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Identification of a prognostic signature for
old-age mortality by integrating genome-wide
transcriptomic data with the conventional
predictors: the Vitality 90+ Study
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Abstract

Background: Prediction models for old-age mortality have generally relied upon conventional markers such as
plasma-based factors and biophysiological characteristics. However, it is unknown whether the existing markers
are able to provide the most relevant information in terms of old-age survival or whether predictions could be
improved through the integration of whole-genome expression profiles.

Methods: We assessed the predictive abilities of survival models containing only conventional markers, only gene
expression data or both types of data together in a Vitality 90+ study cohort consisting of n = 151 nonagenarians.
The all-cause death rate was 32.5% (49 of 151 individuals), and the median follow-up time was 2.55 years.

Results: Three different feature selection models, the penalized Lasso and Ridge regressions and the C-index
boosting algorithm, were used to test the genomic data. The Ridge regression model incorporating both the
conventional markers and transcripts outperformed the other models. The multivariate Cox regression model was
used to adjust for the conventional mortality prediction markers, i.e., the body mass index, frailty index and cell-free
DNA level, revealing that 331 transcripts were independently associated with survival. The final mortality-predicting
transcriptomic signature derived from the Ridge regression model was mapped to a network that identified nuclear
factor kappa beta (NF-κB) as a central node.
Conclusions: Together with the loss of physiological reserves, the transcriptomic predictors centered around NF-κB
underscored the role of immunoinflammatory signaling, the control of the DNA damage response and cell cycle,
and mitochondrial functions as the key determinants of old-age mortality.
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Background
Human longevity has proven to be a complex trait, and
the factors enabling survival to old age are diverse. A
great deal of variation also exists in the state of health in
which old age is attained; some individuals age with
good cognitive and physical health, whereas others suf-
fer from multimorbidity and disabilities in daily func-
tioning. Nevertheless, a variety of biomarkers, such as
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immunoinflammatory factors, endocrine mediators
and indicators of functional capabilities and frailty,
have been reproducibly demonstrated to be predictive
of old-age survival in different populations [1-3]. In
very old individuals, an elevated low-grade inflamma-
tory state (inflammaging), which is a manifestation of
immune aging, can be particularly useful for identify-
ing those individuals at the greatest risk of mortality
[1,4]. Indeed, elevated levels of conventional circulat-
ing inflammatory markers, such as interleukin 1 recep-
tor antagonist (IL-1ra), IL-6, C-reactive protein (CRP)
and tumor necrosis factor alpha (TNF-α), are among
the factors that have been reported to be predictive of
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old-age mortality [5,6]. We have also recently identified a
novel biomarker, circulating cell-free DNA, which in
addition to reflecting the rate of systemic inflammation and
tissue degeneration, predicts all-cause mortality in elderly
individuals, independent of common risk factors, such as
cardiovascular disease, dementia and diabetes [7]. Addition-
ally, inflammaging has been regarded as a driver of the
archetypal preconditions of old-age mortality, specifically
neurodegeneration, muscle wasting and frailty [reviewed in
[1,8]]. These observations indicate the central roles of
the immune system and inflammatory functions in late-life
survival.
However, only certain immunoinflammatory functions

can be captured by assessing circulating inflammatory
markers and determining the numbers of distinct leukocyte
subsets. It is also unclear whether these parameters yield
complete pictures of the biological processes that are cru-
cial in old-age mortality. Indeed, the predictions of out-
comes in patients with certain types of cancer have recently
been shown to benefit from the incorporation of gene ex-
pression profiles into traditional clinical cancer risk scores
[9,10]. In other potentially fatal conditions, such as stroke,
the use of blood-based gene expression data in combin-
ation with other disease-associated measurements has
allowed for valid classifications for the disease etiology [11].
However, the value of combining gene expression micro-
array data with traditional mortality predictors has not been
evaluated in association with age-associated mortality. Like-
wise, it is largely unknown whether the changes in the gene
expression patterns reported for a plethora of age-regulated
transcripts [12-14] are also related to late-life mortality.
To address these issues, we sought to systematically

determine the predictive performances of a wide array of
conventional markers, whole-genome transcriptomic
data and the combination of these data with regard to
all-cause mortality. We observed that the Ridge regres-
sion model, containing the body mass index (BMI) and
frailty index (conventional predictors) together with nine
transcripts related to immunoinflammatory processes, cell
cycle control and mitochondrial functions yielded the best-
performing final signature model in terms of discriminative
power and goodness-of-fit. The network analysis of the
mortality-associated transcripts revealed that their actions
were largely mediated through nuclear factor kappa beta
(NF-κB) signaling. Thus, in addition to demonstrating the
usefulness of combining transcriptomic data with conven-
tional markers in the assessment of late-life survival, our
results provide novel insights into the transcriptomic land-
scape preceding all-cause mortality in old age.

Methods
Study population
The study population consisted of n = 151 nonagenarians
(n = 106 women and n = 45 men) participating in the
Vitality 90+ Study, which is an ongoing study of individ-
uals aged 90 years and older who reside in the city of
Tampere, Finland. The individuals in the current study
population were born in 1920 and were recruited and
characterized as in the previous Vitality 90+ study cohort
[5,7]. A home-visiting trained medical student performed
the blood tests, physiological measurements, interviews and
performance tests. Written informed consent was obtained
from each participant and the study protocol followed the
guidelines of the Declaration of Helsinki. The all-cause
mortality data (median follow-up time of 2.55 years) includ-
ing the dates of death, were collected from the Population
Register Center. The mortality rate during the follow-
up was 32.5%; of the151 individuals, 49 died and 102
survived the follow-up period. There were no losses to
follow-up. The study protocol was approved by the
Ethics Committee of the Pirkanmaa Hospital District and
the Ethics Committee of the Tampere Health Center.

RNA extraction and whole-genome transcriptomic analysis
The protocols for the leukocyte separation, RNA isola-
tion and microarray analysis have been previously de-
scribed [13,15]. Briefly, peripheral blood mononuclear
cells (PBMCs) were extracted using Ficoll-Paque density
gradients (Ficoll-Paque™ Premium, GE Healthcare Bio-
Sciences AB, Uppsala, Sweden), after which the cells
were stored at −70°C in RNAlater solution (Ambion
Inc., Austin, TX, USA). Following RNA extraction
(miRNeasy Mini Kit, Qiagen, Hilden, Germany) and
amplification (Illumina TotalPrep RNA amplification
Kit, Ambion Inc., Austin, TX, USA), the RNA was hy-
bridized to a HumanHT-12 v4 Expression BeadChip
(Cat no. BD-103-0204; Illumina, San Diego, CA, USA)
and the chips were scanned using Beadscan (Illumina
Inc., CA, USA). The qualities of the biotinylated com-
plementary RNA products were assessed with the
Agilent 2100 Bioanalyzer (Agilent Technologies Inc.,
Santa Clara, CA, USA). The validation of the micro-
array expression data through qPCR was performed as
previously described [13]. The microarray data are
available in the GEO database (http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE40366.
The preprocessing of the microarray data was per-

formed using the Chipster v2.8 software (http://chipster.
csc.fi/) [16]. A box plot and density plots were con-
structed and principal component analyses were per-
formed to assess the quality of the data. Using the lumi
pipeline, the background was corrected with the bgAd-
just.affy package, and the data were quantile-normalized
and log2-transformed to achieve normality. Background
noise and poor-quality data were filtered out based on
expression levels (fluorescence intensities); the probes
showing expression values of <5 or >100 in more than 5
(3.3%) samples per transcript were excluded from the
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analysis. Ingenuity Pathway Analysis (IPA, Ingenuity
Systems, Redwood City, CA, US) was used to generate
the networks and the statistically significant canonical
pathways to which the identified mortality-associated
transcripts were mapped. The IPA network generation
algorithm creates networks by combining molecules
(transcripts) based on the maximization of their specific
connectivity, which is assessed as their interconnected-
ness relative to all molecules they are connected to in
the Ingenuity Knowledge Base. The networks are ranked
and scored based on the number of the Ingenuity Know-
ledge Base Network Eligible molecules they contain. In
the network images, direct molecular relationships are
displayed with continuous lines and indirect relation-
ships with dashed lines. The significance of the associ-
ation between the dataset and the canonical pathway is
measured by IPA in two ways: i) based on the ratio of
the number of molecules from the dataset that map to
the pathway divided by the total number of molecules in
the given pathway and ii) thorough the calculation of a
Benjamini-Hochberg (B-H)-corrected p-value for mul-
tiple testing, which determines the probability that the
association between the transcripts in the dataset and
the canonical pathway is explained by chance alone. B-H-
corrected p-values <0.05 (corresponding to 1.3 on a -log-
scale) were considered to be statistically significant.

Biochemical measurements and flow cytometry
The methods used to measure the plasma cf-DNA
levels, unmethylated cf-DNA levels, Alu repeat cf-DNA
plasma mitochondrial copy numbers, and CRP, IL-6, and
IL-10 levels have been previously described [15]. The
techniques for the determination of the plasma levels
of IL-1β, IL-7, cortisol, dehydroepiandrosterone sulfate
(DHEAS), indoleamine 2,3-dioxygenase (IDO) activity and
anti-Epstein Barr virus (EBV) and anti-cytomegalovirus
(CMV) antibody titers are described in the Additional
file 1. Immunosenescence was assessed as the propor-
tions of CD4 + CD28- cells and CD8 + CD28- cells and
the ratio of CD4+ and CD8+ cells. The flow cytometric
analysis used for the determination of immune cell
proportions has been described in detail elsewhere
[17]. Briefly, PBMCs were labeled with FITC-CD14,
PerCP-Cy5.5-CD3, APC-CD28 (eBioscience, San Diego,
CA, USA), PE-Cy™7-CD4 and APC-Cy™7-CD8 (BD
Biosciences, Franklin Lakes, NJ, USA). The results
were analyzed using the BD FACS Diva software, ver-
sion 6.1.3 (BD Biosciences, Franklin Lakes, NJ, USA).

Assessments of physiological characteristics, functional
performance and frailty
The techniques used to assess the anthropometric char-
acteristics and functional performance, i.e., the Barthel
index, handgrip and Mini-Mental State Examination
(MMSE), have been previously described [5,18]. The ability
to perform the chair-rise test (yes/no) was assessed as the
ability to stand up once from a straight-backed, regular-
height chair without the use of the arms, whereas the ability
to perform the chair-stand test (yes/no) was assessed as the
ability to stand up and sit down five consecutive times from
a straight-backed, regular-height chair. The method for
determining the frailty score, which was based on cri-
teria outlined by Fried et al. [3], has been described
elsewhere [15]. The frailty index for each individual
was assigned based on the frailty score as follows:
0 points = non-frail, 1–2 points = pre-frail, and 3–5
points = frail. Blood pressure was measured in a sitting
position using OMRON M4 Automatic Sphygmoman-
ometer. The mean of two consecutive measurements
was considered to be the final value.
Statistical analyses
The characteristics of the study population are presented
in Table 1. Each parameter presented in Table 1 was
tested for its association with mortality through a uni-
variate Cox regression analysis. A multivariate Cox re-
gression model was fitted for all significant univariate
predictors in Table 2 (left side) using stepwise selection
to eliminate non-significant variables at the p = 0.05
level. The conventional variables predicting mortality in
the Cox multivariate model were BMI, the frailty index
and the cf-DNA level (Table 2, right side). An outline of
the assessment procedure for the mortality-predicting
signature is presented in Figure 1.
For high-dimensional predictors, such as whole-genome

transcriptomic data, the traditional Cox regression model
cannot be directly applied. As a general rule of thumb, the
Cox model should be used only when there are a mini-
mum of 10 events per predictor variable (EPV), or at least
5–9 EPV under certain circumstances [19]. Thus, we first
used the Cox univariate selection method to test the
mortality- associations of each of the 8,893 transcripts that
passed the raw data preprocessing procedure. Statistical
significance was set at p < 0.05; all transcripts passing this
level were subjected to further modeling. Individual as-
sessments of the transcripts revealed that 478 were signifi-
cantly associated with survival. After individually adjusting
these 478 transcripts for the conventional predictors
(BMI, frailty index and cf-DNA level) in the multivariate
Cox model, 331 transcripts remained significantly associ-
ated with mortality (p < 0.05). We then performed dimen-
sion reduction and feature selection using the Ridge and
Lasso penalized regression models and the C-index boost-
ing algorithm; all the significant 331 transcripts were in-
cluded in the models without adjusting for multiple
testing (please see the next paragraph for the model
characteristics).



Table 1 Characteristics of the study population

Non-survivors Survivors

Variable Mean/Median SEM/IQR/% Mean/Median SEM/IQR/%

Women (n/%) 36 73.5 70 68.6

Age (months) 1079.7 0.52 1079.9 0.32

Systolic blood pressure (mmHg) 141 3.75 150 2.92

Diastolic blood pressure (mmHg)* 70.5 14.5 74.5 19.0

Weight (kg) 63.3 1.96 70.0 1.32

BMI (kg/m2) 24.8 0.67 27.1 0.46

Waist circumference (cm) 89.4 1.93 94.0 1.25

Hip circumference (cm)* 98.5 11.0 102 11.5

MMSE* 24.0 7.0 26.0 4.0

Barthel index* 95.0 20.0 97.5 5.0

Handgrip (kg)* 18.0 10.5 20.0 6.5

Able to perform chair-rise test (n = yes/%) 29 63.0 82 80.4

Able to perform chair-stand test (n = yes/%) 32 72.7 87 86.1

Frailty index (n/%)

Non-frail 3 6.1 35 34.3

Pre-frail 32 65.3 52 51.0

Frail 14 28.6 15 14.7

CRP level (ng/ml)* 2.2 7.5 2.0 3.2

IL-1β level (pg/ml)* 14.4 27.4 20.9 33.5

IL-6 level (pg/ml)* 4.9 3.1 3.8 3.9

IL-7 level (pg/ml)* 8.0 4.5 7.5 5.4

IL-10 level (pg/ml)* 1.56 1.23 1.52 1.62

cf-DNA level (μg/ml)* 0.92 0.21 0.87 0.17

Unmethylated cf-DNA level (μg/ml)* 0.73 0.20 0.67 0.16

Plasma mtDNA (copy number)* 4.27E8 2.68E8 3.64E8 2.32E8

Alu repeat cf-DNA (GE)* 80.2 62.7 66.5 38.3

DHEAS (μg/ml)* 0.25 0.48 0.24 0.29

Cortisol (ng/ml)* 133 55.9 125 60.9

IDO activity (Kyn/Trp)* 52.7 23.3 50.8 23.2

Anti-CMV antibody titer 19200 1145 19141 830

Anti-EBV antibody titer* 410 310 385 380

CD3+ cells (%)*a 60.9 21.5 57.0 13.8

CD4+ cells (%)b 62.3 2.38 63.6 1.42

CD8+ cells (%)b 31.0 2.21 29.2 1.33

CD4+/CD8+ cells (ratio)* 2.29 2.40 2.29 2.38

CD4+CD28- cells (%)*c 11.0 17.0 10.0 12.0

CD8+CD28- cells (%)*d 65.2 29.4 69.1 23.7

CD14+ cells (%)*a 9.5 8.6 9.5 6.4

*median value and IQR presented.
apercentage of live-gated cells, bpercentage of total T lymphocytes (CD3+ cells),
cpercentage of CD4+ cells, dpercentage of CD8+ cells.
Abbreviations: BMI body mass index, CD cluster of differentiation, CMV cytomegalovirus, CRP C-reactive protein, cf-DNA cell-free DNA, DHEAS dehydroepiandrosterone
sulphate, EBV Epstein-Barr virus, GE genomic equivalent, IDO indoleamine 2,3-dioxygenase, IL interleukin, Kyn kynurenine, MMSE Mini-Mental State Examination,
mtDNA mitochondrial DNA, Trp tryptophan.
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Table 2 Mortality-predicting variables

Univariate Multivariate

HR (95% CI) p HR (95% CI) p

Systolic blood pressure 0.99 (0.98-1.00) 0.039

Diastolic blood pressure 0.97 (0.95-1.00) 0.031

Weight 0.97 (0.94-0.99) 0.003

BMI 0.90 (0.84-0.97) 0.004 0.91 (0.85-0.97) 0.007

Hip circumference 0.95 (0.92-0.99) 0.010

MMSE 0.91 (0.87-0.95) <0.001

Barthel index 0.97 (0.96-0.99) <0.001

Handgrip 0.95 (0.91-0.99) 0.010

Able to perform chair-rise test (ref. = no) 0.41 (0.23-0.73) 0.002

Able to perform chair-stand test (ref. = no) 0.39 (0.22-0.71) 0.002

cf-DNA level 5.17 (1.64-16.4) 0.005 3.82 (1.18-12.3) 0.025

Unmethylated cf-DNA level 5.28 (1.62-17.2) 0.006

Frailty index (ref. = non-frail)

Pre-frail 5.90 (1.80-19.3) 0.003 5.35 (1.63-17.6) 0.006

Frail 8.46 (2.43-29.5) 0.001 6.29 (1.77-22.4) 0.005

Abbreviations: BMI body mass index, cf-DNA cell-free DNA, CI confidence interval, HR hazard ratio, MMSE Mini-Mental State Examination.
The variables predicting mortality in the Cox univariate assessment are presented on the left side of the table and the variables remaining as independent
predictors in the stepwise Cox multivariate model are presented on the right side of the table.
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Using the 331 mortality-associated transcripts, we
proceeded to test and utilize three different dimension
reduction methods for feature selection. The Ridge re-
gression model [20] shrinks the regression coefficients
by imposing penalties on their squared values. Penalized
maximum likelihood estimation in Cox regression with
the Ridge penalty was introduced by Verweij and van
Houwelingen [21], whereas Van Houwelingen et al. [22]
Figure 1 Outline of the assessment procedure for the mortality-predi
proposed the use of the Cox model with a quadratic
penalty to predict survival time based on transcriptomic
data. The least absolute shrinkage and selection operator
(Lasso) was introduced by Tibshirani [23]. Lasso shrinks
regression coefficients toward zero by penalizing the
sizes of the coefficients but uses absolute values instead
of the squared values. Penalizing based on absolute
values results in the number of estimated coefficients
ction signature.
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becoming exactly zero. When performing Lasso or Ridge
regression, the tuning parameter (λ) must be determined
to control for the amount of shrinkage. The optimal
value of λ can be estimated through cross-validation; we
chose the tuning parameter by maximizing the 10-fold
cross-validated log partial likelihood. After defining the
optimal λ, this value was used to obtain parameter esti-
mates for the transcriptomic data-only model and the
model containing the conventional predictors and the tran-
scriptomic data (the combined model). The R package pe-
nalized was employed for the Lasso and Ridge regression
with the “unpenalized” argument for the conventional vari-
ables in the combined model. As a third method, we tested
the C-index boosting algorithm, which has been presented
as an alternative means for the derivation of marker (gene)
combinations via a gradient boosting framework and the
direct optimization of the C-index [24].
We began the model selection process by evaluating

the predictive performance of each model and the vari-
able combinations through cross-validation, for which
the data were split into training and test sets, and the
differences in the deviance and an R2 measure based on
the Brier score Brier score (iRBS) were calculated (de-
scribed in the Additional file 1). This was followed by
the assessment of the selected model for its Akaike In-
formation Criterion (AIC) and Harrell’s C (also concord-
ance index or C-index), which is a measure of the
separation of two survival distributions [25]. The C-
index is a performance characteristic for survival
models, and it represents the fraction of all pairs of sub-
jects whose predictions exhibit correct orders over the
pairs that are able be ordered. The C-index estimates the
probability that the order of the predictions of a pair of
comparable subjects is consistent with their observed
survival data.
The cut-off point for the absolute values of the coeffi-

cients was 0.0365 for the best-performing prediction
model (Ridge regression with conventional predictors
and transcriptomic data). All predictors showing a re-
gression coefficient above the cut-off point were fitted to
a multivariate Cox regression model using a stepwise se-
lection method. The Cox model assumes proportional
hazards, i.e., a log-linear relationship between the hazard
rates and the independent parameters in the model dur-
ing the follow-up period. The violation of the propor-
tionality assumption during the follow-up period was
assessed by extending the Cox model to incorporate
time-dependent covariates representing the interactions
between each of the independent parameters and the
parametric function of the follow-up time. We also cal-
culated the scaled Schoenfeld residuals for each inde-
pendent parameter. Testing time-dependent covariates is
equivalent to testing for a non-zero slope in a general-
ized linear regression of scaled Schoenfeld residuals as a
function of time. A non-zero slope is an indication of a
violation of the proportional hazard assumption. Based
on the global test, no evidence of a statistically signifi-
cant dependence of mortality on time was observed (p =
0.11). All Cox regression models were performed using
the Stata software (version 13.0 for Windows, StataCorp
LP, TX, USA).
Results
The distributions of all examined variables (i.e., the
conventional markers) are presented in Table 1. The
conventional markers that were observed to predict
mortality in the univariate and multivariate Cox regres-
sion models are presented in Table 2. Sex was not
associated with mortality (p = 0.476) in Cox univariate
regression in this cohort; thus, it was not included in the
further models (please see Additional file 1 for the clarifica-
tion behind this somewhat unexpected result). Likewise,
age in moths was not associated with mortality (p = 0.654)
in the Cox univariate regression model.
The 478 transcripts displaying expression levels associ-

ated with survival in the Cox univariate regression
model are presented in Additional file 2: Table S1, and
the 331 transcripts that remained as independent mor-
tality predictors after adjustment for BMI, frailty index
and cf-DNA level are presented in Additional file 3:
Table S2. The top 10 canonical pathways to which these
331 transcripts were mapped are presented in Table 3;
these pathways exhibited a preponderance of various im-
mune signaling functions. The top-ranked network that
was generated via IPA from these 331 transcripts (IPA
score = 38) consisted of the Cell death and Survival, In-
flammatory Response and Cellular Function and Main-
tenance functions (Additional file 4: Figure S1). The
tested models, i.e., the Cox regression model containing
the conventional markers alone and the three different
feature selection models (the Lasso and Ridge regres-
sions and the C-index boosting algorithm) were evalu-
ated for their predictive accuracies (generalizabilities)
using the deviance from the null model and iRBS. The
evaluation criteria revealed that the model containing
the conventional markers alone and the Ridge regression
model containing both the conventional markers and
transcriptomic data (i.e., the combined model) were
superior to the other models, displaying the lowest
median values for the deviance from the null model
and the highest median values in the iRBS assessment
(Additional file 5: Figure S2 and Additional file 6:
Figure S3, respectively). In general, the other models in
addition to the use of the transcriptomic data alone
regardless of the model, performed poorly in the
generalizability assessment (Additional file 5: Figures
S2 and Additional file 6: Figure S3).



Table 3 The 10 most significant mortality-associated canonical pathways

Ingenuity canonical pathway -log(p)* Ratio Transcripts

LPS-stimulated MAPK Signaling 2.97 0.11 NFKBIA, MAP2K2, PIK3C3, RAC1, MAPK9, IKBKE, MAP2K3, ELK1, PRKCB

CD28 Signaling in T Helper Cells 2.68 0.08 CALM1 (includes others), NFKBIA, MAP2K2, PIK3C3, HLA-DRA, RAC1,
MAPK9, CD86, IKBKE, ARPC4

B Cell Receptor Signaling 2.33 0.07 CALM1 (includes others), NFKBIA, MAP2K2, PIK3C3, RAC1, MAPK9, IKBKE,
MAP2K3, INPP5K, ELK1, PRKCB

CD40 Signaling 2.33 0.10 NFKBIA, MAP2K2, LTA, PIK3C3, MAPK9, IKBKE, MAP2K3

Pyridoxal 5′-phosphate Salvage Pathway 2.33 0.11 MAP2K2, PIM1, GRK6, CDK6, MAPK9, MAP2K3, IRAK1

Natural Killer Cell Signaling 2.33 0.08 KIR2DL1/KIR2DL3, KIR3DL1, MAP2K2, PIK3C3, RAC1, INPP5K, KIR2DL4, SH2D1B, PRKCB

IL-1 Signaling 2.22 0.08 TOLLIP, NFKBIA, MAPK9, IKBKE, MAP2K3, GNA13, PRKAR1A, IRAK1

Salvage Pathways of Pyrimidine
Ribonucleotides

2.22 0.09 NME4, MAP2K2, PIM1, GRK6, CDK6, MAPK9, MAP2K3, IRAK1

CD27 Signaling in Lymphocytes 2.15 0.11 SIVA1, NFKBIA, MAP2K2, MAPK9, IKBKE, MAP2K3

PI3K Signaling in B Lymphocytes 2.15 0.07 CALM1 (includes others), NFKBIA, MAP2K2, FOXO3, RAC1, IKBKE, PLEKHA1, ELK1, PRKCB

*Benjamini-Hochberg -corrected p-value.
The presented pathways are generated from the 331 transcripts that predicted mortality independent of BMI, frailty index and cf-DNA level.

Table 4 The final mortality-predicting signature assessed
using the Cox multivariate regression model

HR (95% CI) S.E. Z p

BMI 0.84 (0.77-0.91) 0.03 −4.22 <0.001

Frailty index (ref. = non-frail)

Pre-frail 9.53 (2.70-33.6) 6.12 3.51 <0.001

Frail 17.7 (4.61-67.9) 12.14 4.19 <0.001

TMEM70 0.39 (0.18-0.84) 0.15 −2.40 0.017

GADD45B 2.60 (1.02-6.62) 1.24 2.00 0.045

NME4 1.77 (1.11-2.80) 0.41 2.42 0.015

MBP 0.58 (0.36-0.93) 0.14 −2.27 0.023

CHEK2 0.26 (0.12-0.55) 0.10 −3.50 <0.001

VKORC1 0.33 (0.18-0.59) 0.10 −3.68 <0.001

LRCH3 0.47 (0.25-0.87) 0.15 −2.40 0.016

LTA 2.09 (1.37-3.19) 0.45 3.43 0.001

SH2D1B 0.52 (0.36-0.76) 0.10 −3.44 0.001

Abbreviations: BMI body-mass index, CI confidence interval, HR hazard ratio,
S.E., standard error.
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We next evaluated the goodness-of-fit (AIC) and discrim-
inative power (Harrell’s C) of the variable combinations, be-
ginning with the model containing only the conventional
markers and adding the Ridge regression-identified tran-
scripts one-by-one (Additional file 7: Table S3). The rank-
ings and regression coefficients for the combined Ridge
regression model are presented in Additional file 8: Table
S4. Notably, marked improvements were observed in the
models’ discriminative powers (from 71.1% to 85.7%) and
goodness-of-fit values (from 449.5 to 391.1) up to the
model no. 15 following the addition of the transcriptomic
predictors (Additional file 7: Table S3).Therefore, model no.
15 was considered to be the final mortality signature. The
stepwise Cox regression analysis of the final signature
demonstrated that high expression levels of lymphotoxin
alpha (LTA), NME/NM23 nucleoside diphosphate kinase 4
(NME4) and growth arrest and DNA-damage-inducible
beta (GADD45B) and low expression levels of myelin
basic protein (MBP), SH2 domain containing 1B (SH2D1B),
checkpoint kinase 2 (CHEK2), leucine-rich repeats and
calponin homology domain containing 3 (LRCH3), trans-
membrane protein 70 (TMEM70) and vitamin K epoxide
reductase complex, subunit 1 (VKORC1) together with a
low BMI and increased frailty were the most predictive of
mortality (Table 4). The highest-ranking IPA-generated net-
work incorporated 7/9 of the final signature transcripts and
consisted of the following functions: Cell Cycle, Cell Death
and Survival, and Hematological System Development and
Function (Figure 2).

Discussion
The prediction of mortality in very elderly individuals
has traditionally relied upon markers reflecting immuno-
inflammatory and endocrine functions and parameters
involving physiological capabilities. In this study, we
demonstrated that integrating gene expression data
into a model containing these traditional predictors re-
sults in the improved prediction of old-age mortality in
terms of the discriminative power and goodness-of-fit
of the model. However, among the tested feature selec-
tion methods, only the Ridge regression model per-
formed satisfactorily in the generalizability assessment;
therefore, it was selected as the preferred method for
survival-signature modeling. In addition to providing a
means of avoiding overfitting, obtaining a parsimoni-
ous variable set through the penalized Ridge regression
was necessary to assess the relative strengths of the
conventional markers and the transcripts in the final
model. Among the conventional markers, both the



Figure 2 The top-ranked IPA-generated network based on the 331 mortality-associated transcripts. The expression levels of these
transcripts predicted mortality independent of BMI, frailty index and cf-DNA level. The molecules in the network are enriched for the following
functions: Cell Death and Survival, Inflammatory Response and Cellular Function and Maintenance. Green color indicates that low expression level
of the transcript predicts mortality, whereas red color indicates that high expression level of the transcript predicts mortality.
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BMI and the frailty index remained in the final model,
indicating that the concomitant loss of physiological
reserves in multiple homeostatic systems is detrimen-
tal to survival. However, the cf-DNA level, which ap-
pears to be the best plasma-based mortality predictor
according to current data as well as our earlier Vitality
90+ cohort [7], was replaced by the transcripts in our
final model, suggesting that the information captured
by the cf-DNA level overlaps with and is better
reflected by the transcript expression levels. The find-
ing that none of the traditional markers of inflamma-
ging or of T cell immunosenescence were predictive of
mortality was somewhat unexpected. However, the
final signature transcripts LTA (high expression) and
SH2D1B, MBP and LRCH3 (low expression) were as-
cribed to immunoinflammatory processes. Specifically,
LT-α (the protein product of LTA), which is a member
of the TNF superfamily that plays pivotal roles in the
function and development of the immune system, has
been regarded as a central player in various inflamma-
tory conditions [26]. The adapter molecule SH2D1B
(also known as EAT-2) is known to play an indispens-
able role in natural killer (NK) cell activation and cyto-
toxicity, and it also enhances antigen-specific immune
responses [27]. For MBP of immune cell origin (termed
Golli-MBP), the only function demonstrated thus far is
the negative regulation of T cell activation through the
inhibition of Ca2+ influx; the ablation of Golli-MBP
leads to T cell hyperproliferation in the first phase but
may subsequently trigger T cell anergy [28]. The func-
tions of LRCH3 are poorly understood, although a
recent study identified it as a TNF-α, IL-1β and EBV
latent membrane protein 1-dependent upstream regu-
lator of NF-κB activity [29]. Interestingly, the IPA-
generated networks from the final signature transcripts
(Figure 2) and the 331 mortality-predicting transcripts
(Additional file 4: Figure S1) also displayed NF-κB as a
central node, underscoring the role of NF-κB-mediated
immunoinflammatory regulation in late-life mortality.
Finally, as 8/10 of the mortality-associated pathways
(Table 3) were assigned to functions involving adaptive
and innate immunity, it appears that pervasive immunoin-
flammatory dysregulation at the transcriptomic level pre-
cedes old-age mortality, regardless of its cause.
The final signature transcripts GADD45B (elevated),

CHEK2 (decreased), TMEM70 (decreased) and NME4
(elevated) demonstrated that the control of the DNA dam-
age response, apoptosis and cellular maintenance, including
mitochondrial functions, were likewise essential to mortal-
ity. In addition to serving as a crucial regulator in of
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immune cell differentiation and cytokine production,
GADD45β is upregulated under conditions of growth ar-
rest due to cellular (genotoxic) stress and DNA damage
[30]. The cell cycle checkpoint regulator CHEK2 is like-
wise involved in the DNA damage response by preventing
the entry into mitosis following DNA damage [31]. Inter-
estingly, CHEK2 also has a crucial role in the assembly of
the mitotic spindle and the maintenance of chromosomal
stability [31]. Both NME4 (also known as NDPK-D) and
TMEM70 are localized to the mitochondrion. NDPK-D
plays a role in the supply of nucleotides and also puta-
tively acts in apoptosis though cardiolipin transfer [32],
whereas TMEM70 is required to maintain the activity of
ATP synthase [33]. In addition, the finding that the IPA-
generated network based on the 331 mortality-predicting
transcripts (Additional file 4: Figure S1) included the
Cell Death and Survival and Cellular Function and
Maintenance functions, further recapitulates the rele-
vance of these processes in old-age mortality. Interest-
ingly, the final signature also incorporated VKORC1
(decreased), which is an enzyme that aids in the main-
tenance of hemostasis through the conversion of vita-
min K to its active from. However, the significance of
VKORC1 expression in immune cells in relation to
mortality is ambiguous. One plausible link could be
the role of vitamin K as a cofactor in posttranslational
protein modification, leading to the production of
γ-carboxyglutamate/vitamin K-dependent (VKD) pro-
teins. Indeed, the VKD protein GAS6 has been demon-
strated to play a role in leukocyte migration and
proliferation, phagocytosis and apoptosis [34]. Alterna-
tively, the cofactor-independent immunomodulatory
activities of vitamin K might account for this finding
because vitamin K has been shown to downregulate
the production of certain proinflammatory cytokines –
an effect potentially mediated through NF-κB [35].
In addition to the present study, one previous study

performed a penalized regression analysis (Lasso) to pre-
dict age-associated mortality using transcriptomic data
from cultured lymphoblastoid cell lines [36]. Despite the
apparent differences in the settings of these studies, the
cellular functions represented by the top-ranking tran-
scripts were similar. For example, the most significant
survival-associated transcripts found in the study by
Kerber et al., [36] were CORO1A, IQGAP1, AURKB,
TERF2IP and CBX5, which play roles in processes such
as T-cell mediated immunity, mitochondrial apoptosis, mi-
tosis and chromatin maintenance. However, a between-
study comparison of the survival-associated transcripts
(Additional file 2: Table S1 for our data) revealed only 12
common transcripts, of which four (CYB5B, IQGAP1,
TERF21P and UBEV2) exhibited Z-scores of the same irec-
tionality. This discrepancy could be at least partially due to
the differences in the cell types used in these investigations,
which were in vivo blood mononuclear cells in our study
but were cultured and transformed B cells in that of Kerber
et al. [36].
Using another type of approach, van den Akker et al.

[37] conducted a meta-analysis on established aging-
associated transcripts and identified a protein-protein
interaction module (Module F) consisting of 33 tran-
scripts, whose mean expression was also associated with
old-age survival in the Leiden Longevity Study [37]. In
accordance with our findings, this module contained
transcripts involved in mitochondrial functions (e.g.,
MTERF, ACADM and TFB2M) and the regulation of the
cell cycle and mitosis (e.g., BUB3, APPBP1 and CDC23).
Four age-associated transcripts in Module F (BUB3,
APPBP1/NAE1, TFB2M and HNRPR) were also observed
in our dataset (Additional file 2: Table S1), all of which
exhibited downregulated expression associated with an
increased risk of mortality. Hence, it appears that the cellu-
lar functions that are most robustly associated with old-age
survival are similar in different populations but can never-
theless be captured thorough different approaches.
Overlaying the mortality-associated pathways (Table 3)

with the pathways previously reported to be regulated by
age in our study population (Additional file 7: Table S3 in
[13]) revealed commonalities with CD28 Signaling in T
Helper Cells, B Cell Receptor Signaling, CD40 Receptor Sig-
naling and PI3K Signaling in B Lymphocytes. However, the
overlap in the transcripts themselves was negligible; only
11 (ADM, FAM46C, GRAP, HIST2H2AA4, IER2, IER3,
NACC2, NLRP3, RORA and SOCS3) were both mortality-
associated and age-regulated. A similar phenomenon was
observed in the comparison of our mortality-associated
transcripts with previously reported age-regulated tran-
scripts [12,14]. Furthermore, some of the transcripts that
were both mortality- and age-associated exhibited discrep-
ancies in their direction of expression. For example, the ele-
vated expression of GRAP was associated with an increased
risk of mortality (Additional file 2: Table S1), whereas the
downregulated expression of this transcript was associated
with increased age [12,13]. These findings raise the ques-
tion whether some of the reported age-regulated gene ex-
pression changes that have been deemed unfavorable
merely because they were associated with aging are in fact
intentional and advantageous in the aged body. In this sce-
nario, deviation from this optimal gene expression pattern
in the opposite direction would lead to cellular disturbance,
which would be relevant to mortality. Another noteworthy
observation is that one well-known life span regulator, the
mTOR pathway [38], did not emerge in our pathway ana-
lysis, although a few individual components of this
pathway (PIK3C3, PRKCB, RAC1 and RPS6KA1) were
present among the 331 mortality-associated transcripts.
Thus, we hypothesize that the significance of mTOR-
mediated cellular regulation subsides in the later phase of
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life, once an individual has already reached very old age.
Overall, our results suggest that while the majority of the
decisive processes are likely to be common in ageing and
mortality, the actual driver genes underlying these phenom-
ena may differ.
The major limitations of the current study are the lack of

an external validation cohort, which would be ideal for
assessing the universality of the transcriptomic predictors,
and the small sample size. In addition, because all subjects
were homogeneous in terms of age (90 years), we were un-
able to determine whether the identified predictors perform
similarly in individuals of other (old) ages.

Conclusions
Taken together, our systematical characterization of the
determinants of old-age mortality underscores the joint
impact of the decline in physiological reserves, the fidel-
ity of immunoinflammatory processes and the control of
the DNA damage response, cell cycle and mitochondrial
functions. In addition, our findings corroborate the pro-
posed roles of NF-κB in the aging process and aging-
related degeneration [39], and indicate that this protein
complex is central to the mechanisms underlying late-
life survival. We further conclude that the incorporation
of gene expression data into a model with conventional
predictors could contribute to the understanding of
the mechanisms underlying old-age mortality. However,
because cohorts including both genome-wide transcrip-
tomic data and mortality follow-ups are currently scarce,
further studies are necessary to ascertain the universality
of our results.
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Additional file 1: Additional methods.

Additional file 2: Table S1. A table listing the 478 transcripts whose
expression level were associated with survival in the Cox univariate model.

Additional file 3: Table S2. Table listing the 331 transcripts whose
expression level remained as mortality predictors in the Cox multivariate
model after adjusting for BMI, frailty index and cf-DNA level.

Additional file 4: Figure S1. Predictive accuracies based on the
differences in deviance. The conventional markers-only model and the
six prediction methods (50 splits into training and test datasets for each) were
compared with the null model containing no covariates (the horizontal line
at zero). A low value for the difference in deviance corresponds to a good
predictive performance. The Lasso1, Ridge1 and BoostC1 models contain
only the transcriptomic data, whereas the Lasso2, Ridge2 and BoostC2 models
contain the transcriptomic data and the conventional predictors.

Additional file 5: Figure S2. Predictive accuracies based on the iRBS.
The conventional marker-only model and the six prediction methods (50
splits into training and test data sets for each) were compared to the null
model with no covariate (the horizontal line at zero). A large value for
the difference in iRBS corresponds to a good prediction performance.
The Lasso1, Ridge1 and BoostC1 models contain only the transcriptomic
data, whereas the Lasso2, Ridge2 and BoostC2 models contain the
transcriptomic data and the conventional predictors.

Additional file 6: Figure S3. The IPA-generated network based on the
final signature transcripts. This network demonstrates that NF-κB is a
prominent mediator of the molecular interconnections. The molecules
incorporated into the final signature are shown in enlarged bold font,
and the connective molecules are shown in regular font. Green color
indicates that low expression level of the transcript predicts mortality,
whereas red indicates that high expression level of the transcript predicts
mortality.

Additional file 7: Table S3. Displaying the stepwise assessment of the
variable combinations for the final Cox regression model.

Additional file 8: Table S4. Displaying the results of the Ridge
regression model performed with the conventional predictors and
transcriptomic data (the combined model).
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