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Abstract

combining miRNA and mRNA microarray analyses.

bioinformatics analysis.

pairs may play critical roles in the pathogenesis of ARDS.
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Background: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial injury and
extensive inflammation of the pulmonary parenchyma. Systematic analyses of microRNA (miRNA) and mRNA
expression profiling in ARDS provide insights into understanding of molecular mechanisms of the pathogenesis
of ARDS. The objective of this study was to identify miRNA and mRNA interactions in a rat model of ARDS by

Methods: Rat model of ARDS was induced by saline lavage and mechanical ventilation. The expression profiles of
both mRNAs and miRNAs in rat ARDS model were performed by microarray analyses. Microarray data were further
verified by quantitative RT-PCR. Functional annotation on dys-regulated mRNAs and miRNAs was carried out by

Results: The expression of 27 miRNAs and 37 mRNAs were found to be significantly changed. The selected miRNAs
and genes were further verified by quantitative real-time PCR. The down-regulated miRNAs included miR-24,
miR-26a, miR-126, and Let-7a, b, ¢, f. The up-regulated miRNAs were composed of miR-344, miR-346, miR-99a,
miR-127, miR-128b, miR-135b, and miR-30a/b. Gene ontology and functional annotation analyses indicated that
up-regulated mRNAs, such as Apc, Timp1, and Sod2, were involved in the regulation of apoptosis. Bioinformatics
analysis showed the inverse correlation of altered miRNAs with the expression of their predicted target mRNAs.
While Sod2 was inversely correlated with Let-7a, b, ¢, f, Ebf1 and Apc were inversely correlated with miR-24 and
miR-26a, respectively. miR-26a, miR-346, miR-135b, miR-30a/b, miR-344, and miR-18a targeted multiple altered
mRNAs. Gabrb1, Sod2, Eif2ak1, Fbin5, and Tspan8 were targeted by multiple altered miRNAs.

Conclusion: The expressions of mMiRNAs and mRNAs were altered in a rat model of ARDS. The identified miRNA-MmRNA

Background

Acute Respiratory Distress Syndrome (ARDS) is a severe
lung disease that leads to a low oxygen level in the blood
[1]. ARDS usually occurs in sepsis [2] or with other
major injuries that may lead to multiple organ failure
[3]. Lung inflammation, hypoxemia and non-cardiogenic
pulmonary edema formation are characteristic features
of ARDS [4]. Approximately 200,000 ALI/ARDS cases
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per year are found in the U.S. and a mortality is as high
as 40% [5].

The main sites of cell injury in ARDS are vascular
endothelium and alveolar epithelium. Neutrophils con-
tribute to lung inflammation and play important roles in
the pathogenesis and progression of ARDS. Lung injures
cause the activation and migration of neutrophils into
the pulmonary interstitium and alveolar space. The acti-
vated neutrophils damage endothelial and epithelial cells
[6]. Endothelial injury leads to the increases in capillary
permeability and effusion of protein-rich fluid into
alveolar airspace [7]. Damage to alveolar epithelial cells
causes increased entry of fluid into the alveolar lumens,
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decreased clearance of fluid from the alveolar airspace,
and decreased production of surfactant [8].

MicroRNAs (miRNAs) are a class of non-coding small
RNAs with approximately 22 nucleotides in length. They
are important regulators of post-transcriptional gene
expression. The mature miRNAs control gene expression
by binding the 3'-untranslated region (3'-UTR) of its target
gene, resulting in either reduced protein translation or
degradation of mRNA. Many miRNAs are expressed in
the lung [9,10]. miR-17, miR-92a and miR-127 have been
shown to regulate lung development [11,12]. VEGF is a
well-defined ARDS-associated candidate gene, and is a
target of miR-126 [13,14]. The miRNA profiling was used
to identify the miRNAs involved in the pathogenesis
of various lung diseases such as ventilator-induced lung
injury [15], bronchopulmonary dysplasia (BPD) [16,17],
chronic obstructive pulmonary disease (COPD) [18,19],
and idiopathic pulmonary fibrosis (IPF) [20,21]. How-
ever, it remains to be investigated whether miRNAs are
involved in the pathogenesis of ARDS.

Genetic and environmental factors influence the suscep-
tibility and the severity of ARDS [7]. For example, indivi-
duals with similar environmental factor exposure and
prior diseases differ in their risk of developing ARDS or in
their survival following ARDS, indicating a role of genetic
component in the disease outcome [22,23]. Thus, it is im-
portant to investigate the contribution of genetic factors
to ARDS including gene-gene and miRNA-gene interac-
tions [24]. Because of complex and heterogenous mecha-
nisms of human ARDS, we used a rat model of ARDS
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induced by saline lavage and mechanical ventilation to
perform miRNA and mRNA microarray analyses simul-
taneously, aiming to identify miRNA-mRNA interactions
and to understand the impact of these interactions on the
pathogenesis of ARDS.

Results

ARDS model

Repeated lavage to deplete lung surfactant, followed by
mechanical ventilation has been used as an experimental
model of ARDS in rats [25]. Histopathological exami-
nation of lung specimens confirmed the presence of
mild to moderate pulmonary lesions characterized by
extensive interstitial edema, and neutrophilic infiltration
in the alveolar septa and lumens in this model of ARDS
(Figure 1 and Table 1). Based on the scoring system (see
the Methods), all of the parameters for controls are 0
and thus were not included in Table 1. There was mini-
mal evidence of septal necrosis and moderate hyaline
membrane formation within alveolar lumens.

miRNA and mRNA expression profiles of rat ARDS

To identify the altered miRNAs in the rat lung of ARDS,
we performed miRNA profiling using an in-house printed
microarray containing 227 rat miRNAs. The miRNA
microarray data were deposited to the GEO database
(http://www.ncbi.nlm.nih.gov/geo/, GSE57223). The results
in Table 2 showed that the expression of 27 miRNAs was
significantly changed based on SAM test (q < 0.05). Among
them, 20 miRNAs were up-regulated and 7 miRNAs were

CON

ARDS

Figure 1 ARDS-induced histopathological changes in rat lungs. Rats were subjected to surfactant depletion by repeated lung lavages (10 times)
with saline to experimentally induce ARDS. The controls were non-lavaged and non-ventilated rats, maintained at room air until the collection of lung
tissue. Shown are representative images. Arrows indicate hyaline membranes. Scale bars: 10x, 200 pm; 20x, 100 um; and 40x, 50 pm.
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Table 1 Histopathological scores of rat ARDS (n = 19 rats)

Histopathological lesion ARDS
Median (Range) Mean + SEM

Interstitial Neutrophils 2.00 (1;3) 211+0.19

Edema 2.50 (1;3) 242+0.19
Intraalveolar Neutrophils 1.56 (1;3) 1.52+0.18

Edema 139 (1;3) 1.60+0.18
Alveolar septal necrosis 1.00 (1;3) 142+023
Hyaline membranes 1.89 (1;3) 1.51+0.20
Table 2 Altered miRNAs in rat ARDS
miRNA Fold change g-value
ro-miR-346 244 <0.05
rmo-miR-341 231 <0.05
rmo-miR-344 2.09 <0.05
rno-miR-135b 2.04 <0.05
ro-miR-99a 1.88 <0.05
rmo-miR-349 1.83 <0.05
mmu-miR-380-5p 1.82 <0.05
ro-miR-19a 1.76 <0.05
rno-miR-128b 1.75 <0.05
rno-miR-30b 1.74 <0.05
rno-Let-7d* 1.69 <0.05
rmo-miR-30a-3p 1.66 <0.05
rmo-miR-18 1.65 <0.05
mo-miR-210 1.64 <0.05
rmo-miR-127 161 <0.05
ro-miR-333 1.59 <0.05
rmo-miR-207 1.59 <0.05
rmo-miR-129 1.55 <0.05
rmo-miR-337 1.51 <0.05
rmo-miR-215 1.51 <0.05
rno-Let-7f 0.59 <0.05
rmo-miR-24 0.58 <0.05
rmo-Let-7a 0.52 <0.05
ro-Let-7b 0.5 <0.05
rmo-Let-7¢ 048 <0.05
ro-miR-126 047 <0.05
ro-miR-26a 047 <0.05

A list of increased and decreased miRNAs in rat ARDS (n =4 animals)
compared to normal lung samples with a g value of < 0.05 (SAM) and a fold
change of >1.5.
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down-regulated. The down-regulated miRNAs included
miR-24, miR-26a, miR-126, and Let-7 family members.
The up-regulated miRNAs included miR-99a, miR-127,
miR-128b, miR-135b, miR-30a, and miR-30b. Several
selected miRNAs were validated using real-time PCR.
miR-99a and miR-30b were confirmed to be the up-
regulated miRNAs in ARDS, while miR-126 and miR-26a
were confirmed to be down-regulated miRNAs in ARDS
(Figure 2).

DNA microarray was performed to identify the altered
mRNAs in ARDS using an in-house printed DNA micro-
array containing 10,000 rat genes. The microarray data
were deposited to the GEO database: http://www.ncbi.
nlm.nih.gov/geo/, GSE57011. The expression of 37 genes
was significantly changed based on a q value of <0.05
(SAM test) and a fold change of>2 (Table 3). Among
them, eleven genes were up-regulated and twenty six genes
were down-regulated. Sod2 (Superoxide dismutase 2) and
Timpl (Metalloproteinase inhibitor 1) modulate lung
injury [26,27]. Ramp2 [Receptor (calcitonin) activity modi-
fying protein 2], Acaa2 (Acetyl-Coenzyme A acyltrans-
ferase 2), Mdhl (Malate dehydrogenase 1, NAD), and
Tspan8 (Tetraspanin 8) are enriched mRNAs in the lungs
and are involved in lung disease [28,29]. These mRNAs
were selected for validation by qRT-PCR. The results in
Figure 3 showed that Sod2 and Timp1l were confirmed to
be up-regulated in ARDS. Ramp2, Acaa2, Mdhl, and
Tspan8 were confirmed to be down-regulated in ARDS.

Functional annotation of the identified genes

Functional annotation of the identified genes was carried
out using David gene-GO term enrichment analysis and
functional annotation clustering. The DAVID functional
annotation clustering uses an algorithm to explore
relationships among the annotation terms via the degrees
of co-associated genes. The similar, redundant, and
heterogeneous annotation contents from the same or
different resources were clustered into annotation groups
due to their similar biological meaning. We used DAVID
default population (Rattus norvegicus) background in en-
richment calculation. The functional annotation clustering
was done with default parameters. Classification strin-
gency was set as medium. The raw p values were used in
functional annotation. The results in Table 4 showed that
the up-regulated genes were involved in two functional
clusters with an enrichment score of over 1.3. The results
in Table 5 showed the down-regulated genes were
involved in two functional clusters with an enrichment
score of over 1.3. A more detailed list of genes was
provided in Additional file 1.

More than 33% of the up-regulated genes were involved
in biological processes such as cellular homeostasis and
regulation of apoptosis. The genes involved in apoptosis
were Apc (Adenomatosis polyposis coli), Timpl, and
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Figure 2 Validation of miRNA microarray data by real-time PCR. Small RNA was extracted from control (CON) and ARDS rat lungs. The expression
of miRNAs relative to U6 RNA was determined by real-time PCR. The results were expressed as a ratio of ARDS to CON. Data are presented as means + S.D.
from 4 animals, each assay performed in duplicate. *p < 0.05, v.s. CON. Microarray: SAM test; Real-time PCR: t-test.
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Sod2. Interestingly, a large amount of down-regulated and
up-regulated genes encoded the proteins that were modi-
fied by a disulfide bond and glycosylation. Moreover, the
down-regulated genes were enriched in the functional
groups of acetylation and ion binding.

STRING is a web-based tool to explore GO annotation,
protein-protein interactions and KEGG pathway. STRING
GO enrichment is typically GO analysis including 3
annotations-biological process, cell compartment, and
molecular function. Table 6 listed GO enrichments of the
down-regulated genes in ARDS as identified by STRING
GO enrichment analysis. No GO enrichment was identi-
fied for the up-regulated genes in ARDS. Using STRING,
we also performed KEGG pathway enrichment analysis of
the altered mRNAs in ARDS (Table 7). Eight genes inclu-
ding Lct (lactase-phlorizin hydrolase)) Mdhl (alate de-
hydrogenase 1, NAD), Akrlbl(aldo-keto reductase family
1, member Bl1), Alad (delta-aminolevulinic acid dehydra-
tase), Ces3 (carboxylesterase 3), Aco2 (aconitate hydratase,
mitochondrial precursor), Prdx6 (peroxiredoxin-6), and
Acaa2 (acetyl-coenzyme A acyltransferase 2) were involved
in the metabolic pathways. STRING analysis of protein-
protein interactions revealed 11 interactions of the protein
products of altered mRNAs (Figure 4).

Correlation of expression profiles between miRNAs

and mRNAs

Systematic analysis on the interactions of miRNA and
mRNA using microarray data could give us information
on the role of miRNAs in ARDS. Having performed
miRNA and mRNA microarray profiling on the same
samples, we were able to analyze the correlation between
the identified altered miRNAs and mRNAs. We first
predicted the genes targeted by the altered miRNA in
ARDS using Targetscan (http://www.targetscan.org) and
miRanda (http://www.microrna.org). Then, we compared
the predicted miRNA targets with the differentially
expressed mRNAs. Table 8 listed the miRNA-mRNA pairs
with the inverse correlation of up-regulated miRNAs and
down-regulated mRNAs as well as the down-regulated
miRNAs and up-regulated mRNAs. Figure 5 showed the
graphic presentation of the pairs. miRanda predicted more
targets than Targetscan. The predicted miRNA binding
sites in the target mRNAs by both programs were in the
same location. However, miRanda predicted two rno-miR-
128b binding sites and TargetScan only predicted one in
the 3-UTR of Gabrbl. Among the 11 up-regulated
mRNAs, Ebfl (Early B-cell factor 1) was inversely corre-
lated to miR-24. Apc and Sod2 were inversely correlated
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Table 3 Changed mRNAs in rat ARDS

Gene Full name Fold g-value
change

Mt3 Metallothionein 3 4349 <0.05

S100a9 S100 calcium binding protein 6.81 <0.05
A9 (calgranulin B)

Prdx6 Peroxiredoxin-6 5.89 <0.05

TIMP1 Metalloproteinase inhibitor 1 5.79 <0.05

Ccl2 Chemokine (C-C motif) ligand 2 3.90 <0.05

Sod?2 Superoxide dismutase 2, 2.98 <0.05
mitochondrial

Len2 Lipocalin 2 259 <0.05

Ifrd1 Interferon-related developmental 2.16 <0.05
regulator 1

Apc Adenomatosis polyposis coli 202 <0.05

Ebf1 Early B-cell factor 1 2.00 <0.05

Mt2a metallothionein-2 and 2.00 <0.05
metallothionein-1 genes

Cyb5 Cytochrome b5 0.52 <0.05

120990 T cell receptor 051 <0.05

Serpinh1  Serine (or cysteine) proteinase inhibitor, 05 <0.05
clade H, member 1

S100a4 S100 calcium-binding protein A4 049 <0.05

Eif2ak1 Eukaryotic translation initiation factor 049 <0.05
2-alpha kinase 1

Fbin5 Fibulin 5 048 <0.05

Aco2 Aconitase 2, mitochondrial 048 <0.05

Akrib4 Aldo-keto reductase family 1, 047 <0.05
member B4 (aldose reductase)

Lct Lactase-phlorizinhydrolaselactase 047 <0.05
Phlorizin hydrolase

Slc25a11  Solute carrier family 25 (mitochondrial 047 <0.05
carrier; oxoglutarate carrier),
Member 11

Ramp2 Receptor (calcitonin) activity 047 <0.05
modifying protein 2

G8 G8 gene 046 <0.05

Acaa2 Acetyl-Coenzyme A acyltransferase 2 043 <0.05
(mitochondrial 3-oxoacyl-Coenzyme
A thiolase)

Gabrb1 Gamma-aminobutyric acid (GABA-A) 043 <0.05
receptor, subunit beta 1

M13801  Ig germline alpha H-chain C-region 042 <0.05
gene

Septin 5 Septin 5 04 <0.05

Mdh1 Malate dehydrogenase 1, NAD 0.39 <0.05
(soluble)

Psma4 Proteasome (prosome, macropain) 0.39 <0.05
subunit, alpha type 4

Alad Aminolevulinate, delta-, dehydratase 038 <0.05

Igfbp6 Insulin-like growth factor binding 037 <0.05
protein 6

Ces3 Carboxylesterase 3 0.35 <0.05
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Table 3 Changed mRNAs in rat ARDS (Continued)

U06230  protein S mRNA 0.31 <0.05

Fgfr4 Fibroblast growth factor receptor 0.27 <0.05
subtype 4 (FGFR4) mRNA

Lim2 Lens intrinsic membrane protein 2 0.24 <0.05

Tspan8 Tetraspanin 8 0.24 <0.05

Gnrh1 Progonadoliberin-1Gonadoliberin-1 0.08 <0.05

Prolactin release-inhibiting factor 1

A list of increased and decreased mRNAs in rat ARDS (n =4 animals) when
compared to normal lung samples (n =4 animals) with a q value of < 0.05
(SAM) and a fold change of > 2.

with miR-26a. Sod2 was inversely correlated with Let-7a, b,
¢, f. We also identified the inverse correlation of many up-
regulated miRNAs and down-regulated mRNAs. miR-346,
miR-135b, miR-30a/b, miR-344, and miR-18a had more
than one mRNA target. Gabrbl (Gamma-aminobutyric
acid (GABA-A) receptor, subunit beta 1), Sod2, Eif2akl
(Eukaryotic translation initiation factor 2-alpha kinase 1),
Fbln5 (Fibulin 5), and Tspan8 were targeted by multiple
miRNAs.

GO analysis was applied to the up- and down-regulated
genes that were inversely related to the altered miRNAs.
We found that cofactor and coenzyme metabolic
processes were the top GO categories of these mRNAs
(Figure 6).

Mapping miRNAs to signaling pathways

DIANA-mirPath is a web-based computational tool to
identify signaling pathways regulated by miRNAs [32].
The software compares each set of miRNA targets with
all known KEGG pathways to identify the number of
miRNA target genes in the pathways. ErbB, MAPK, and
WNT signaling pathways had high scores and were likely
to be controlled by the altered miRNAs in ARDS
(Table 9).

Discussion

ARDS is a respiratory disease linked to numerous factors
including cytokines, oxidants, and growth factors [33-37].
Functional genomics approaches provide novel insights
into understanding gene-environmental interactions
controlling this complex process. In our present study, we
aimed to identify genes that play critical roles in regulating
the pathogenesis of ARDS, and to determine how miRNAs
contribute to the regulation of these genes. Key to our
approach was microarray analyses to obtain mRNA and
miRNA expression profiles in ARDS.

The expression profiles of both miRNAs and mRNAs
allow us to determine whether there is a correlation bet-
ween the expression levels of miRNAs and target mRNAs.
We found that up-regulated miRNAs (miR-346, miR-
135b, miR-30ab, miR-344, miR-18a, miR-99a, miR-210,
miR-207, miR-18a, and miR-129) in ARDS were inversely



Huang et al. BMC Medical Genomics 2014, 7:46
http://www.biomedcentral.com/1755-8794/7/46

Page 6 of 15

20 - B Microarray

TIMP1 PCR 2 1

B Microarray PCR

MW Microarray PCR

71S0D2 *
* 15 -

5
¢ l
; l :
2 |
. o 5 )
0._- 0 1l —mim - 0 -
CON

CON ARDS CON ARDS

RAMP2

*

Ratio (ARDS/CON)

Ratio (ARDS/CON)
=
*

Ratio (ARDS/CON)

*
*
T

ARDS

W Microarray PCR

1 TSPAN8 = Microarray ' PCR

2 1 H Microarray  PCR TmDH1

ACAA2
T
*
* * *
* T . : | . ] i |
[] N a .
CON

- ‘ T
0 -
CON ARDS CON ARDS ARDS
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of mRNAs relative to 185 rRNA was determined by real-time PCR. The results were expressed as a ratio of ARDS to CON. Data are presented as means + SD
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Table 4 Functional annotation clustering of up-regulated genes

Annotation cluster 1 Enrichment score: 2.44

Category Term Count % P value
GOTERM_BP_FAT G0:0019725 ~ cellular homeostasis 5 56 < 0001
GOTERM_BP_FAT GO:0055066 ~ di-, tri-valent inorganic cation homeostasis 3 33 0.003
GOTERM_BP_FAT GO:0055080 ~ cation homeostasis 3 33 0.005
GOTERM_BP_FAT GO:0006873 ~ cellular ion homeostasis 3 33 0.010
GOTERM_BP_FAT GO:0055082 ~ cellular chemical homeostasis 3 33 0.010
GOTERM_BP_FAT GO:0050801 ~ ion homeostasis 3 33 0012
GOTERM_BP_FAT GO:0048878 ~ chemical homeostasis 3 33 0.018

Annotation cluster 2 Enrichment score: 1.82
GOTERM_BP_FAT GO:0043066 ~ negative regulation of apoptosis 3 33 0.008
GOTERM_BP_FAT GO:0043069 ~ negative regulation of programmed cell death 3 33 0.008
GOTERM_BP_FAT GO:0060548 ~ negative regulation of cell death 3 33 0.008
GOTERM_BP_FAT GO:0030097 ~ hemopoiesis 3 33 0.009
GOTERM_BP_FAT GO:0048534 ~ hemopoietic or lymphoid organ development 3 33 0011
GOTERM_BP_FAT GO:0002520 ~ immune system development 3 33 0.012
GOTERM_BP_FAT GO:0042981 ~ regulation of apoptosis 3 33 0.039
GOTERM_BP_FAT GO:0043067 ~ regulation of programmed cell death 3 33 0.040
GOTERM_BP_FAT GO:0010941 ~ regulation of cell death 3 33 0.041

The functional annotation of mRNA expression profile was conducted by DAVID software (http://david.abcc.ncifcrf.gov) [30,31]. Annotation Cluster: a group of
terms having similar biological functions. Enrichment Score: The geometric mean (in -log scale) of member's p-values in a corresponding annotation cluster is the
rank of their biological significance. The higher an enrichment score, the more enriched genes in that group. An enrichment score of >1.3 is used for a cluster to
be statistically significant. P-Value: The p-values associated with each annotation terms are the Fisher Exact Score shown in the regular chart report for the same
terms. Count: Genes involved in the terms. %: Percentage of involved genes over total up-regulated genes correlated to altered miRNAs.
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Table 5 Functional annotation clustering of down-regulated genes
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Annotation cluster 1

Enrichment score: 1.38

Category Term Count % P value
SP_PIR_KEYWORDS Disulfide bond 8 38 0014
SP_PIR_KEYWORDS Glycoprotein 9 43 0.034
UP_SEQ_FEATURE Signal peptide 8 38 0.035
SP_PIR_KEYWORDS Signal 8 38 0.037
UP_SEQ_FEATURE Glycosylationsite: N-linked (GIcNAc...) 8 38 0.072
UP_SEQ_FEATURE Disulfide bond 6 29 0.117

The functional annotation of mRNA expression profile was conducted by DAVID software (http://david.abcc.ncifcrf.gov) [30,31]. Annotation Cluster: A group of terms
having similar biological functions. Enrichment Score: The geometric mean (in -log scale) of member's p-values in a corresponding annotation cluster represents the rank
of their biological significance. An enrichment score of >1.3 is used for a cluster to be statistically significant. The higher an enrichment score, the more enriched genes
in that group. P-Value: The p-values associated with each annotation terms are the Fisher Exact Score shown in the regular chart report for the same terms. Count: Genes
involved in the terms. %: Percentage of involved genes over total down-regulated genes correlated to altered miRNAs.

correlated with the expression of their predicted targets
such as Gabrbl, Mdhl, Eif2akl, Fbln5, and Tspan8. miR-
346, miR-135b, miR-30ab, miR-344, and miR-18a were
inversely correlated with more than one mRNA targets.
Gabrbl, Sod2, Eif2akl, Fbln5, Tspan8 were targeted by

Table 6 GO enrichments of the down-regulated genes in ARDS using STRING analysis

several miRNAs. Moreover, we found that the down-
regulated miRNAs, miR-26a, miR-24, and miR-Let-7abcf
family, were inversely related to their predicted mRNA
targets, Sod2, and Ebfl. miRNA expression patterns have
previously been investigated in lung injury models. Let-7 is

Go enrichment GO_id Term Number of genes p-value Involved genes

Biological process  GO:0046501  Protoporphyrinogen IX metabolic process 2 1.15E-04 Eif2ak1, Alad
GO:0030198 Extracellular matrix organization 2 4.84E-03 Ramp2, Flbn5
GO:0043062 Extracellular structure organization 2 4.84E-03 Ramp2, Flbn5
GO:0044242 Cellular lipid catabolic process 2 5.73E-03 Acaa2, Ces3
GO:0046777 Protein autophosphorylation 2 8.67E-03 Eif2ak1, Fgfrd
GO:0030162 Regulation of proteolysis 2 1.25E-02 Serpinh1, Fgfr4
GO:0055114 Oxidation-reduction process 3 1.33E-02 Acaa2, Cyb5, Mdh1
GO:0070613 Regulation of protein processing 2 1.70E-02 Serpinh1, Fgfr4
GO:0045471 Response to ethanol 2 1.90E-02 Gnrh1, Let
GO:0016042 Lipid catabolic process 2 1.90E-02 Acaa2, Ces3
GO:0080134 Regulation of response to stress 3 2.22E-02 Eif2ak1, FbIn5, Tspan8
GO:0051186 Cofactor metabolic process 2 2.69E-02 Eif2ak1, Acaa2
GO:0080135  Regulation of cellular response to stress 2 3.49E-02 Eif2ak1, Fbin5
GO:0071363  Cellular response to growth factor stimulus 2 3.94E-02 Ramp2, Fgfr4
GO:0048583 Regulation of response to stimulus 5 4.70E-02  Ramp2, Flbn5, Eif2ak1, Fgfr4, Tspan8
GO:0070848 Response to growth factor 2 4.81E-02 Ramp2, Fgfr4

Molecular function  GO:0016836 Hydro-lyase activity 2 0.000481 Aco2, Alad
GO:0016835 Carbon-oxygen lyase activity 2 0.00106 Aco2, Alad
GO:0016829 Lyase activity 2 0.0102 Aco2, Alad
GO:0020037 Heme binding 2 0.0153 Eif2ak1, Cyb5
GO:0046906 Tetrapyrrole binding 2 00164 Eif2ak1, Cyb5
GO:0044822 Poly(A) RNA binding 4 0.0255 Serpinh1, S100a4, Acaa, Slc25a11
GO:0003723 RNA binding 4 0.0313 Serpinh1, S100a4, Acaa2, Slc25a11

Cellular component  GO:0005788 Endoplasmic reticulum lumen 2 2.38E-03 Ces3, serpineh 1
G0O:0044432 Endoplasmic reticulum part 3 3.15E-02 Ces3, serpineh 1, Cyb5
G0:0005739 Mitochondrion 4 3.94E-02 Aco2, Mdh1, Slc25a11, Acaa2

GO_id with a p value of <0.05 was selected.


http://david.abcc.ncifcrf.gov/

Huang et al. BMC Medical Genomics 2014, 7:46
http://www.biomedcentral.com/1755-8794/7/46

Table 7 Signaling pathways predicted to be regulated by
altered mRNAs in rat ARDS

Term Number of genes p-value

Glyoxylate and dicarboxylate metabolism 2 0.000868
Galactose metabolism 2 0.00172

Citrate cycle (TCA cycle) 2 0.00327
Pyruvate metabolism 2 0.00475
Metabolic pathways 8 0.00753

Analysis of KEGG pathway enrichment in the altered mRNAs in rat ARDS was
performed by STRING analysis. Pathways with a p value of < 0.05 were
selected.

altered in a mouse model of ventilator-induced lung injury
[15]. We also found that Let-7 family was down-
regulated in ARDS. miR-126, a regulator of angiogenic
signaling and vascular integrity, has been reported to be
involved in ARDS/ALI and VEGF is identified as a
target of miR-126 [13,14]. Moreover, miR-126 also plays
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a role in neoangiogenesis of adult tissues in response to
injury [38]. In the present study, we found that miR-126
was down-regulated in ARDS. However, we did not find
the correlation of miR-126 to the identified altered
mRNAs in ARDS.

The major aims of the present study were to identify
altered miRNAs and mRNAs in rat ARDS through micro-
array analyses, and to correlate the identified altered
miRNAs and mRNAs by computational prediction. One
limitation of the current study was that we did not further
validate the predicted miRNA-mRNA interactions. How-
ever, some of the predicted miRNA-mRNA interactions
from the present study can be found in the Tarbase/
mirRecords database, which documented experimentally
verified miRNA-mRNA pairs. For example, miR-26a-APC
pair was experimentally validated [39]. The second limita-
tion was that we did not answer whether these interactions
were biologically important in vivo. Since miRNA can
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Table 8 Inverse correlation of mRNAs and miRNAs
miRNA mRNA

Targetscan miRanda

Up-regulated miR-346 Tspan8 Tspan8 Down-regulated

Mdh1 Mdh1
FbIn5

miR-135b Acaa2
Ces3

Ramp2

Serpinh1

miR-99a Eif2ak1
miR-210 FbIn5
miR-19a Fbin5
miR-30ab  Gabrb1 Gabrb1
Mdh1

miR-128b  Gabrb1 Gabrb1
Tspan8 Tspan8
miR-207 Alad Fbin5

Slc25a11

miR-344 Aco2
Mdh1

Eif2ak1
miR-380 Aco2
miR-337 Eif2ak1
miR-18a Fbin5
Igfop6

miR-349  Serpinh1
miR-129 Aco2
Mdh1
Down-regulated miR-24 Ebf1 Up-regulated

miR-26a Apc Sod?2
Let-7abcf Sod2

Tspan8: Tetraspanin 8; Mdh1: Malate dehydrogenase; Fbin5: Fibulin 5; Acaa2:
Acetyl-Coenzyme A acyltransferase 2; Ces3: Carboxylesterase 3; Ramp2: Receptor
activity modifying protein 2; Serpinh1: Serine (or cysteine) proteinase inhibitor,
clade H, member 1; Eif2ak1: Eukaryotic translation initiation factor 2-alpha
kinase 1; Gabrb1: Gamma-aminobutyric acid (GABA-A) receptor, subunit beta 1;
Alad: Aminolevulinate, delta-, dehydratase; Slc25a11: Solute carrier family 25
(mitochondrial carrier; oxoglutarate carrier), Member 11; Aco2: Aconitase 2;
Igfbpé: Insulin-like growth factor binding protein 6; Ebf1: Early B-cell factor 1;
Apc: Adenomatosis polyposis coli; Sod2: Superoxide dismutase 2.

inhibit the protein translation without mRNA degra-
dation, the third limitation is that our current approach
can not identify these interactions between miRNAs and
proteins.

Gene ontology and functional annotation analyses facili-
tate interpreting the biological relevance of mRNA expres-
sion profile in ARDS. More than 50% of the up-regulated
genes in ARDS were involved in cellular homeostasis.
Cells are essentially factories which strictly maintain their
intracellular environment so that conditions remain
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optimal for performing tasks that take place inside the
cells. Chemical and ion homeostasis are important to the
cells. Thus, it is of interest to hypothesize that the alter-
ation of the genes involved in cellular homeostasis con-
tributes to the pathogenesis of ARDS. We also found that
more than 33% of the up-regulated genes in ARDS were
involved in the regulation of apoptosis. These genes in-
cluded Apc, Timpl, and Sod2. Apoptosis of epithelial and
endothelial cells has been observed in the lung of ARDS
patients [40]. Apoptosis mediators are also increased in
the BAL (bronchoalveolar lavage) fluid of ARDS patients
[41]. A delayed apoptosis of intra-alveolar neutrophils
with a concomitant increased apoptosis of alveolar epithe-
lium increases the severity of lung injury [41]. Moreover,
miRNAs are also involved in the regulation of apoptosis.
Up-regulation of miR-26a promotes apoptosis in rat neo-
natal cardiomyocytes via the caspase-3 pathway [42] while
down-regulation of miR-26a antagonizes apoptosis by tar-
geting MTDH and EZH2 in breast cancer [43]. Let-7 is
also a regulator of apoptosis in tumors [44]. Interestingly,
the down-regulated miRNAs, miR-26a and Let-7abcf fa-
mily in our ARDS model were inversely related to the
expression of Apc and Sod2 which were involved in regu-
lation of apoptosis.

Some of the identified down-regulated miRNAs in
ARDS are involved in pulmonary fibrosis [20,45] and lung
cancer [46], while the up-regulated miRNAs play critical
roles in lung development [12] and in the pathogenesis of
lung cancer [47-50]. Among these miRNAs, Let-7 is in-
volved in the airway inflammation by directly regulating
IL-13 expression [51]. miR-126 controls leukocyte infiltra-
tion into inflamed lungs by repressing ALCAM expression
[52]. In addition, miR-126 is down-regulated in cystic
fibrosis that is characterized by chronic airway inflamma-
tion. miR-126 controls TLR2/4 inflammatory signaling
pathways by modulating TOM1 expression in cystic fibro-
sis lung [45].

The cofactor and coenzyme metabolic processes were on
the top list of GO category of mRNAs targeted by altered
miRNAs. The changes in cofactor metabolism have been
reported in ARDS. Hypoxanthine is a key cofactor that
accumulates during hypoxia, leading to the production of
O," and H,0,, and is significantly elevated in the plasma
from ARDS patients [53]. C5a-dependent chemotactic ac-
tivity is also increased in BAL fluid of ARDS patients [54].
Von Willebrand factor antigen (vVWF:Ag) in the vascular
endothelial cells acts as a ristocetin cofactor and is related
to the development of ARDS [55,56]. Leptin, a potential
cofactor involved in lung fibroproliferative responses is
increased in the BAL fluid of ARDS patients. The elevated
levels of leptinin BAL fluid are associated with a higher
mortality [57]. These findings suggest that miRNAs may
play roles in the pathogenesis of ARDS by targeting genes
that regulate cofactor and coenzyme metabolism.
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Figure 5 Interaction network of miRNAs and mRNAs in ARDS. The miRNA-mRNA interacting network was constructed using the altered
mRNAs and miRNAs in ARDS identified in our microarray analyses. The mRNAs were the predicted targets of miRNAs and inversely correlated with
miRNAs. Red: up-regulated miRNAs; Green: down-regulated miRNAs; Pink: up-regulated mRNAs; Light green: down-regulated mRNAs.

Extracellular signals cause the alterations in gene ex-
pression and metabolism in cells via signal transduction.
Abnormal activation or inhibition of multiple signaling
pathways often results in lung diseases. WNT/B-catenin
signaling pathway plays an important role in lung injury
and repair [58]. We mapped the altered miRNAs to signal-
ing pathways by software DIANA-mirPath. ErbB, MAPK,
and WNT signaling pathways were found to be controlled
by these altered miRNAs in ARDS. Interestingly, miR-26a
was inversely correlated with the expression of Apc. The
adenomatous polyposis coli tumor-suppressor protein,
APC encoded by Apc gene is a negative regulator of WNT
signaling.

Conclusion

In the present study, using miRNA and mRNA microarray
analyses, we systematically examined the expression of
mRNAs and miRNAs in ARDS, and correlated their
expression. This is the first report to integrate miRNA
expression data with mRNA expression data in ARDS.

The identified miRNAs and mRNAs may be critical in the
pathogenesis of ARDS.

Methods

Rat model of ARDS

Adult male Sprague Dawley rats (250-300 gms) were
used for this study. All the procedures were approved by
Institutional Animal Care and Use Committee at the
Oklahoma State University. Rat model of ARDS was
induced by saline lavage and mechanical ventilation
[25,59] (Figure 7). In brief, rats were anesthetized with
intraperitoneal injection of ketamine [80 mg/kg body
wight (BW)] and xylazine (10 mg/kg BW). The animals
were then placed on a heated water pad maintained at
37°C for the entire length of the procedure. A tracheo-
tomy was performed. A blunt canula was inserted and
secured. The animals were ventilated with 100% oxygen
at a respiratory rate of 30 breaths/min, a Vt of 8 ml/kg
BW, an inspiration: expiration ratio of 1:2, and a PEEP of
3 cm H,O. An intramuscular injection of pancuronium
bromide (1 ml/kg, BW) was administered for muscle
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Figure 6 Identification of functional categories of mRNAs targeted by altered miRNAs in rat ARDS. GO analysis was performed on mRNAs
which were identified by Targetscan or miRanda, and inversely correlated with miRNAs. Only categories with a p-value less than 0.05 were included.
The negative log2 of the p-value was plotted on the Y-axis.

relaxation and preventing spontaneous breathing. After
15 min ventilation, Vt was increased to 16 ml/kg and
PEEP to 8 cm H,O. The ventilation was continued for an
additional 15 min. The lungs were then lavaged with pre-
warmed saline (1 ml/30 g BW) for 10 times to deplete
lung surfactant and ventilated for additional 3.5 hours.
Anesthesia and muscle relaxation were maintained by
intraperitoneal administration of ketamine/xylazine, and
pancuronium bromide, respectively, at a half of the initial
dose every 45 min. At the end of ventilation, the rats were
sacrificed by severing the descending aorta. The controls
were non-lavaged and non-ventilated rats, which were
maintained at room air. To fix the lung, three ml of para-
formaldehyde was gently instilled into the left lungs. The
instillate sufficiently inflated the lungs. The left bronchus
was tied immediately and the left lung en bloc was
immersed in the fixative for at least 24 hrs. The procedure
resulted in uniform fixation without any artifacts. The
right lung was removed for RNA analysis.

Histopathology

Paraffin-embedded left lung specimens were sectioned,
placed on glass slides and stained with hematoxylin and
eosin for examination by light microscopy. The histo-
pathological lesions were scored by a board-certified vete-
rinary pathologist in a blinded fashion. The lungs were

evaluated for the characteristic histopathological changes
of ARDS [25]. In each specimen, alveolar septal necrosis,
hyaline membrane formation, intravascular (margination)
and intraalveolar (infiltration) accumulation of neutrophils
and interstitial (perivascular) and intraalveolar edema
were graded according to the distribution and severity of
each of the changes. The grades were assigned as follows:
0 =normal; 1=occasional fields with minimal changes;
2 = occasional fields with changes (mild); 3 =many but
not all fields with changes (moderate); 4 = changes in all
fields (severe).

RNA isolation

Small RNAs were isolated from 4 controls and 4 ARDS
rat lungs (200 mg) using the mirVana™ microRNA isola-
tion kit (Ambion, Austin, TX) exactly as per the instruc-
tions of the manufacturer. Total RNAs were isolated
from 200 mg of the same lungs used for small RNA
isolation by RNA isolation Kit (Ambion, Austin, TX)
exactly as per the instructions of the manufacturer. RNA
quality and quantity were assessed with agarose gel electro-
phoresis, A260/A280 ratio and A260/A230 ratio with spec-
trophotometer (NanoDrop Technologies, Inc, Rockland,
DE). The A260/A280 ratios and A260/A230 ratios for
all RNA preparations were greater than 1.9 and 2.0,
respectively.
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Table 9 Signaling pathways predicted to be regulated by
altered miRNAs in ARDS

Pathway Target Score
number

Axon guidance 57 31.92
ErbB signaling pathway 37 19.04
MAPK signaling pathway 80 17.12
Focal adhesion 64 16.73
Regulation of actin cytoskeleton 67 1537
Colorectal cancer 34 14.74
Chronic myeloid leukemia 31 14.18
Wnt signaling pathway 48 12.55
Glycan structures - biosynthesis 1 40 12.39
Glioma 26 1237
Pancreatic cancer 28 11.05
Renal cell carcinoma 26 949
TGF-beta signaling pathway 31 933
Small cell lung cancer 30 8.79
Long-term potentiation 24 8.68
Oxidative phosphorylation 6 834
Prostate cancer 30 8.22
Circadian rhythm 8 817
Arachidonic acid metabolism 1 792
mTOR signaling pathway 20 7.78
Antigen processing and presentation 3 7.3
Adherens junction 25 7.01
Acute myeloid leukemia 21 6.96
T cell receptor signaling pathway 29 6.00
Melanoma 23 572
Tryptophan metabolism 1 5.68
Endometrial cancer 18 531
Glycosphingolipid biosynthesis - neo- 8 501
lactoseries

Type Il diabetes mellitus 16 482
Complement and coagulation cascades 4 478
GnRH signaling pathway 28 4.76
Insulin signaling pathway 37 444
Melanogenesis 28 440
Non-small cell lung cancer 17 4.25

Mapping all the changed miRNAs in ARDS to signaling pathways was performed
by DIANA-mirPath software (http://diana.cslab.ece.ntua.gr/pathways). p < 0.01

was the statistical cutoff for DIANA-miRpath analysis. Target number: The number
of miRNA target genes in a given pathway. Score: Enrichment statistical score, the
negative natural logarithm of the P-value (~In P).

miRNA microarray

miRNA microarray analyses were performed on an in-
house platform developed in our laboratory as previously
described [60]. The labeling and hybridization of miRNA
were performed with the 3 DNA array 900 miRNA direct

Page 12 of 15

kit (Genisphere, Hatfield, PA) according to the manufac-
turer's protocol. Poly (A) tails were added to the enriched
miRNA (150 ng) by poly (A) polymerase. The Fluor 3 or
Fluor 5 capture sequences were then ligated to the poly
(A)-tailed miRNA. Tagged miRNAs were purified with the
MinElute PCR Purification Kit (Qiagen, Valencia, CA).
Small RNA samples from control and ARDS lungs were
separately tagged with Fluor 3 or Fluor 5 capture
sequence. After purification, equal amounts of small RNA
from all the samples tagged with the same capture se-
quence were pooled together as a common reference. To
eliminate dye bias, dye-swap was performed. The tagged
miRNAs were hybridized to a miRNA microarray slide
at 52°C overnight. The array was washed in pre-warmed
(52°C) 2 x SSC, 0.2% SDS for 15 min, 2 x SSC for 12 min,
and 0.2x SSC for 12 min at room temperature. After
washing, the Alexa Fluor 3 or 5 capture reagents were hy-
bridized to the tagged miRNAs at 62°C for 4 h. The slides
were then washed and dried. The hybridized slide was
scanned with ScanArray Express (PerkinElmer Life and
Analytical Sciences, Boston, MA), and the images were
analyzed with GenePix 5.0 pro (Axon Instruments, Inc.
Union City, CA). The signal from each spot was norma-
lized to the average signal of the whole block. The highest
and lowest signals from the 6 identical probes in the same
block were excluded from the data analysis. The geometric
average of the remaining 4 signals was considered to be
the signal of that particular miRNA. The ratio of sample
signal to reference signal was log2 transformed. A quality
test was performed with Realspot software developed in
our laboratory [61]. The miRNAs with an average quality
index of <1 were filtered. The miRNAs that passed the
quality test were analyzed with SAM (Significant Analysis
of Microarray) to identify miRNAs that were significantly
changed in ARDS (q<0.05) [62]. A fold change of 1.5
rather than 2 was used as a cut-off value in order to iden-
tify more miRNAs.

mRNA microarray

To identify the altered mRNAs in ARDS, we performed
mRNA profiling using an in-house printed DNA micro-
array including 10,000 rat genes [63]. We designed and
printed three blocks in each slide so that we can analyze
three biological replicates in the same microarray slide. The
two-step microarray hybridization was carried out with the
3DNA 50 Expression kit (Genisphere Inc., Hatfield, PA).
The hybridized slides were scanned with ScanArray Ex-
press. Raw data were extracted from the DNA microarray
hybridization images with GenePix Pro 5. Spot image
visualization, spot quality evaluation, data normalization,
and SAM test for the identification of the differentially
expressed genes were performed as previously described
using the RealSpot software [61]. The differentially ex-
pressed genes between control and ARDS samples were
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Figure 7 Experimental procedures for a rat model of ARDS.
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identified based on both fluorescence intensities and nor-
malized log2 ratios. Low quality spots with a mean quality
index of less than 1.0 were filtered. The genes that passed
the quality test were statistically analyzed by SAM test.
The genes with a q value of < 0.05 and a fold change of >2
were considered to be the differentially expressed genes.

miRNA quantitative real-time PCR

Quantitative real-time PCR (qRT-PCR) was used to ver-
ify the expression changes of miRNA in ARDS using
SYBR Green I [64]. The primers were listed in Table 10.
Total RNAs were treated with DNase and purified by
Phenol/chloroform extraction and ethanol precipitation.
The treated RNAs (2 pg) were poly A-tailed and purified
by Phenol/chloroform extraction and ethanol precipita-
tion. Poly A-tailed RNAs were reverse-transcribed into
c¢DNA with polyT adapter as the primer. The thermal
conditions for real-time PCR were 95°C for 10 min,
followed by 40 cycles of 95°C for 15 sec, 60°C for 30 sec,
and 65°C for 30 sec. Data were analyzed using relative
quantification based on the comparative Ct method. U6
RNA was used as the endogenous reference.

mRNA quantitative real-time PCR

qRT-PCR was used to verify the expression change of
mRNAs in ARDS. The primers are listed in Table 11.
Total RNA (1 ug) was reverse-transcribed into cDNA with
dT17, random hexamer primer, and MMLYV reverse tran-
scriptase. Real-time PCR was run in duplicate at 95°C for
10 min, followed by 40 cycles of 95°C for 15 sec, 60°C for
30 sec, and 65°C for 30 sec. The relative expression of

Table 10 The primers used for miRNA qPCR
ro-miR-30b-FW  TGTAAACATCCTACACTCAGCTA
mo-miR-99a-FW  AACCCGTAGATCCGATCTTGTG
mo-miR-126-FW  TCGTACCGTGAGTAATAATGCGA
rmo-miR-26a-FW  TTCAAGTAATCCAGGATAGGCTA

U6 RNA-FW GCAAGGATGACACGCAAATTC
General-RE GCGAGCACAGAATTAATACGAC

GCGAGCACAGAATTAATACGACTCACTATAGG
VN

PolyT adapter

genes was determined using the comparative Ct method
and 18S RNA as a reference.

Bioinformatics analysis

Functional annotation of mRNA expression profile was
conducted by DAVID (The Database for Annotation,
Visualization and Integrated Discovery) (http://david.abcc.
ncifcrf.gov). DAVID provides a tool for annotating bio-
logical meaning for input genes. KEGG pathway enrich-
ment in the altered mRNAs was performed by STIRNG
analysis (http://string-db.org/). The interactions of the
proteins encoded by altered mRNAs were also determined
by STRING. STRING is a web-based tool to investigate
protein-protein interactions, KEGG pathway, and GO
annotation. Targetscan (http://www.targetscan.org) and
miRanda (http://www.microrna.org) were used to predict
the mRNAs targeted by the altered miRNAs in ARDS.
TargetScan predicts mRNA targets of miRNAs based on
conserved and unconserved 8 mer and 7 mer sites in the
seed region of 3-UTR of mRNA. miRanda predicts the
miRNA binding sites on mRNAs based on a regression
model which uses sequence and contextual features of the
predicted miRNA-mRNA pair. All the changed miRNAs
were mapped to signaling pathways by DIANA-mirPath
software (http://diana.cslab.ece.ntua.gr/pathways). DIANA-
mirPath utilizes miRNA targets that are predicted with

Table 11 The primers used for mRNA qPCR

rTIMP1-up CAGCAAAAGGCCTTCGTAAAGA
rTIMP1-down GATCTGATCTGTCCACAAGCAATG
rSOD2-up GCCTGCACTGAAGTTCAATGG
rSOD2-down CCCAAAGTCACGCTTGATAGC
rTSPANS-down GCAGTTGGGTCCATCATCATG
rTSPANS-up GGCTACTTGCAGAAGCAGAATCA
rACAA2-down ACGTGAGTGGAGGTGCCATAG
rACAA2-up AAGCTGATCCCACTGCGTATTT
rMDH1-down CTACTGAAAGCCAACGTGAAGATC
rMDH1-up AGGCCGTCAGGCAGTTTGTAT
rRAMP2-down TCATCCTACTGAGGACAGCCTTCT
rRAMP2-up CAGTTGCACCAGTCCTTGACA
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high accuracy and/or experimentally verified targets from
TarBase, and perform hierarchical clustering of miRNAs
and pathways based on their interaction levels.
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