studies), and CDK5RAP2,
CDS2, CHURCI1, CRIPT, HMBOXI, MRPL43, NAPRTI,
NSUN2, RABEPI, ZNF266, ABHDI2, and PILRB (re-
ported in five of the brain eQTL studies) (Additional file 4:
Table S3).



Table 2 Summary of blood eQTL overlap with each brain eQTL study

Study Number of Percentage of genes in  Percentage of genes in brain Mean number of Mean R>  Mean R? (brain study)’ Mean distance (kb)
overlapping eQTL  blood with overlapping study with overlapping  overlapping SNPs (blood)’ of overlapping SNP
eQTL in brain study eQTL in blood per gene from probe’
CIs
Colantuoni et al. [17] 94 (12) 19 (0.2 20.1 (2) 55 0.14 Data unavailable 186
Gibbs et al. [12] 697 (34) 142 (0.6) 70 (3.4) 15.7 0.19 032 62.8
Heinzen et al. [7] 7 (0) 0.15 (0) 13 (0) 1.1 0.11 0.14 48.1
Kim et al. [18] 66 (8) 13 (0.1) 10 (1.2) 76 0.15 Data unavailable 39.7
Liu et al. [19] 59 (7) 1.2 (0.1) 57 (038) 48 0.10 0.15 25.1
Myers et al. [22] 507 (49) 103 (1) 17 (1.7) 7.1 0.13 Data unavailable 185
Webster et al. [20] 133 (17) 2.7 (03) 18 (2.2) 34 0.12 0.19 AD 69.0
0.15 Controls
Zou et al. [21] 156 (16) 3103 23 (23) 56 0.13 022° 2617
CIS AND TRANS
Gibbs et al. [12] 712 (38) 14.3 (0.6) 0.71 (34) 15.8 0.18 0.32
Kim et al. [18] 69 (8) 14 (0.1) 106 (1.2) 78 0.14 Data unavailable
Liu et al. [19] 61 (7) 1.2 (0.1) 5.7 (0.8) 43 0.1 0.15
Myers et al. [22] 542 (54) 10.3 (1) 18 (1.7) 76 014 Data unavailable
Webster et al. [20] 142 (19) 2.7 (03) 1922 3.1 0.14 0.18 AD
0.13 Controls

'Only for identical SNP:Gene associations.
*Cis =+ 100 kb.

30Only 139/514 (27.0%) of SNP:Gene associations had R? data.

R? is the proportion of transcript level variance explained by the overlapping SNP.

AD - Late-onset Alzheimer’s disease.

Numbers shown in brackets indicate contribution of proxy SNPs to total value. The numbers in parentheses are those found using proxy SNPs.

LE/L/76/8-SS L 1/WOY'[RIUSIPIWIOIG MMM//:d1Yy
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Table 3 Estimation of the expected degree of overlap
between blood eQTL and each of the brain studies
should the sample sizes be equal

Study power;_saw T adjusted T raw
Colantuoni et al. [17] 042 19% 5%
Gibbs et al. [12] 0.59 21% 7%
Heinzen et al. [7] 0.19 13% 0.5%
Kim et al. [18] 0.88 19% 9%
Liu et al. [19] 0.67 20% 6%
Myers et al. [22] 0.63 22% 6%
Webster et al. [20] 0.57 17% 4%
Zou et al. [21] 0.84 23% 11%

Brain region eQTL overlap

The brain studies examined here report eQTL for ex-
pression levels measured in cells collected from several
different tissues and brain regions. Given specific differ-
ences in the aetiology of many neurological disorders,
one important consideration is whether eQTL overlap
between different brain regions. To investigate this we
analyzed overlap using our observed and SNP proxy
methods for each pairwise combination of brain studies.
Cis-eQTL overlap is shown in Table 4, while the only
observable trans-eQTL overlap was in Myers et al. [31]
and Webster et al. [29] at 0.2% and 1.5% respectively
(including SNP proxies). The variability in overlap be-
tween studies remains high even when comparing the
eQTL data generated from the same brain region. For
example, in the two studies examining the prefrontal
cortex, the proportion of overlapping genes with a sig-
nificant eQTL was only 1% to 7% (Table 4) [26,28].
However, the proportion of overlapping genes with a sig-
nificant cis-eQTL from cerebellar tissues in Gibbs et al.
[7] and Zou et al. [30] was much greater. Of the genes
from Gibbs et al. [7] with a significant cis-eQTL in the
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cerebellum, 39% were also observed in Zou et al. [30].
Conversely, 8% of the genes with a significant cis-QTL
from cerebellar tissue in Zou et al. [30] were reported in
Gibbs et al. [7].

To evaluate eQTL overlap between different brain re-
gions we calculated the average overlap for studies that
used expression levels measured from the same region
compared to the average for studies using expression
measured in different regions. For each comparison we
chose the dataset with the largest sample size as the ‘dis-
covery sample (Table 2). The mean overlap between stud-
ies with the same tissue is 20% and for studies using
different tissues is 12%. Following this, we chose pairs
of studies that both collected samples from healthy or
normal neuropathology and compared those to studies
using healthy versus diseased patients. The mean overlap
between healthy-healthy studies was 19% and between
healthy-disease was 13% (Figure 1).

Of the 765 genes found to have a cis-eQTL in one of
the two studies involving cerebellar tissue [7,30], 137
(18%) were also reported to have a cis-eQTL in blood.
This proportion increased considerably when evaluating
eQTL reported by both cerebellar studies — 25 of the 68
(37%) genes reported in both cerebellar studies also dis-
played a significant cis-eQTL association in blood.

Through contrasting distinctive neuropathologies, Liu
et al. [28] showed that different psychiatric conditions
had little effect on eQTL mapping compared to healthy
controls. Consequently, most studies included here
had pooled eQTL results from cohorts where samples
have differing psychiatric conditions [27,28]. However,
Webster et al. [29], reported eQTL that had a significant
effect only amongst individuals with late-onset Alzhei-
mer’s. The overlap of these eQTL with those found in
blood is summarized in Table 5. Notably, blood eQTL
overlap with Alzheimer’s disease interacting eQTL was
three times lower than eQTL without a significant inter-
action with disease status.

Table 4 Overlap of eQTL from each of the pairwise comparisons of brain studies

Replication Discovery dataset

dataset Colantuoni (P) Gibbs (P) Heinzen (P) Kim (P) Liu (P) Myers (P) Webster (P) Zou (P)
Colantuoni / /160 07 136 0 141 113 06 06 74 37 61 36 104 06
Gibbs 99 04 / / 0 0 95 12 06 01 74 06 15 07 106 |1
Heinzen 07 o o0 o0 / / 03 03 0 0 0 O 0 0o 0 0
Kim 20 161 2 28 91 91 / /23 07 147 34 161 14 118 95
Liu 68 64 107 11 0 0 189 59 / / 66 19 86 11 42 35
Myers 106 53 1721 14 0 0 147 34 08 02 / /354 0 96 42
Webster 37 22 149 07 0 0 69 06 05 01 153 0 / /35 15
Zou 156 09 26 25 91 0 125 10. 06 05 102 45 86 36 / /

The percentage of genes from the discovery dataset that were found to have an overlapping eQTL in the replication dataset is shown. The percentage listed

under (P) indicates the contribution of proxy SNPs to the total overlap reported.
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Colantuoni

Figure 1 Venn diagram showing the overlap in genes with common eQTL between brain studies. In figure (A) all studies used samples
with healthy or normal neuropathology, and tissue samples were collected from different cortical brain regions; Cortex (Myers), Prefrontal Cortex
(Colantuoni) and Temporal Cortex (Gibbs). In (B) samples are collected from the Temporal Cortex and Cerebellum in individuals with normal or
healthy neuropathology (Zou) and Cortex in individuals with late onset Alzheimer’s disease (Webster).

(B)

Webster

Discussion

We have quantified the overlap in eQTL identified from
eight brain studies with those found in blood. A key mo-
tivation of this work was to provide information on the
utility of using blood as a surrogate for brain tissue
when trying to understand the role of gene expression in
neurological and psychiatric conditions. Previous work
had shown that the transcriptome organization is poorly
preserved between brain and blood, although the conser-
vation was stronger for certain hub genes [12].

If we solely consider the overlap amongst the eight brain
studies, there is relatively low, but highly significant, levels
of replication (p = 1.4e”®). The greatest degree of overlap
(35%) of cis-eQTL is between two studies that focused on
cortex regions [28,30]. If trans-eQTL are included in our
analysis then the percentage overlap falls to 15%. The low
level of overlap is likely due to a number of contributing
factors. Firstly, we are comparing individuals from different

population demographics whose expression levels have
been measured using different laboratory procedures
and protocols. Difference in expression profiles as a re-
sult of these variables is well documented [26,37,38]. Sec-
ondly, individuals from different disease cohorts were
included together in the analyses. The effect of disease
status on eQTL is still unclear; Liu et al. [28] found that
psychiatric disease status had minimal effects on eQTL
mapping, whilst Webster et al. [29] showed that most of
the Alzheimer’s disease associated eQTL effects were not
found in healthy controls. Thirdly, the studies sampled
and often combined data from different regions of the
brain. Yet it has been shown that expression profiles gen-
erated from different brain regions are distinct [7,19].
Additional and larger studies are needed to clarify and
quantify the true overlap.

Where possible we used approaches to account for dif-
ferences in microarray and genotype platforms that could

Table 5 Summary of Westra et al. [32] blood eQTL overlap with eQTL from Webster et al. [29] which were found to
have an interaction with late-onset Alzheimer’s disease (AD) status as well as those independent of disease status

Effect of Number of Percentage of genes in Percentage of genes in Mean number Mean R> Mean R? Mean distance (kb)

diagnosis overlapping blood with overlapping Webster et al. with of overlapping (blood)' (Webster et al.)' of overlapping
eQTL eQTL in Webster et al.  overlapping eQTL in blood SNPs per gene eSNP from TSS'

AD 67 (1) 1.3 (0) 9(0.1) 14 0.12 0.20 Cases 784

nteraction 0.09 Controls

No 111 (14) 22 (1) 15 (1.8) 4.0 0.12 0.15 Cases 529

interaction 0.13 Controls

'Only for identical SNP:Gene associations.

Numbers shown in brackets indicate contribution of proxy SNPs to total value. R? is the proportion of transcript level variance explained by the overlapping SNP.
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contribute to a low concordance in eQTL overlap between
studies. EQTL and eSNP were matched for expression
probes located within the same exon and SNP proxies
were generated and analyzed for all eSNPs. The proxy
SNPs included all known common SNPs within 100 kb re-
gion that are linked to the eQTL by LD. Therefore, if the
eQTL was present in each study, it should be detected
using this method.

Brain eQTL studies, with smaller sample sizes, lack
statistical power compared to the blood meta-analysis
[32]. To address this, we employed an approach [32]
which re-estimates the expected degree of eQTL overlap,
should the sample size of the brain study match that of
Westra et al. Although it has been estimated that a sam-
ple size of 100 individuals is sufficient for 80% power in
eQTL studies [39], the power to detect an effect across
multiple studies is reduced when an eSNP has a small
effect size or when multiple loci are controlling tran-
script expression levels.

The highest proportion of cis-eQTL overlap between
blood and any brain study was 14.2% [7]. Under a null
hypothesis of no eQTL overlap, these observed values
are much greater than would be expected by chance
(p=2.7¢ ). We can calculate the expected amount of
overlap under the null hypothesis that there is no true
overlap using the proportion of probes with identified
eQTL in each study. For example, the amount of overlap
expected between Westra et al. [32] and Gibbs et al. [7]
based on chance would be equal to the percentage of
probes analyzed in Westra et al. that were found to have
an eQTL (33%), multiplied by the percentage of probes
examined in Gibbs et al. [7] that were found to have an
eQTL (5%), which is 1.6%.

Consistent with findings from other tissues, the genetic
regulation of transcript expression levels within the brain
and blood appears to be largely tissue specific [8,10]. Our
results presented here use data collected among different
individuals and thus will underestimate the true overlap
because of inconsistencies in study design, environmen-
tal effects and allele frequencies of SNPs. Studies such
as GTEX [40], which is collecting samples from mul-
tiple tissues in the same individuals, can be used to
provide a more complete understanding of identifiable
eQTL overlap between these tissues. Importantly, it
would also allow an accurate quantification of the dir-
ection of allelic effects between tissues. Here, due to
unavailability of beta estimates, we have assumed the
direction of eQTL effects between tissues is the same.
As is expected, the overlap between brain and blood
was consistently lower than the amount of overlap
among brain eQTL studies. This provides support for the
methods used for eQTL comparison in this study. The
high level of overlap identified between studies using sam-
ples with disparate medical history provides support for
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the hypothesis that neurological conditions have little im-
pact on eQTL effect estimates [28].

Table 2 provides information on the genes with an
eQTL in both brain and blood, presented as a propor-
tion of eQTL identified in the studies. The proportion of
eQTL overlap was on average greater when the brain
eQTL study was used as the ‘discovery’ cohort. This is
likely due to the larger sample size of the blood eQTL
study.

The mean genomic distance of overlapping blood—brain
cis-eSNP from the probe TSS was 38.5 kb (not including
proxy SNPs) — substantially less than the 121 kb average
distance for brain eQTL reported by Gibbs et al. [7]. This
is in agreement with previous findings, which show that
eQTL found in multiple tissues tended to localize closer
to the TSS than tissue-specific eQTL [9]. It is also known
that eQTL found in multiple tissues have larger effect
sizes than average, which could lead to a upwards bias in
the reported percentage of overlapping eQTL between
brain and blood [5].

The pathophysiology of many neurological and psychi-
atric conditions is often localized to specific brain regions.
For example, prefrontal and temporal cortex abnormal-
ities have been repeatedly associated with schizophrenia
[41-43] while affective disorders such as bipolar disorder
and major depressive disorder have been linked with dys-
function in several brain regions — cingulate cortex, amyg-
dala, thalamus, hippocampus and the frontal lobe [44-48].
Similarly, neurological disorders tend to act within par-
ticular brain structures — degeneration in the substantia
nigra is a hallmark of Parkinson’s disease [49] and one of
the primary characteristics of Alzheimer’s disease is the
prevalence of neurofibrillary tangles and amyloid plaques,
particularly in medial temporal lobe structures [50,51].
Thus, analysis of regions specifically affected by the
disorder of interest is likely to be more relevant when
attempting to understand the contribution of eQTL to
disease susceptibility. Evaluating brain-region specific
overlap among the brain studies demonstrated highly vari-
able results. Amongst the brain study comparisons there
was a higher concordance of eQTL overlap when compar-
ing results from expression levels measured in the same
brain region, notably cerebellar tissue.

To consider the effects of neuropathologies on eQTL
overlap between brain and blood, individuals with several
neurological and psychiatric conditions were included in
our comparisons. As most studies pooled data from healthy
and diseased individuals, a separate analysis of blood eQTL
overlap was not always possible. The exception is Webster
et al. [29], who reported eQTL with a significant effect
only amongst individuals with Alzheimer’s disease diagno-
sis. The overlap of blood eQTL with Alzheimer’s disease
associated eQTL was lower than eQTL that showed
no disease specific effects, suggesting the possibility of
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increased tissue specificity of genetic regulation of expres-
sion levels in individuals with Alzheimer’s disease.

Conclusion

There are several recognizable limitations in this study
such as demographic differences, disease status, brain
cell heterogeneity, sample size and potential differences
in protocols and array platforms. Where possible we
have used methods to address these limitations, leading
to a picture of eQTL overlap that represents the best-
case scenario should studies have used the same array
platforms and equal sample sizes. Ideally, measuring ex-
pression levels for multiple brain regions and blood in
the same individuals would provide the best approach to
more fully evaluate the overlap. In summary, although
the genetic regulation of expression levels appears to act
in a primarily tissue-dependent manner, overlap is still
observed although there appears to be no functional dif-
ferences in the genes with overlapping eQTL. Our re-
sults suggest that whenever possible tissue specific to
the pathophysiology of the disease being studies should be
used for transcription analysis. However, given the avail-
ability of blood, and the likely increases in sample size,
analysis should not be deemed worthless for informing on
brain eQTL associated with neurological and psychiatric
conditions.
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