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Abstract

to the estimated parameters.

Background: From a phenotypic standpoint, certain types of diseases may prove to be difficult to accurately
diagnose, due to specific combinations of confounding symptoms. Referred to as phenotypic overlap, these sets of
disease-related symptoms suggest shared pathophysiological mechanisms. Few attempts have been made to
visualize the phenotypic relationships between different human diseases from a machine learning perspective. The
proposed research, it is anticipated, will visually assist researchers in quickly disambiguating symptoms which can
confound the timely and accurate diagnosis of a disease.

Methods: Our method is primarily based on multiple maps t-SNE (mm-tSNE), which is a probabilistic method for
visualizing data points in multiple low dimensional spaces. We improved mm-tSNE by adding a Laplacian
regularization term and subsequently provide an algorithm for optimizing the new objective function. The
advantage of Laplacian regularization is that it adopts clustering structures of variables and provides more sparsity

Results: In order to further assess our modified mm-tSNE algorithm from a comparative standpoint, we
reexamined two social network datasets used by the previous authors. Subsequently, we apply our method on
phenotype dataset. In all these cases, our proposed method demonstrated better performance than the original
version of mm-tSNE, as measured by the neighbourhood preservation ratio.

Conclusions: Phenotype grouping reflects the nature of human disease genetics. Thus, phenotype visualization
may be complementary to investigate candidate genes for diseases as well as functional relations between genes
and proteins. These relationships can be modelled by the modified mm-tSNE method. The modified mm-tSNE can
be applied directly in other domain including social and biological datasets.

Background

A large number of studies proved that mutations of func-
tionally related genes are associated with genetic diseases
characterized with overlapping phenotypes [1,2]. On the
other hand, diseases with different clinical features and
genes may also have similar pathophysiological mechan-
isms [3,4]. Based on these assumptions, a number of stu-
dies focus on developing computational frameworks for
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discovering disease-related gene candidates by exploiting
complex associations between phenotypes and genotypes
found within heterogeneous genomic datasets such as
gene expression data, protein-protein interaction net-
works [5,6] and gene ontology annotations [7]. Studying
the associations between diseases not only help us to find
their common genetic basis [8], but also provide novel
insights into molecular mechanisms [9] and future drug
targets for pharmaceutical research [10].

It is beneficial to gain an intuitive understanding of a
large dataset by first exploring and visualizing it before
any computational intensive tasks are performed. For
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visualizing disease phenotypes, we may obtain novel
insights into disease and gene relationships. Traditional
techniques for visualization methods convert high-
dimensional data into two or three dimensional metric
spaces [11], and construct one single map for visualizing
objects. The main limitation of utilizing a metric space
approach is the transitivity of similarities induced by tri-
angle inequality. For instance, if phenotype A is close to
phenotype C within the metric space, and phenotype B is
close to phenotype C, then logically, phenotype A must
be close to phenotype B. However, in reality A may not
necessarily be similar to B. Since the diseases might be
related with each other in different categories, they may
have overlapping phenotypes, of which the set of pheno-
types may belong to different disease categories. In this
paper, we take into account the nature of disease-related
phenotypic data and investigate a novel method based on
mm-tSNE [12] to construct several maps that visualize
the non-metric similarities among phenotypes. mm-tSNE
can appropriately model intransitive similarities by giving
each point an importance weight in different maps. For
instance, we embed three example phenotypes A, B, C
into two maps in lower dimensional spaces (See Figure 1
for illustration), mm-tSNE assigns phenotype A an impor-
tance weight of 1 on the first map, phenotype B an impor-
tance weight of 1 in the second map, and phenotype C an
importance weight 0.5 in both. The pairwise similarity
between phenotype A and B, therefore, is 0. We employ
mm-tSNE to overcome transitive similarities which break
the non-metric similarity of data points to different maps
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[12]. The result shows that the probabilistic nature of
mm-tSNE can successfully visualize non-metric pheno-
types similarity.

However, mm-tSNE may have some disadvantages that
high importance weight points in the same map do not
correspond to the same cluster. That provide difficulty to
explain the meaning of each map. We introduced a Lapla-
cian regularization procedure for mm-tSNE. The Laplacian
regularization has been used for many other objective func-
tions such as linear regression [13] and Gaussian Mixture
Model [14]. The advantage of regularization for mm-tSNE
is that it adopts clustering structures of variables and pro-
vides more sparsity to estimated parameters. Our experi-
mental results indicate that the novel method can achieve
comparable performance and provide a more flexible fra-
mework for data visualization than mm-tSNE.

Methods

Dataset

The input phenotype similarity matrix A is a symmetric
matrix in which each row (and column) corresponds to a
phenotype. Phenotype similarity was constructed by van
Driels et al. [15] using the Online Mendelian Inheritance
in Man (OMIM) database [16,17]. The disease classifica-
tion is obtained from the Human Disease Network [8],
which uses plain-text to summarize the specific features
of the disease. We obtained a similarity matrix P among
1,014 phenotypes within 21 disease classes. Similarities
which did not exceed a threshold of 0.5 were filtered
from the results.

Metric space

\
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Figure 1 Explanation of non-metric similarity. The example illustrates how mm-tSNE can visualize phenotype overlapping in different maps
that do not obey the triangle inequality. The size of the points corresponds to importance weights of points in each map.
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t-Stochastic Neighbourhood Embedding (t-SNE)
t-Stochastic Neighbourhood Embedding (t-SNE) is a
method that tries to find a non-linear mapping between
high dimensional space and low dimensional space that
keeps distances between pairs of points, while preserving
both local and global information [18]. It has been suc-
cessfully applied to visualize documents [19], breast cancer
CADx imaging data [20], and many other domains. t-SNE
models the similarity among data points by probability dis-
tance rather than Euclidean distance. The similarity
between two points in high dimensional space is repre-
sented by joint probabilistic distance pij:

~ gxp(_”xi —xj||2/202)
Dk i exP(_”xk — x| |2/202)

The goal of t-SNE is to compute a 2 or 3 dimensional
space where the probabilistic distances among all data points
are preserved. t-SNE uses heavy-tailed distribution Qij that
centers at each point to define the 2 or 3 dimensional “phe-
notype space”, in order to avoid the “crowding problem”
[18]. The similarity between two points in low dimensional
space is represented by joint probabilistic distance dij:

_ e
Yo (1+ 1y —ml2) ™!
In t-SNE, how faithful that dij models pij is measured

by Kullback-Leibler divergence. The cost function of
t-SNE is given by:

pi , forvi,j i #j(1)
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Multiple maps t-SNE
mm-tSNE is an extension of t-SNE, which constructs
several maps M to visualize non-metric properties of
phenotype similarities that alleviates the limitation of
one single metric map. According to the nature of input
similarity matrix P in high dimensional space, we nor-
malized the original similarity matrix A to make sure
that the input similarity matrix P could be a symmetric,
non-negative and sums up to one.

Phenotype similarities in two dimensional spaces are
also presented by dij, which is the similarity between
phenotype i and phenotype j in the visualization as the
weighted sum of the pairwise similarities between the
points corresponding to the input objects i and j across
all M maps. The similarity matrix among all points in
maps m can be written as:

-1
§ ) (
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where yi(m) represents the low-dimensional model of
object i in map m. In each map m, a phenotype point i
has an weight ni(m), ni(m) > 0 that measures the impor-
tance of point i in map m, the weight of phenotype
point i over all maps M are equal to 1.For computa-
tional convenience, the weight 7™ was represented by

i
unconstrained weight wi(m):

(m)
(m) e’

T

= Z w(m’) (5)
m' e

The cost function is the same as Eq. (3), but the opti-

mization of the cost fuction with respect to the locations
(m)
i

of the points y.™ in all phenotype maps and with

respect to the weights wi(m).

Multiple maps t-SNE with Laplacian regularization
We improved mm-tSNE by adding a Laplacian regulari-
zation term to the cost function C(Y):

COY) = KLPIQ) = (1= 1) X apylog! + 37" (6
y

where L = (diag(}_; pij) — Pij). The gradient of the reg-
ularized mm-tSNE with respect to the low dimensional
map point y™ is given by:

aa(;f('? =4(1-1)Y

1

aC (Y)
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where di(jm) = ||yi(m) — y,(m)”z.
The gradient of the regularized mm-tSNE with respect

to the weight ni(m) is given by:
aC(Y) 2 .
=2 (ClijZ (pij — ql'j))ﬂj(m)(l + d;-m)) +ALm (8)

P j_[i(m)

where Z = Zk Zl#k Zm' ”im'”lin'(l + dE)

Neighborhood preservation ratio

Neighbourhood preservation ratio (NPR) has previously
been proposed by van der Maaten, Laurens [12] as a
proper measurement that how well the similarities are
modelled by multiple maps. NPR measures to what
extent these similarities in original space are correctly
preserved in multiple low dimensional spaces. For each
phenotype i, we find its k neighbourhoods (namely, Nji1)
in the original space by selecting the k highest pij-values,
and find its k neighbourhood (namely, Ni2) in multiple
maps from mm-tSNE by selecting the k highest di-values.
The NPR is defined as the average ratio of preserved
neighbour numbers:

1 n |Ni1 ﬂNi2|
= 9
NPR . § O " ©)
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where |Nil N Niz| count the number of elements in a
set and n is the total number of phenotypes. In this
paper, we apply the same way to assess NPR that helps
us to choose the numbers of maps by combining the
number of maps m and A. We choose eleven different A
from O to 0.01, interval by 0.001. When A= 0, our
method equals to mm-tSNE.

Results

Model selection and performance comparison

By utilizing original mm-tSNE, we have to choose one
parameter m—the number of maps. But for the regular-
ized mm-tSNE, we have an additional parameter A. The
neighbourhood preservation ratio (NPR) is applied for
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model selection of these parameters (See methods).
Figure 2 is the comparison results on word association
dataset. We compared our method with multiple maps
on two datasets as previous author applied [12]. The
regularized mm-tSNE has comparable performance with
mm-tSNE. However, we should remind that the original
version of mm-tSNE select m = 8 as their best models
and we selected 1 = 0.005, and 15 maps which reveals
the relatively better neighborhood preservation ratio
than other numbers. Figure 3 is the comparison results
on co-authorship dataset from [12]. For this dataset, the
combination of parameters A =0.005 and m =15
reveales better neighborhood preservation ratio than
other parameters. The green line in Figure 3 is our

regularized mm-tSNE on word association dataset.
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Figure 2 Comparison on word association dataset. The comparison results of neighbourhood preservation ratios for mm-tSNE and

mm-tSNE on co-authorship dataset.
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Figure 3 Comparison on co-authorship dataset. The comparison results of neighbourhood preservation ratios for mm-tSNE and regularized
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model which superior to mm-tSNE. Overall, the Lapla-
cian regularization achieves comparable or better perfor-
mance than mm-tSNE.

Laplacian regularized mm-tSNE reveals intransitive
similarity

We then applied Laplacian regularized mm-tSNE on the
similarity matrix of human phenotype data for exploring
the relationships among genetic-disease phenotypes. NPR
with respect to number of maps is showed on Figure 4
we get highest ratio (0.708) when a 15 maps mm-tSNE is
applied. Figure 5 is the heatmap of NPR in the parameter
space of A and m. The x axis is the values of L we
select for our experiment, y axis stands for numbers of
maps. The colours of legend stand for the ratios pro-
gressively decreasing from high to low. The best ratio
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appears at A = 0.009, number of maps is 23. However,
according to our results, we found that approximately
10 maps, A = 0.002 (which is the second best) appear to
suffice for modelling nonmetric structure of phenotype
similarities. Thus for simplification, we used the later
parameters setting.

Overall, we found that phenotypes belonging to the
same disease class are tend to group together. However,
some phenotypes in the same disease category are over-
lapping with other disease class. These diseases include
but not limited to developmental, skeletal diseases. This
is reasonable because that most developmental disease
would be expected to affect multiple tissues.

Furthermore, we found that our method can appro-
priately model intransitive similarities between pheno-
types and much better than mm-tSNE. For example,
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Figure 4 NPR for multiple maps t-SNE on phenotype dataset. The result shows the NPRs(neighbourhood preservation ratios) with respect to
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Figure 5 Heatmap of neighbourhood preservation ratio for regularized mm-tSNE. Neighbourhood preservation ratio for regularized
mm-tSNE. The X axis is the values of A we select for our experiment, y axis stands for numbers of maps. The colours of legend stand for the
ratios progressively decreasing from high to low. Since the best ratio appears at A = 0.009, number of maps is 23, according to our results,
we found that approximately 10 maps, A = 0.002 appear to suffice for modelling nonmetric structure of phenotype similarities.
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Antley-Bixler syndrome (ABS, OMIM ID: 207410) has
importance weights 0.687 and 0.267 at two maps (Map
6 and 10, See Figure 6 and Figure 7) respectively. Note
that to prevent the visualization from being too clut-
tered phenotypes with an importance weight below 0.1
were removed from each map. At Map 6, Campomelic
dysplasia (CD, OMIM ID: 114290) is one of the neigh-
bours of ABS, they have a similarity 0.502 (See Table
1) and the weights of them at metric space Map 6 are
0.687 and 0.908 respectively (See Table 2). At Map 10,
ABS has a close neighbour Shprintzen-Goldberg syn-
drome (SGS, OMIM ID: 182212) with similarity 0.542.
From Table 2 we see that SGS is not showed on Map 6
and CD is not showed on Map 10 although they are
both neighbours in separate maps. That is, the neigh-
bour of ABS in Map 6 is not necessary the neighbour
of it in Map 10. Actually, the similarity of CD and SGS
is 0 (See Table 1). Although the original goal of mm-
tSNE is set up to discover the intransitivity of similarity,
we found that mm-tSNE grouped these four phenotypes
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in Table 1 together in one map (See Figure 8). This
result indicates that Laplacian regularized mm-tSNE
reveals intransitive similarity which has not discovered
by the original mm-tSNE.

Besides CD, at Map 6 (see Figure 6) ABS has another
close neighbour —Melnick-Needles syndrome (MNS,
OMIM: 309350) with a similarity 0.502. ABS, CD and
MNS are all neighbours at Map 6. However, it is surpris-
ingly to see that the similarity between ABS and MNS is 0
(See Table 1). We then investigate these three phenotypes
further. MNS is a skeletal disease that associated with
abnormal skeletal development, as well as other health-
related problems. Some main symptoms of it include short
stature, abnormally long fingers and toes, irregular ribs
[21]. ABS is belongs to an unclassified disease, but they
share the most common symptoms [22]. CD is a severe
disorder that affects the development of the skeleton and
reproductive system. Although these three disorders are in
three different categories (Skeletal, unclassified and devel-
opmental respectively), the common symptoms is that
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Figure 6 Map 6 from regularized multiple maps t-SNE. The results based on regularized mm-tSNE reveals one of the ten maps in which
contains our selected phenotypes in examples. Each text corresponds to a specific OMIM ID. The size of each text corresponds to its importance
weights in the map. The colours of each text indicated which disease categories a phenotype belongs to. We magnify the neighbourhoods
details of one point Melnick-Needles syndrome (MNS, OMIM: 309350) and its two other neighbours Campomelic dysplasia (CD, OMIM ID:
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Figure 7 Map 10 from regularized multiple maps t-SNE. Based on regularized mm-tSNE, we are interested in one point-Melnick-Needles
syndrome (MNS, OMIM: 309350) in map 10 as well as its neighbours Shprintzen-Goldberg syndrome (SGS, OMIM ID: 182212) and Antley-Bixler
syndrome (ABS, OMIM ID: 207410). Sizes and colours of each point have the same meaning as map 6.

they are all related to skeleton system and they are often
life-threatening in the new born period. The analysis
shows that although the direct similarity between ABS and
MNS is 0 as measured by the text mining approach from
[15], our method indeed inferred their real relationships
from the data. This is not inconsistent with the modelling

Table 1 Extracted similarities from original matrix.

of intransitive similarity because they are in the same
metric space Map 6.

Conclusion

We develop a novel visualization method—graph Lapla-
cian regularized mm-tSNE. The regularization of mm-
tSNE put more sparsity to the weights of data points in
different maps and less sparsity to the coordinates of

Phenotype with MNS (@)) ABS SGS .
OMIM ID (OMIM: (OMIM: (OMIM: (OMIM: Table 2 Importance weights for extracted phenotypes.
309350)  114290)  207410)  182212) Map6 Map10

MNS 1 0.529 0 0.506 MNS 0.460 0.102
(OMIM: 309350) (OMIM: 309350)

cD 0.529 1 0.502 0 (@b 0.908 0.073
(OMIM: 114290) (OMIM: 114290)

ABS 0 0.502 1 0542 ABS 0.687 0.267
(OMIM: 207410) (OMIM: 207410)

SGS 0.506 0 0.542 1 SGS 0.002 0.594

(OMIM: 182212)

(OMIM: 182212)

Extracted similarities between four phenotypes in original similarity matrix

The importance weights of four phenotypes in Map 6 and Map 10.
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Figure 8 Map 11 of 15 maps using multiple maps t-SNE. Based on mm-tSNE, we are interested in one point-Melnick-Needles syndrome
(MNS, OMIM: 309350) only in map 11. The results shows all these four phenotypes appear in one of the fifteen maps. Sizes and colours of each
point have the same meaning as map 6.

data points than previous method. By doing this, we got
better visualization results and novel biological interpre-
tation. On the application of this method, we found that
our approach can identify interesting intransitive simi-
larity among disease phenotypes. This approach also
adds more flexibility for visualization tasks. For example,
we can adjust the parameter A to provide the weights
(and the coordinate of data points in low dimensional
space) more or less sparsity to “zoom in” or “zoom out”
data points in different maps. We expect the new tech-
nique could be useful in more general visualization ana-
lysis in other field.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

WX and XJ implemented regularized mm-tSNE algorithm and run the
experiments. XJ and XH designed algorithm based on mm-tSNE. GL and XH
involved in the data generation and statistical analysis. All authors read and
approved the final manuscript.

Acknowledgements

This work was supported in part by NSF lIP 1160960, NNS IIP 1332024, NSF
CCF 0905291, NSFC 90920005, NSFC 61170189 and China National 12-5 plan
2012BAK24B01

Declarations

Publication of this article has been funded by the NSF IIP 1160960, NNS IIP
1332024

This article has been published as part of BMC Medical Genomics Volume 7
Supplement 2, 2014: |EEE International Conference on Bioinformatics and
Biomedicine (BIBM 2013): Bioinformatics in Medical Genomics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcmedgenomics/supplements/7/S2.

Authors’ details

'International School of software, Wuhan University, Wuhan, Hubei, 430079,
China. “College of Computing & Informatics, Drexel University, Philadelphia,
PA 19104, USA. >School of Business, Hunan University, Changsha, Hunan,
410012, China.

Published: 22 October 2014

References
1. Brunner HG, Van Driel MA: From syndrome families to functional
genomics. Nature Reviews Genetics 2004, 5(7):545-551.


http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.ncbi.nlm.nih.gov/pubmed/15211356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211356?dopt=Abstract

Xu et al. BMC Medical Genomics 2014, 7(Suppl 2):S1
http://www.biomedcentral.com/1755-8794/7/52/S1

20.

21.

22.

Lim J, et al: A protein-protein interaction network for human inherited
ataxias and disorders of Purkinje cell degeneration. Cell 2006,
125(4):801-814.

Limviphuvadh V, et al: The commonality of protein interaction networks
determined in neurodegenerative disorders (NDDs). Bioinformatics 2007,
23(16):2129-2138.

Huynen MA, Brunner HG: Phenome connections. Trends in genetics 2008,
24(3):103-106.

Lage K, et al: A human phenome-interactome network of protein
complexes implicated in genetic disorders. Nature biotechnology 2007,
25(3):309-316.

Oti M, et al- Predicting disease genes using protein-protein interactions.
Journal of medical genetics 2006, 43(8):691-698.

Freudenberg J, Propping P: A similarity-based method for genome-wide
prediction of disease-relevant human genes. Bioinformatics 2002,
18(suppl 2):5110-S115.

Loscalzo J, Kohane |, Barabasi AL: Human disease classification in the
postgenomic era: a complex systems approach to human pathobiology.
Molecular systems biology 2007, 3(1).

Wang Q, et al: Multi-Dimensional Prioritization of Dental Caries
Candidate Genes and Its Enriched Dense Network Modules. PloS one
2013, 8(10):e76666.

Csermely P, et al- Structure and dynamics of molecular networks: A novel
paradigm of drug discovery: A comprehensive review. Pharmacology &
therapeutics 2013, 138(3):333-408.

Legendre P, Legendre L: Numerical ecology. 2012, 20, Elsevier.

Van der Maaten L, Hinton G: Visualizing non-metric similarities in multiple
maps. Machine learning 2012, 87(1):33-55.

Li C, Li H: Network-constrained regularization and variable selection for
analysis of genomic data. Bioinformatics 2008, 24(9):1175-1182.

He X, et al: Laplacian regularized gaussian mixture model for data
clustering. Knowledge and Data Engineering, IEEE Transactions on 2011,
23(9):1406-1418.

van Driel MA, et al- A text-mining analysis of the human phenome.
European journal of human genetics 2006, 14(5):535-542.

Hamosh A, et al- Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic acids
research 2005, 33(suppl 1):D514-D517.

Jiang X, et al: Modularity in the genetic disease-phenotype network. FEBS
letters 2008, 582(17):2549-2554.

Van der Maaten L, Hinton G: Visualizing Data using t-SNE. Journal of
Machine Learning Research 2008, 9(11).

Lacoste-Julien S, Sha F, Jordan MI: DiscLDA: Discriminative learning for
dimensionality reduction and classification. Advances in neural information
processing systems 2008.

Jamieson AR, et al: Exploring nonlinear feature space dimension
reduction and data representation in breast CADx with Laplacian
eigenmaps and t-SNE. Medical physics 2010, 37:339.

Verloes A, et al: Fronto - otopalatodigital osteodysplasia: Clinical evidence
for a single entity encompassing Melnick - Needles syndrome,
otopalatodigital syndrome types 1 and 2, and frontometaphyseal
dysplasia. American journal of medical genetics 2000, 90(5):407-422.
McGlaughlin KL, et a: Spectrum of Antley-Bixler syndrome. Journal of
Craniofacial Surgery 2010, 21(5):1560-1564.

doi:10.1186/1755-8794-7-52-S1

Cite this article as: Xu et al.: Visualization of genetic disease-phenotype
similarities by multiple maps t-SNE with Laplacian regularization. BMC
Medical Genomics 2014 7(Suppl 2):S1.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/16713569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16713569?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17553855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17553855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18243400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16611749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12385992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12385992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24146904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24146904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23384594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23384594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18310618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18310618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16493445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608251?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18582463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20175497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20175497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20175497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10706363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10706363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10706363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10706363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20818252?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Dataset
	t-Stochastic Neighbourhood Embedding (t-SNE)
	Multiple maps t-SNE
	Multiple maps t-SNE with Laplacian regularization
	Neighborhood preservation ratio

	Results
	Model selection and performance comparison
	Laplacian regularized mm-tSNE reveals intransitive similarity

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

