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Abstract

Background: Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-
the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have
auxiliary information, and can be applied to data mining models (for example, logistic regression). However,
differentially private methods sometimes introduce too much noise and make outputs less useful. Given available
public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms
that use both public and private data sets to decrease the amount of noise that is introduced.

Methodology: In this paper, we modify the update step in Newton-Raphson method to propose a differentially
private distributed logistic regression model based on both public and private data.

Experiments and results: We try our algorithm on three different data sets, and show its advantage over: (1) a
logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression
model based on private data under various scenarios.

Conclusion: Logistic regression models built with our new algorithm based on both private and public datasets
demonstrate better utility than models that trained on private or public datasets alone without sacrificing the
rigorous privacy guarantee.

Introduction
Data about individuals are being collected at an unpre-
cedented speed, which brings new opportunities for
scientific discovery and healthcare quality improvement.
In the meantime, there is increasing concern about peo-
ple’s privacy and inappropriate disclosure of sensitive
information [1]. This problem is especially challenging
in biomedicine [2], where information sharing is one of
the biggest pillars to facilitate meaningful analysis of
complex medical data. For example, classifying complex
or rare patterns in clinical and genomic data requires
the availability of a large, labeled patient set, which
needs to be obtained from multiple institutions [3].
Any data access mechanism involves a tradeoff between

the privacy risk and the data utility. In biomedicine, data

custodians can change the content of the data to make
more difficult for attackers to re-identify individuals
(k-anonymity [4], l-divergence [5], t-closeness [6], etc.) or
can perturb the outputs of a query result to ensure
“indistinguishability” of individuals (i.e., count queries
satisfying differential privacy [7]). Because differential
privacy [8] provides a provable guarantee and is immune
to attacks with auxiliary information, it is acknowledged
as a state-of-the-art privacy definition [9]. The perfor-
mance (i.e., privacy and utility) of a differentially private
method is highly dependent on the nature of the applica-
tion and the capability of the protection mechanism. To
meet the need of different applications, many customized
differentially private methods, including decision trees
[10], logistic regression [11], principal components analy-
sis [12], multi-class Gaussian classifiers [13], have been
developed. There are several recent efforts in integrating
the differential privacy framework into the system design
and case studies for statistical health information release
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[14], [15]. However, due to an inherited challenge of dif-
ferential privacy in considering the entire sample space,
the level of data perturbation often increases too quickly
when the privacy assurance becomes stronger, which
ends up adding too much noise [16], i.e., producing use-
less, albeit protected, data.
We believe the situation can be alleviated in an envir-

onment where both public and private data sets for the
same study are available for analysis. This is useful in
biomedical research (e.g., randomized clinical trial),
where some patients are willing to sign an open-consent
agreement to make their data (publicly) available for
research, while other patients prefer to limit disclosure
to a single institution. Our idea is to develop hybrid
data mining models using both public and private data
sets in a differentially private and distributed manner to
achieve improved utility of the disclosed data. We will
focus on the logistic regression model, which is one of
the most popular approaches in biomedicine, to develop
a distributed and privacy preserving solution in the
healthcare context.

Related work
Our model is closely related to Grid Logistic Regression,
a model developed by Wu [3]. Their model is based on
a distributed Newton-Raphson algorithm, however, it
does not consider privacy risk during the exchange of
aggregated statistics among participants. A recent work
by Wu et al. [17] discusses institutional privacy of dis-
tributed logistic regression and introduces a secure-sum
based approach to protect aggregated statistics using a
trusted server, but it does not meet the differential priv-
acy criteria. The underlying intuition of our model is
close to Elkan’s work [18] to represent a confidential
database via importance weighting elements of a public
database for general data mining purpose, but his
approach is also not differentially private.
There are also some previous works on differentially pri-

vate distributed learning. For example, Pathak, Rane, Raj
et al. [19] suggested running local models on each private
data set and aggregating estimated parameters. This
approach is different from ours in two aspects. First, their
model does not take public data into consideration. Sec-
ond, they only prove that the final outputs (the aggregated
parameters) are differentially private, while there is no
guarantee that the intermediary outputs from individual
private data sets (which need to be shared during the pro-
cess) are differentially private. In contrast, our model
ensures differential privacy for all steps. Rajkumar and
Agarwal [20] recently proposed a distributed differentially
private stochastic gradient descent algorithm, which also
differs from ours as follows: (1) their approach used only
private data; (2) their approach is (ε, δ)-differentially private
(weaker) while ours is ε-differentially private (stronger).

In this paper, we introduce a new distributed logistic
regression model that runs on many data sets, e.g., both
public and private ones. It treats these two kinds of
data sets differently: it leverages public data sets to
improve utility while protecting the private data sets.
Background section introduces some background
knowledge and methodology section elaborates on
details of our method. In experiments and results sec-
tion, we compare our model to other approaches, and
explore the impact of different settings (i.e., the fraction
of data that are public, the number of distributed
private data sets, and impact of the regularization
parameter) on the final model. Finally, discussions and
conclusions are drawn.

Background
In this Section, we will briefly review techniques related
to this article.

Differential privacy
Differential privacy (DP) is a privacy definition proposed
by Dwork, Kenthapadi, McSherry et al [8], which states
that any answer to a query based on a private data set
should not be altered dramatically with the change of a
single record in the data set.
In the following part of this paper, D and D′ always

differ on at most one sample (i.e., D and D′ are “neigh-
bors” with only one sample replaced).
Definition 1: Query function Function f : D → Rp is

a query function, if it is a projection from a data set D
(not a single sample, but the whole data set) to Rp.
Many data mining models can be viewed as a query

function, for example, the coefficients of the logistic
regression can be seen as the projection of a data set to
a real-valued vector.
Definition 2: ε-Differential Privacy A randomized

algorithm (or mechanism) f̃ is ε-differentially private if
for any neighbors D and D′ and for any SεRp when the
following probabilities are well-defined,
Pr[f̃ (D) εS] ≤ eε × Pr[f̃

(
D′) εS],

where the probabilities reflect the randomness of the
algorithm f̃ . Note the parameter ε is called privacy
budget. The smaller ε is, the better privacy is preserved,
and vice versa.
Definition 3: Sensitivity A query function f ’s sensi-

tivity under norm ||.|| is defined by

Sf ,||.|| = max
D,D′

||(D) − f (D′)||.

Definition 4: Laplacian mechanism [21] For any
query function f : D → Rp, the algorithm returns

f̃ (D) = f (D) + δ, where δ : p (δ) ∝ exp
(

−||δ||ε
sf ,||.||

)
, satis-

fies differential privacy.
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If two independent mechanisms are ε1 and ε2 differen-
tially private, running them iteratively on the same data
set will consume a privacy budget ε1 + ε2, which is
known as the sequential composition property of differ-
ential privacy [22].
Typically, L1 norm is used in calculating sensitivity and

applying Laplacian mechanism, in which case the noise
on different dimensions are independent. In this paper,
we consider the L2 norm instead, such that the sensitivity
of penalized logistic regression parameter (i.e., the out-
puts of a query function) can be bounded, as proved in
Corollary 2 by Chaudhuri et al [11]. The L2 norm has
been used in previous differential private algorithms, e.g.,
the work of Chaudhuri [11] and Rajkumar [20].

Newton method for logistic regression
The Newton method (also known as the Newton-Raphson
method [23]) is an iterative approach that uses gradient to
find roots of a real-valued differentiable function. Since a
function’s extrema are also the roots of its gradient, the
Newton method can also be used to find twice differenti-
able function’s extrema. Due to its efficiency in handling
convex functions, (i.e., usually only a few iterations (five or
six) are needed to reach a very high precision [24]), the
Newton method is a popular numerical approach for
building a logistic regression model [25]. Given the log-
likelihood function of a logistic regression model L(β), the
Newton method approaches the maximum likelihood
coefficients estimate b with the following steps,
Initialize β0 = 0,
Compute the gradient and Hessian matrix of L(β),

grad =
∂L (β)

∂β

∣∣∣∣
β=β0

H =
∂2L (β)

∂β2

∣∣∣∣
β=β0

Update β0 = β0 − H−1grad and repeat the second step
until β0 converges.

Methodology
Our goal is to develop a distributed logistic regression
model that effectively synthesizes data (public and pri-
vate) across different sites (institutions) in a differentially
private manner.

Assumptions about the data set
To develop the model in the biomedical context, we will
make some assumptions about the data sets. First, the
number of samples in each data set is not very large. This
assumption is reasonable as otherwise one data set is
enough to build the model and many data sets will not

bring much benefit. Second, the size of the public data set
is significantly smaller than that of the private data sets.
The reason is that by default biomedical data should be
kept secure and private unless patients are willing to sign
open-consent agreements to make their medical data
available for research, which only applies to a small per-
centage of the total data. Third, we assume samples in dif-
ferent data sets follow the same predictive rule, which
means P

(
label|predictors)must be the same across all data

sets. This is necessary for constructing a distributed logis-
tic regression model that can provide useful information
in biomedical research. In practice, such assumption can
be verified by checking the goodness-of-fit (e.g., Hosmer-
Lemeshow test [26]) of the fitted local and global models
without sacrificing individual privacy. Last, we assume that
the distribution of samples in different data sets
(P(predictors)) are similar, although this assumption will
be relaxed, as we will elaborate in the discussion section.
Notation
All these samples are Independent and Identically Dis-
tributed (i.i.d.), and each sample has a binary label
y ε {1,−1} and a predictor vector x. The k private data
sets (namely D1, ...Dk) have n1, ...,nk samples respec-
tively, and the i-th sample in the j-th data set is denoted
as (xji, y

j
i). The public data set D0 has n0 samples(

x0i , y
0
i

)
, i = 1, . . . ,n0. The penalized logistic regression

maximizes the following log-likelihood function

L (β) =
k∑
j=0

nj∑
i=1

log
1

1 + exp
(
−yjiβ

Txji
) − λ

2
||β||2

and the b that maximizes this log-likelihood function
is the estimated parameter for the model.
Note that for the bounded sensitivity, if an intercept is

introduced into the predictors, the corresponding para-
meter should be also regularized.

Method description
Because the logistic regression model has no analytic
solutions, we need to solve it using numerical methods
like the Newton algorithm (see the Background section),
which involves several iterations of optimization. As the
distributed logistic regression model is supposed to be
trained on multiple data sets, we need to implement a
privacy-preserving information exchange mechanism to
transmit intermediary results across private data sets. In
addition, the privacy budget is limited and it must be
split across iterations. To maintain data utility, we must
balance the number of iterations and the privacy budget
spent on each iteration in the training process.
To use the Newton-Raphson algorithm, we need to

compute the gradient and the Hessian matrix from the
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data sets. The simplest way to ensure differential privacy
is to add Laplacian noise to the gradient and the Hessian
matrix, and use the noisy version of these intermediary
results to update parameters. Theoretically, the impacts
of additive noise in Laplacian mechanism (see Definition
4) tend to be much smaller when the number of samples
approaches infinity, as the sensitivity of the gradient and
the Hessian matrix is irrelevant to the size of a data set.
In reality, however, the effects of noise on the gradient
and the Hessian matrix (for parameter estimation) are
quite different. For example, the gradient is usually
affected by the additive noise than is the Hessian matrix.
This is because the gradient has linear impact on the
parameter updates. However, this is not the case for the
Hessian matrix. Since the inverse of the Hessian matrix is
used in the update step, even a little noise in the Hessian
matrix can lead to large changes on the parameters being
updated. Such change can become very large when the
noise destroys the Hessian matrix’s positive definiteness,
which implies that a global optimal solution (like the one
for the log-likelihood function of a traditional logistic
regression model) may not be attained. Although we can
threshold the eigenvalues of the Hessian matrix to ensure
positive definiteness, this method might generate useless
coefficients. Therefore, the key to build a useful differen-
tially private distributed logistic regression using the
Newton-Ralphson algorithm is to reduce the noise in the
Hessian matrix, especially reduce the chance of a non-
positive definite Hessian matrix.
Our approach is to leverage public data sets (i.e., con-

tributed by patients who signed the open-consent agree-
ment). In our hybrid framework, the Hessian matrix is
estimated solely using the public data set, and we use
public and private data sets to compute the gradient. To
estimate the Hessian matrix using only public data, we
leverage the following advantages: (1) The Hessian matrix
from the public data set is positive definite. Therefore,
the worst case discussed above is avoided even though
the absolute sample error on the Hessian matrix might
be larger than the noisy Hessian matrix from individual
data sets. (2) The sensitivity of Hessian matrix is O(p2)
when there are p features in each sample, while the sensi-
tivity of the gradient is only O(p). Therefore, if we use the
public data to calculate the Hessian matrix, the total sen-
sitivity can be reduced from O(p2) to O(p), which
increases the accuracy of update steps.
Unlike the traditional Newton-Raphson algorithm, which

iterates until convergence, our method uses a fixed number
of iterations for the following reasons. First, the original
Newton method stops after parameters converge but our
algorithm will never terminate due to the noise added in
each step. Second, the stop decision in our case cannot be
accurately determined by comparing the likelihood asso-
ciated with βnew and βold because it is possible that the

noisy βnew performs worse than βold, which will never hap-
pen in the standard maximum likelihood estimation.
Finally, a fixed number of iterations allows us to allocate
privacy budgets easily, e.g., evenly split across iterations as
in this work.
The details of our update step are illustrated in Algo-

rithm 1, and the full model is described in Algorithm 2.
There are two some modifications that can further

improve the performance. Please refer to Additional
file 1, for these modifications and for the proof of differ-
ential privacy.

Algorithm 1
Modified update step in distributed logistic regression

Input
Private dataset D1, ...,Dk, public dataset D0, privacy bud-
get for this iteration ε0, coefficient of penalty λ, the upper
bound of L2 norm of samples M, and old parameter βold

obtained from the previous iteration.

Output
Logistic regression parameter βnew.
1: Compute the Hessian matrix H using only the public

data set (I is the identity matrix)

H =
n0∑
i=1

log
exp

(−βT
oldx

0
i

)
(
1 + exp

(−βT
oldx

0
i

))2 − n0λ∑k
j=0 nj

I

The coefficient
n0λ∑k
j=0 nj

is an adjustment, as the number

of samples to obtain H here is different from number of
samples to get gradients below.
2: Compute the gradient grad for each data set.

gradj = noisej +
nj∑
i=1

yjix
j
i

1 + exp(yjiβ
T
oldx

j
i)

grad0 =
nj∑
i=1

y0i x
0
i

1 + exp(y0i β
T
oldx

0
i )

where noisej, j = 1, . . . , k are iid vectors with density

p
(
noisej

) ∝ exp
(

−ε0||noisej||2
2M

)

3: Aggregate all the gradients

grad =
k∑
j=0

gradj − λβold

4: Output βnew = βold − n0∑k
j=0 nj

H−1grad

Algorithm 2
Distributed logistic regression
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Input
Private dataset D1, ...,Dk, public dataset D0, privacy bud-
get for this iteration ε, coefficient of penalty λ, the upper
bound of L2 norm of samples M, and iteration times l.

Output
Logistic regression parameter β.
1: ε0 = ε/l
2: Initialize logistic regression parameter β0 = 0, a vec-

tor with the same length as x.
3: Given the data sets, ε0,λ and M, use β as βold,

update β with βnew in Algorithm 1. Repeat for l times
4: Output b

Experiments and results
We will compare our algorithm with two baselines. The
first is the meta analysis method. It first adds noise

from distribution p
(
noisej

) ∝ exp
(

−ελ||noisej||2
2M

)
to

logistic regression parameters learned from a private
data set, where M is the upper bound of predictors’ L2
norm. Then, it outputs weighted average (by number of
samples in each data set) of these noisy parameters
learned from k private data sets. By weighting locally
learned differentially private parameters, this method is
similar to the method in Pathak, Rane, Raj et al[19].
The only difference is that we make outputs from each
private data be shared differentially privately (rather
than transmitting encrypted partial local outputs). Our
second baseline is to train a logistic regression model
with only public data and neglect the private data sets.
Our evaluation metric is model discrimination, i.e., the
Area Under the ROC curve (AUC). We will explore the
performance of all three models using various parameter
values. Unless explicitly illustrated in the Figures, default
values for the following parameters are set as follows:
number of private data sets (3), fraction of public data
in the training set (2%), privacy budget ε (1), number of
iterations (2). The regularization strength λ for all three
models is selected from a range [10−2,106] to maximize
the expected AUC based on a 10-fold cross validation.
We used clinical data to conduct experiments, where

the public and private data sets are split randomly. Each
private data set contains roughly the same number of
observations. We used a 60%/40% split for training and
testing in all experiments.

Data sets
We used three data sets, i.e., Schumacher’s breast cancer
[27], hospital discharge [28], and the SEER breast cancer
[29]. A summary is showed in Table 1, which includes
data description, number of attributes, number of sam-
ples, and the class label distribution. Table II lists the

attribute description for each data set, where numerical
attributes are indicated by “*”, and non-binary categori-
cal attributes were converted into binary ones through
dummy coding. For example, a categorical attribute of c
categories will be converted into c − 1 binary covariates
in dummy coding (e.g., 0 ® (1,0),1 ® (0,1) and 2 ®
(0,0) for the case c = 3). The class label attributes are
shown in the last row of Table 2.
As the magnitudes of attributes have large impact on the

overall sensitivity of logistic regression parameters and the
gradients of the log-likelihood function, we normalized all
attributes and truncated their values to [−2,2] in order to
bound the impact. Note that we used the mean and the
variance of public data to conduct normalization, which
does not incur a privacy cost.

Results
We first used the hospital discharge data set to explore
the effect of different parameters on model discrimina-
tion. Then, we evaluated and compared the model per-
formance using all three datasets to check the impact of
scalability.
1) Model comparison using different parameters: In

Figure 1a, we illustrated the effect of different number of
private data sets on discrimination. The AUCs for our
method and for the meta-analysis method drop at the
same speed as the number of data sets increases, and our
method results in higher AUCs in all scenarios. This is
because both methods have to add noise to outputs from
each private data set. Given a fixed number of observa-
tions (8,668), more noise is added when there are more
private data sets (evenly split). The public data based
method is not affected by this setting. In the experiments
of this section, AUCs have small standard deviations
(around 0.05) and the mean of results from 100 indepen-
dent experiments is stable enough to represent perfor-
mance of the methods (the standard deviation of the mean
is around 0.005). Therefore, we only plot the mean AUCs).
Figure 1b shows the AUCs of the models given differ-

ent fractions of public data. Our algorithm’s perfor-
mance is stable, but the AUCs of the public data based
model grow quickly with increased sample size. When
the fraction of public data is between 1% and 5%, our
algorithm is the best.
Figure 1c shows how AUCs change at different regulari-

zation strengths (λ in Algorithm 2). Our method has the
most stable performance even when the regularization
strength increases 100 times, or when it is 10% of the opti-
mal value. This is very important in practice, as it is
expensive to calculate the best regularization strength (i.e.,
have to reserve additional test data for tuning regulariza-
tion strength, which will also spend some privacy budget).
With the stable performance, we can hypothesize that
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even if the guess is away from the optimal regularization
strength, our method can perform well in terms of
discrimination.
Figure 1d shows the effect of the privacy budget

(εin Algorithm 2) on AUCs. The method based on public
data is not affected, but the other two have better perfor-
mance with more budgets. Our algorithm is better than
the meta analysis model in general, and outperforms the
public data based method when the privacy budget is lar-
ger than 1.
Figure 1e shows how the number of iterations in dis-

tributed logistic regression algorithm (l in Algorithm 2)
will affect our algorithm’s performance. When there are
no iterations (i.e., only locally calculated parameters are
used), our method degrades to the public data based
algorithm (the same starting point). Our performance is
best with less than 3 iterations, and it gets worse with
more iterations. There are several reasons for the
degraded performance. First, our algorithm uses para-
meters trained on public data set as the starting point,
which is expected to be close to the real one, and there-
fore, the necessary iterations are smaller than the

traditional Newton method (starting from all zeros).
Second, as noise is added to each iteration, the gain
from later iterations can be masked by the increased
amount of noise. Yet another reason is that our privacy
budget is evenly split into a pre-determined number of
iterations, and more iterations imply a large amount of
total noise.
A natural question is when our method would be

most useful. This is a hard question to answer in theory
because our method has no guarantee of convergence
(due to the added noise). However, we can answer the
question empirically.
We decompose parameters into “external factors” and

“controllable factors”. The former corresponds to: the
number of private data sets, the fraction of data that are
public, and the private budget (set by the data owner),
which researchers cannot control. The regularization
strength and iteration numbers, however, are not exter-
nal factors, as researchers can choose them.
In Figure 2, we showed how the three methods per-

form (Using their corresponding “best” controllable fac-
tors) given different external factors, which include the

Table 1 Summary of data sets used in our experiments

Data set Data set description # of
attributes

# of
samples

Class distribution (negative/positive)

1 German breast cancer 9 686 43.6% / 56.4%

2 Hospital discharge 17 8,668 4.4% / 95.6%

3 SEER breast Cancer 37 55,000 21.0% / 79.0%

Table 2 Attribute description for each data set, where numerical attributes are indicated with “*”, non-binary
categorical attributes were converted into binary representations through dummy coding and classification labels are
shown in the last row.

Data set 1 Data set 2 Data set 3

Hormonal therapy
1. Yes, 2. No.

Specimen
1. Blood, 2. Urine, 3. sputum, 4. CSF

Race (25 categories)

Age* Specific days* Age*

Menopausal status
1.Premenopausal, 2. Postmenopausal

Day of the week for collection
1. Weekday, 2. Weekend

Marital status (6 categories)

Tumor size* Age* Histology*

Tumor grade*
(Levels I, II, III)

Day of the week for the final result
1. Weekday, 2. Weekend

Number of nodes examined*

Number of positive nodes* Gender
1. Male,
2. Female

Number of positive nodes*

Recurrence free Survival time*
(in days)

Insurance
1.Medicare, 2. Medicaid,
3. Commercial, 4. Other

Grade*

Progesterone receptor* Tumor size*

Estrogen receptor* Race
1. White, 2. Black, 3. Asian, 4. Hispanic,

5. unknown/declined

ER status
(4 categories)

Status indicator Potential error Vital status recode

Pos: Alive, Neg: Died Pos: Not a potential follow-up error, Neg: A potential follow-up error Pos: Alive, Neg: Died
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numbers of private data sets (1, 3, 5, 10 and 20), the
percentages of public data (0.5%, 1%, 2%, 5%, 10%) and
the privacy budgets (0.5, 1, 1.5, 2, 5). Each rectangle
represents a comparison between our method and the

best of the other two approaches. Red and yellow rec-
tangles indicate our algorithm is better, while green and
blue rectangles mean the opposite. Our algorithm per-
forms well under many situations, including: (1) privacy

Figure 1 Effect of different parameters on model discrimination. Note that in 1(e), only our model is affected by iteration numbers.
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budget equal or larger than 1, (2) 5-10 private data sets,
(3) percentage of public data around 1-5%.
2) Model comparison using different datasets: Our last

study evaluated model performance using data of differ-
ent sizes. Three biomedical datasets used in this experi-
ment differ in the number of observations. All input
parameters are set to default values. Each experiment is
repeated 100 times to generate a boxplot.
In Figure 3, our algorithm is compared to the meta-ana-

lysis model and the logistic regression model trained on
public data sets. In all the three data sets, our algorithm
shows the best performance as indicated by the p-value

(the p-values are calculated using the pairwise one-sided
student-t test).

Discussion and conclusion
We demonstrated a novel approach that combines pub-
lic and private data sets to build a logistic regression
model in a distributed manner. Our approach shows
performance advantage over two other approaches
under various conditions. There are still challenges in
using our approach in practice. For example, categorical
attribute values in private data sets may not appear in
public data. The simplest solution is to pre-process

Figure 2 Comparison of three methods given different external settings: the number of private data sets, the fraction of public data, and the
privacy budget. Red and yellow rectangles indicate our algorithm outperforms the other methods, while green and blue rectangles mean the
opposite.
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private data sets by dropping values that rarely appear
(or do not appear) in public data and that seem uncor-
related to the labels. This will not spend privacy budget
as we only use public data to guide the process. It may
improve a model’s utility by removing some values and
reducing the number of attributes. The upper bound of
L2 norm for the predictors therefore gets reduced, and
so does the scale of noise.
Another limitation of our method is that we assume that

all data sets follow the same (joint) distribution. However,
it is possible that some data sets have sample bias, but

may still follow the same learning rule. A solution for this
is to use gradient descent instead of the Newton method
in Algorithm 1. However, as gradient descent algorithm
usually needs more iterations to get an accurate solution,
and consequently it may add more noise and therefore
generate less satisfactory outputs. In conclusion, we pro-
pose a new algorithm to extend the differential private fra-
mework to real world scenarios in biomedical research,
where public and private data sets are available for analy-
sis. Hybrid approaches that rigorously protect private data
while leveraging public data to improve the utility show

Figure 3 Boxplot comparisons of models using three different datasets. We use default parameter values as stated in the beginning of
this section. For each method, the five lines from bottom to top are 2.5%, 25%, 50%, 75% and 97.5% quantiles of AUCs. The p-value of pairwise
t-test on AUCs are also shown.

Ji et al. BMC Medical Genomics 2014, 7(Suppl 1):S14
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great promise to achieve “the best of both worlds” (i.e.,
data privacy and usefulness).
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