Chen et al. BMC Medical Genomics 2014, 7(Suppl 2):S2
http://www.biomedcentral.com/1755-8794/7/52/S2

BMC
Medical Genomics

RESEARCH Open Access

Identifying disease genes by integrating multiple
data sources

Bolin Chen', Jianxin Wang?, Min Li%, Fang-Xiang Wu'?"

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2013)
Shanghai, China. 18-21 December 2013

Abstract

Background: Now multiple types of data are available for identifying disease genes. Those data include gene-
disease associations, disease phenotype similarities, protein-protein interactions, pathways, gene expression profiles,
etc.. It is believed that integrating different kinds of biological data is an effective method to identify disease genes.

Results: In this paper, we propose a multiple data integration method based on the theory of Markov random
field (MRF) and the method of Bayesian analysis for identifying human disease genes. The proposed method is not
only flexible in easily incorporating different kinds of data, but also reliable in predicting candidate disease genes.

data in our experiments.

Conclusions: Numerical experiments are carried out by integrating known gene-disease associations, protein
complexes, protein-protein interactions, pathways and gene expression profiles. Predictions are evaluated by the
leave-one-out method. The proposed method achieves an AUC score of 0.743 when integrating all those biologjical

Background
Many human genetic diseases or disorders are resulted
from mutations of multiple genes [1]. The identification of
those disease genes is not only important in understanding
genetic disease mechanisms, but is also helpful in develop-
ing new methods in diagnostics and therapeutics [2].
Genes associated with similar disorders are often func-
tionally related, supporting the existence of distinct disease-
specific functional modules [3-5]. A “guilt-by-association”
[6] assumption is often used by various algorithms to iden-
tify disease genes. If a gene is ranked as “close” to known
disease genes, it would be likely regarded as related to the
same disease. The principle is largely supported by many
biological data sources, such as protein-protein interactions
(PPIs) [7-11], pathways [12-15], gene expression profiles
[16-18], etc.. Lage et al. [19] rank disease genes from a
constructed phenome-interactome network by using PPIs
and phenotype similarities. Wu et al. [5] develop a tool
called CIPHER to predict disease genes based on a global
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concordance between a PPI network and a phenotype net-
work. Hwang et al. [20] use a similar coherence score
between a gene network and a phenotype network. Vanunu
et al. [21] design a method called PRINCE that predicts dis-
ease genes and protein complexes associated with diseases
at the same time. Li et al. [22] analyze human disease and
disease relationships from a pathway-based point of view.
Ma et al. [23] employs the Markov Random Field (MRF)
theory to prioritize genes associated with a specific pheno-
type or trait by using gene expression profiles and PPI data.

Multiple data integration is another commonly used
methodology that collects evidences of gene disease asso-
ciations from different data sources. Kohler et al. [24]
propose a random walk with restart (RWR) algorithm
that predicts disease genes by using a mixed PPI network.
Zhang et al. [25] develop a Bayesian regression approach
to explain similarities between disease phenotypes by
using diffusion kernels of one or several PPI networks.
Chen et al. [26] define a data integration rank (DIR)
score by taking a max instead of average to capture the
most informative evidence among a set of integrated data
sources. The DIR algorithm potentially yields better per-
formance than many other data integration methods [26].
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However, challenges still exist because of the following
reasons. Firstly, there are many levels of controls along
paths from genotypes to phenotypes [26]. Genes have to be
transcribed and then be translated into proteins, and pro-
teins interact with many other molecules to perform cellu-
lar functions [26-28], resulting in the complex relationship
between genotypes and phenotypes [29]. Secondly, different
biological data are heterogeneous. They describe relation-
ships of molecular entities in various levels. No widely
acceptable criterion is available to standardize them into
the same scale. An inappropriate integration method com-
bines noise as well, which often decreases the prediction
accuracy. Thirdly, many “guilt-by-association” methods
only take edges of a candidate gene with known disease
genes into account, ignoring edges of the gene with many
other vertices in a biological network. They ignore the fact
that the biological network, let’s say a PPI network or a
gene co-expression network, is built independently for
describing a specific biological relationship of proteins or
genes. It may have no direct relationship with gene disease
associations.

In this paper, we introduce a multiple data integration
method for disease gene identifications, which considers
comprehensive characters of a set of heterogeneous data-
sets to capture the complex relationship between genotypes
and phenotypes. The method is based on the theory of
MRF and the method of Bayesian analysis. Two previous
algorithms of Deng et al. [30] and Ma et al. [23] have been
proposed to integrating multiple datasets by using the
MREF theory for yeast protein function predictions. Their
method cannot be directly employed to identify human
disease genes. Predictions of the method of Deng et al. [30]
become unreliable due to the following scale problem.
Human genome consists of around 21,000 genes [31],
while most diseases are associated by mutations of only a
few genes. Even merging similar diseases into classes, the
associated genes of individual disease classes is still not
enough to estimate parameters correctly by using Deng’s
method. The method by Ma et al. [23] mainly uses gene
expression profiles to group genes with similar characters.
PPI data are only employed to calibrate predictions. It is
not clear how to integrate more kinds of biological data by
using their method. In paper [32], we have developed a
basic modified MRF model for human disease gene priori-
tization. In this study, we will further improve it by intro-
ducing a new parameter estimation strategy and a new
Gibbs sampling strategy. The improved MRF algorithm is
not only stable in terms of parameter estimation, but also
reliable in terms of its prediction accuracy.

Methods

In this paper, we first briefly describe how the problem
is formulated as a Bayesian labelling problem. The label-
ling configration assumes to follow a Gibbs distribution.
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After that, a MRF model is introduced to solve this pro-
blem by integrating multiple kinds of biological data,
including known gene-disease associations, protein com-
plexes, PPIs, pathways and gene expression profiles.

The Bayesian labelling problem

Let L = {Ly, Ly, ..., L} be a set of k labels and S = {S;, Sy, ...,
S,} be a set of r sites. A labelling problem [33] is defined as
assigning each site Si with a label in L.

Let F = {F, F,, ..., F,} be a family of random variables
defined on S, in which each random variable F; takes
value f; of L. We use the notation F = f to represent the
joint event that {F; = f;, ..., F, = f,}, where f = {f, ..., f;}
is called a configuration of F. The set of all configura-
tions is denoted as F.

The relationship of sites is determined by a neighbor-
hood system N = {N;|V; € S}, where N; is the set of sites
neighboring i.

A family of random variables F is said to be a MRF on
S w.r.t. N if and only if the following two conditions are
satisfied:

1 Positivity: P(f) > 0,¥ f € F,
2 Markovianity: P(fi|Fs\(i;) = P(filfn,)-

The Markovianity indicates that the probability of a
local event f; conditioned on all other events is equivalent
to that conditioned on only events of its neighbors.
Hence, the joint probability P(f) of the random field can
be uniquely determined by local conditional probabilities.

Let r be an observation of F . Suppose we know both
the prior probability distribution P (f) of configuration f
and the conditional probability distribution P (r|f) of
the observation r given the configuration f. The best
estimation of fis the one maxizing a posteriori probabil-
ity (MAP), which is

P(fIr) = P(rIf)P(f)/P(r) 1)

where P(r) is the probability that we get the observa-
tion r.

The Bayesian labelling problem [33] is that given a set
of observation r, find the MAP configuration of labelling
f* = arg maxge7P(f|r). Here, as P (r) is not a function
of f, it does not affect the MAP estimation of f.

Gibbs distribution in MRF

It is usually hard to specify a prior probability of a MRF
for a real problem. Fortunately, the Hammersley-Clifford
theorem [34] provides a solution for this. According to
the theorem, F is a MRF on S w.r.t. A/ if and only if the
probability distribution of P (F = f) of the configuration
is a Gibbs distribution w.r.t. A/. The Gibbs distribution
has a form of
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P(f)=2"1.e UNIT, 2)

where Z =3 re UM is a normalizing constant, T is
a global control constant that is often assumed to be 1,
and U(f) is the energy function calculated as follows

ue) =y velf)

ceC
3)
=3 Vi) + Y. Valfuf) + Ra(f),
{iteCy {(ij)}eCy

where Vi(f) is the energy potential of C; (the set of i
order cliques) in the neighborhood system A/, R,(f)
represents those higher order terms. A special case of
MRE is the Ising model that only considers up to the
second order of cliques [35].

Given a configuration f, let the conditional probability
distribution of observation r have the same exponential
form

P(r|f) =z - e U0, 4)

Then the posterior probability of the Gibbs distribu-
tion has form

P(flr) = Zz' - e7UUM, (5)
where the posterior energy is [33]

u(fir) = u(f) + u(fin). (6)

Based on this, suppose the collection of whole human
genes G = {gy, g, ... gn} is the site set, and {1, 0} is the
label set, where 1 represents a gene is a disease gene
and 0 otherwise. The problem of human disease gene
identification is actually to find the best configuration of
G according to what is currently known about human
diseases.

The MRF model for identifying human disease genes
Suppose human genome consists of a set of N genes G =
{g1, g2 ..., gn}- Some of them are already known to be asso-
ciated with genetic diseases, while associations of most
other genes are still not known. Without loss of generality,
let g1; go, ..., g, be genes that have not yet been known to
be associated with genetic diseases, and g, 1, €12 - Luim
be currently known disease genes. Obviously, we have N =
n + m. Let {D;, D,, ..., D); } be a set of human diseases,
where D; consists of the set of genes that are already
known associated with the i disease.

For a specific disease, let X = (X3, X5, ..., X,,,,) be the
random variables defined on all genes, where X; = 1
represents gene g; to be a associated gene of the disease
and X; = 0 otherwise.

Consider those individual genes. Let (711, 73, ..., 7T,4,,) be
a set of probabilities, where ; represents the probability
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that X; = 1. Let x = (%1, %y, ..., X,,.,,,) be observations of X.
The probability distribution of configuration x is propor-
tional to

n+m n+m
1_[7'[,‘ = l_[]'[lxl(l — ﬂi)lixi
i=1 i=1
n+m T "
L 1
= 1—m; 7
[1[(1 IDRCEED (7)

n+m n+m n+m

= exp [Z aixi + Zlog(l — ;)] x epoa,x,-
i=1 i=1 i=1

iy
171', and Y ""log(l—m;) is a
1

where «; =log 1 —

constant.

Next, consider pairwise relationships between genes.
Suppose we have K biological networks H = (H*, .., H),
where vertices represent genes. Given a H, edges of H
represent a specific kind of biological relationship
between those genes. Let x be the observation labels of
X. According to x, edges of H* can be classified into
three categories: (1) edges that between two 1-labelled
vertices, (2) edges that between a 1-labelled vertex and a
0-labelled vertex, and (3) edges that between two
0-labelled vertices. Let N’l‘l, N’fo and Ngo denote the num-
ber of edges in each category of G* respectively. Then

Ni= ¥ ®)
{(ij)}eB(HY)

NI{O = Z (1 — x,-)x]- + x,—(l - x]—), (9)
{(ij)}€E(HY)

N?)O = > (1=x)(1 —x). (10)
{(i.)}eE(H")

The probability that we have such a kind of biological
network H* conditional on those observed labels x
follows as

P(HE|x, 0%) oc e NE, + y*NE + KENE | (11)

where 6 = (B, ¥, k") are weights of these three kinds
of edges for H*. One of three parameters in 6" is redun-
dant. Without loss of generality, let x* = 1. Similarly, for
K biological networks, the probability that we observe
them conditional on the observed labels follows as

K
P(H',..., H x,0',...05) }Z P NE) + yENE + NE. (12)
k=1

Based on the Ising model, the energy function can be
written in terms of x as

n+m K
u(x|0) = — Zaixi - Z (/SkN}l‘o N Ng()) (13)

i=1 k=1



Chen et al. BMC Medical Genomics 2014, 7(Suppl 2):S2
http://www.biomedcentral.com/1755-8794/7/52/S2

where 6 = (ot, B ¥, .., B, ¥¥) are parameters. In the
terminology of MRF [30], U (x|6) defines a Gibbs distri-
bution of the entire networks

1
P(x|60) = x e~U0),

2(6) (14)

where Z(0) is the normalized constant that is calcu-
lated by summing over all configurations y:

2(0) = Y. U,

xex

The Gibbs sampling

The Gibbs distribution (14) gives a prior probability dis-
tribution of the configuration for all genes. In the study
of identifying human disease genes, the objective is to
find the posterior probability of X;, X5, - - -, X,, condi-
tional on known disease genes

P(X1/X2/ e /Xn|Xn+1/Xn+2/ o /Xn+m)-

To achieve this, consider the following posterior prob-
ability distribution of an individual gene X;

P(X; = 1|1X|-4,0)

where X[_;; = (X1, - - » Xiipp Xivs> = Xpoms) TEpresents
labels of all other genes except X; 0 are parameters.
According to the Bayes’ theorem [36] and the Gibbs dis-
tribution (14), we have
P(X; = X[, 0)
_ P(X;i = l,X[,i||(9)
CP(Xi = 1,X—10) + P(X; = 0, X[—10)

) e UXi=1X1-lg) (15)
e UM=1X1-16) 4 o= U(Xi=0.X[-10)
2T()
T 1
where
UXi =1, X[-ij|0) = U(X[-q)10) — e
K
(16)
=D (B*MG — v*MY),
k=1
U(X; =0, X[—160) = U(X[-710)
K
(17)
- (B'M} — Mmp),
k=1
the according to equation (13), and
T(i) = —UXi = 1, X|_16) + U(Xi = 0, X|_16)
(18)

K
=ai+ Y [(B" = MG+ (" — BYME].

k=1
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Here M! and M" are the number of neighbors of the
gene &i labelled with 0 and 1 on network H*, k = 1, ...,
K, respectively.

Equation (15) provides a method to update the label
X; according to all other labels. Suppose parameters 6 =
(o BY 7, o B ¥5) of the model are given, together
with prior observed labels of all genes. Using equation
(15), we can update labels for all unknown genes.
Repeating this procedure a number of times until all
posterior probabilities of labels are stabilized. This is the
essential procedure of the Gibbs sampling.

Parameter estimation

In practice, we do not know parameters of the model
and they need to be estimated according to those
known informations. Ideally, the maximum likelihood
estimation (MLE) method is a good choice to estimate 6
in equation (14). However, the normalizing part Z(0) is
also a function of 6, which is the main difficulty for
using the MLE method directly. Deng et al. [30] using a
pseudo-likelihood method to estimate parameters in the
MRF model. Specifically, the following pseudo-likelihood
function is derived from equation (15), which is

log T = - 0) ) (19)
1 —P(X; = 11X[-q. 0)

The parameter estimation can be done by a binary logis-
tic regression, where dependent variables in equation (19)
are categorical labels and independent variables are
M}, Mi, ..., ME, MX of the K biological networks. The
standard MATLAB function glmf it() can be employed to
perform such binary logistic regression.

The pseudo-likelihood method used by Deng et al. [30]
is valuable. However, there is an important potential
problem [32,37], which may result in unreasonable predic-
tions with their original method. The parameter estima-
tion of Deng et al. [30] is conducted on only known
labelled vertices of biological networks. However, a known
vertex with labelling 1 may have plenty of unknown ver-
tices with labelling 0 in a biological network and vice
versa. A neglect of those unknown vertices may result in
inaccurate estimated parameters, which makes predictions
problematic. This problem becomes serious with the
increasing number of unknown vertices [37]. Kourmpetis
et al. [37] alternatively introduce a Bayesian MRF model
to estimate parameters and update labels at the same time.
An adaptive Markov Chain Monte Carlo (MCMC) algo-
rithm is employed to perform the estimation by using
another scaling parameter, a Z matrix and a multivariate
normal distribution.

In this study, we introduce a new method to simulta-
neously estimate parameters and update labels. Suppose
a prior probability of m; for each unknown vertex is
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known. A set of prior labels of unknown vertices can be
assigned according to this probability. Then the pseudo-
likelihood parameter estimation method is performed
on all labeled vertices, including those known labelled
ones and those unknown prior labelled ones. Using
these estimated parameters to update labels for all
unknown vertices, and then using the updated labels to
re-estimate parameters until both of them are stable.
The step-by-step description of this procedure is given
as follows.

1 Initialization:

Let ¢t = 0, and initialize labels of all vertices
2, x0, L x )

2 Estimating parameters:

00 < x,x9, ..., x\,);

3 Gibbs sampling:

X = 00, x0, L, x1,
XD = 00, xU, x1, LX)
th+1) = (G(I), X§t+1)’ Xgnl)’ Xir)"”’X,(lrJr)m)

X = o, xD, L xWD o xO  x0

n—17 “*n+17*
X(“‘l) = X(t)

n+1 n+1

XS = X
4 Lett=1t+ 1, and go to 2, until stabilized.

During the Gibbs sampling procedure, a “burn-in per-
iod” and a “lag period” often need to be specified. The
“burn-in period” is the period that a Markov process
takes to become stabilized. Simulation results in this
period are discarded to reduce the effect of initial prior
probabilities. The “lag period” is the period that needs
to reduce the dependence of the Markov process. The
posterior probabilities in this period are estimated by
averaging simulation results during individual lag steps.

In this study, the “burn-in period” takes 100 steps while
the “lag period” takes 90 steps. Simulation results are aver-
aged every 10 steps in the “lag period”. There is 1000 steps
in total for simulations. For convenience, predictions
made by the original MRF model of Deng et al. [30] is
denoted as “MRF-Deng”, while predictions of our
improved MRF method is denoted as “IMRF;“ hereafter.
A second improved MRF method is also given in the fol-
lowing by adding a new period at last in simulations,
which is called “prediction period”. It takes the average
estimated parameters in the “lag period” as parameters
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and fixes them hereafter in simulations. The input prob-
abilities of unknown vertices are also obtained by the aver-
age posterior probabilities in the “lag period”. The Markov
process runs another 100 steps in this period. The average
posterior probabilities in the “prediction period” are out-
putted as final predictions, and predictions of this method
is denoted as “IMRF,".

Estimating a prior probability
Now, the only problem left is to estimate the prior
probability of ;. Similarly as the method used in Deng
et al. [30], we also estimate them according to known
protein complexes. Since genes that encode proteins in
a same complex tend to associated with similar diseases.
For a gene g; that encodes protein in a complex,
i =A/B (20)

be the prior probability, where A is the number of dis-
ease genes for a specific disease in the complex, and B is
the number of all disease genes in the complex. If a gene
appears in multiple protein complexes, we use the maxi-
mum value as the prior probability for the gene.

For those genes that do not belong to any protein
complex, let

i = C/D (21)
as the prior probability, where C is the number of all

currently known disease genes for the specific disease,

and D is the total number of genes in human genome.

Data sources

The gene-disease association data are obtained from Goh
et al. [3], which contain 1 284 disorders and 1 777 disease
genes. These data are originally collected from the Morbid
Map list of the Online Mendelian Inheritance in Man
(OMIM) [38]. Disorders are manually classified into 22
primary disease classes, including a ‘multiple’ class and a
‘unclassified’ class. In this study, we consider only those
disease classes that consist of at least 30 genes. We also
exclude the ‘multiple’ class, the ‘unclassified’ class, the
‘cancer’ class and the ‘neurological’ class due to the class
evidence and the class heterogeneity [3]. The final dataset
consists of 815 genes in 12 disease classes.

The protein complex data are collected from the data-
base of CORUM [39] and PCDq [40]. There are 1677 and
1103 protein complexes in the dataset that consist of at
least two proteins, respectively. There are in total 3881
proteins in those protein complexes.

The PPI datasets are derived from the database of HPRD
(Release 9) [9], BioGrid (Release 3.2.108) [10] and IntAct
(downloaded on Jan 26, 2014) [11], respectively. Dupli-
cated edges between the same pair of vertices and edges
connecting to itself are deleted. Each dataset is processed
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independently, and three PPI networks are obtained
finally. The HPRD PPI network consists of 9465 vertices
and 37039 edges. The BioGrid PPI network consists of
15298 vertices and 127612 edges. The IntAct PPI network
consists of 13449 vertices and 63825 edges.

The pathway datasets are obtained from the database
of KEGG [12], Reactome [13], PharmGKB [14] and PIN
[15], There are 280, 1469, 99 and 2679 pathways in
datasets, respectively. There are in total 8614 proteins in
those pathways. A pathway co-existing network is con-
structed by taking individual proteins/genes as vertices.
Edges are constructed between two vertices, if they co-
exist in any pathway.

The human gene expression profiles are obtained from
BioGPS (GSE1133) [16,17], which contain 79 human tis-
sues in duplicates, measured using the Affymetrix
U133A array. Pairwise Pearson correlation coefficients
(PCC) are calculated and a pair of genes are linked by
an edge if the PCC value is larger than 0.5, similar to
the method used in [3,26].

Hence, five biological networks are constructed by col-
lecting data from various databases. All protein IDs are
mapped onto the form of the gene symbol. In order to
test the performance of multiple data integration of our
methods, we select those genes that appears at least
four times in the five networks. The final datasets con-
sist of 7311 human genes, 815 out of which are known
associated with 12 disease classes.

Validation method and evaluation criteria

The accuracy of predictions is validated by the leaveone-
out method. For each known disease gene with at least
one annotated interaction partner in a biological net-
work, we assume it is an unknown gene and predict its
posterior probability by our proposed methods. We use
the receiver operating characteristic (ROC) curve to
show the relationship between the true positive rate and
the false positive rate by varying the threshold for
declaring positives. The area under the ROC curve
(AUC) is also employed to show an overall measure of
the performance. The negative control set consists of
known disease genes that do not belong to current dis-
ease class, and they are also validated by using the
leave-one-out method.

Decision score and declaration of positives

One can directly use the posterior probabilities obtained
by the Gibbs sampling to select candidate disease genes.
The greater the probability is for a gene, the more likely
it is to associated with specific disease. However, differ-
ent disease classes consist of different numbers of
known disease genes, and thus the prediction results
may not be good if a global threshold is used for all
classes. Hence, we propose to use a percentage as a
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decision score to generate the finial predictions. All the
ROC curves and the AUC scores of our “IMRF;“ and
“IMRF,"“ method are calculated according to the deci-
sion score hereafter.

Results and discussion

We first analyze the performance of the IMRF; and
IMREF, algorithms in terms of stability and reliability,
and then compare our method with the original MRE-
Deng method [30], the RWR algorithm [24] and the
DIR algorithm [26]. These three algorithms are selected
elaborately.

Firstly, since ideas of our improved methods (IMRF;
and IMRF,) are initially inspired by the MRF-Deng
method, the direct comparison illustrates how much
improvement can be made results from our methods.

Secondly, we compare our methods with the RWR algo-
rithm to show which manner of multiple data integration
is better. The RWR algorithm is a typical data integration
method that uses a mixed network, where vertices and
edges of several biological networks are simply merged
together, while our methods integrate different networks
separately.

Finally, the DIR algorithm has a very good perfor-
mance among multiple data integration methods, which
also integrates different networks separately. It is the
same with our methods in terms of the data integration
method.

Stability and reliability of MRF methods

We first investigate the stability and reliability MRF
methods, by analyzing Markov processes of the IMRF;
method and the MRF-Deng method.

Parameters of the MRF-Deng method are estimated
from subnetworks of known vertices. This is feasible to
be used for predicting protein functions of yeast in [30],
since each function class consists of at least hundreds
known vertices, which is possible for estimating reason-
able parameters.

However, for disease gene identifications, only dozens
of disease genes are available for individual disease
classes. The estimated parameters of the MRF-Deng
method becomes unreliable. This can be seen by analyz-
ing characters of Figure 1. In a Gibbs sampling process,
it stops until all Markov processes and parameters are
stabilized. However, stabilized Markov processes and
parameters do not indicate they converge to expected
results. It is also stabilized if most vertices are labelled
with 1. Take the Figure 1 (a) and the Figure 1 (c) for
example, the variation of posterior probability distribu-
tions by using the MRF-Deng method is smaller than
the IMRF; method. It seems the performance of the
MRE-Deng method is better. However, if we look at
Figure 1 (b) and Figure 1 (d), we find that there are
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(a) The variation of posterior probabilities for adjacent steps (IMRF,)
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means too many vertices are predicted with very high probabilities.

Figure 1 Analyses of stability and reliability of MRF methods (by using single HPRD PPl network for endocrine disease class). (a) The
variation of posterior probabilities for adjacent steps of the IMRF; method. (b) The posterior probability distribution of IMRF; method. There are
only 5.7% of unknown vertices are predicted with probability larger than 0.065, which means only a small amount significant vertices are
predicted with higher probabilities. (c) The variation of posterior probabilities for adjacent steps of the MRF-Deng method; (d) The posterior
probability distribution of MRF-Deng method. There are almost 23.3% of unknown vertices are predicted with probability larger than 0.97, which

(c) The variation of posterior probabilities for adjacent steps (MRF - Deng)
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(d) The posterior probability distribution of MRF - Deng method
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23.3% vertices with probabilities larger than 0.97. This is
commonly unreasonable in practices, since it contains
too many false positive predictions. The predictions of
the IMRF, is reasonable. Most unknown vertices are
ranked with a very low probability by using the IMRF;
method. Only 5.7% unknown vertices are ranked with
probabilities larger than 0.065, and only a few significant
vertices are predicted with higher probabilities.

Here, the variation of posterior probabilities for two
adjacent steps is calculated from

Q) = é(n-(r) — Pt - 1)), (22)

where P((t) is the posterior probability P (X; = 1| X|_;, 6)
of g; obtained in the £ iteration.

Figure 2 illustrates the variation of estimated para-
meters for adjacent steps by using the IMRF; method.
We can see that all parameters converge very fast, but
noises still exist and cannot be reduced by increasing
iteration steps. This inspires us to add a “prediction per-
iod” for Gibbs sampling processes. The “prediction per-
iod” takes the average estimated parameters in the “lag
period” as parameters and fixes them hereafter in simu-
lations. The input probabilities of unknown vertices are
also obtained by taking the average posterior probabil-
ities in the “lag period”.

Comparisons with the MRF-Deng method

Our improved methods are significantly better than the
MRF-Deng method in terms of identifying disease
genes. Figure 3 illustrates comparisons of the MRE-
Deng method, the IMRF; method and the IMRF,
method in terms of ROC curves. Predictions of the
IMRF; method is significantly better than that by using
the MRF-Deng method, but is a little worse than the
IMRF, method, no matter using single biological net-
work or using integrated biological networks. In terms
of informativeness of each biological network, the
HPRD PPI network (shows in Figure 3 (a)) is the most
informative data source, which obtains the highest AUC
value in all three methods.

Integration of heterogeneous data sources

Different biological datasets are commonly heteroge-
neous. When information in those data is integrated,
noises are also integrated. Hence, an inappropriate
method may result in a set of worse predictions than
using only single dataset. Generally, various data inte-
gration methods can be divided into two categories: (1)
by using a mixed network and (2) by using several sepa-
rated networks. Generally, separated networks contain
more information than the mixed network, since it is
very easy to generate the mixed network from several
separated networks but not vice versa. One advantage of
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The variation of estimated parameters for adjacent steps of the IM RF1 method
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Figure 2 The variation of estimated parameters for adjacent steps by using the IMRF; method (by using single HPRD PPI network for
endocrine disease class). There are three coefficients in the model. From top to bottom, they are coefficients of M;, My and the constant o,
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single IntAct PPI network. (d) Comparisons by using single pathway co-exist network. (e) Comparisons by using single gene co-expression
network. (f) Comparisons by integrating the above five networks. The red lines are ROC curves by using the IMRF, method. The black lines are
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the MRF model is that it takes the whole network into
consideration, which potentially yields better perfor-
mance than those using mixed network ones.

In Figures 4, we use the most stable IMRF, method to
compare the differences between different kinds of data
integration methods. The separated network method
achieves the best performance among all predictions,
while the mixed network method achieves only modest
performance. It seems that the mixed network method
combines informations of individual datasets together with
their noises, which does not improve its performance by
integrating multiple datasets.

Comparisons by using multiple data sources
The IMRF, method is compared with the RWR algo-
rithm, the DIR algorithm and the MRF-Deng algorithm,
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respectively. Figure 5 illustrates ROC cross-validation
results by integrating all five biological networks. The
IMRF, method achieves the highest AUC score at 0.743,
followed by the DIR algorithm (AUC = 0.691) and the
RWR algorithm (AUC = 0.676). The MRF-Deng method
achieves the AUC score only at 0.551. It also shows that
the separated network interaction method performs bet-
ter than the mixed network RWR method.

Conclusions

In this paper, we have presented an improved multiple
data integration method for prioritizing human disease
genes, which is based on the theory of MRF and the
method of Bayesian analysis. The presented method is
both flexible in terms of integrating different kinds of
biological data and reliable in terms of prioritizing

Comparisons of different data integration methods with IMRF2 analysis

1 1
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Figure 4 Comparisons of different data integration methods with IMRF, analysis by using three PPl networks. The red solid line represents
the ROC curve by integrating three PPl networks. The cyan dash-dot line represents the ROC curve by using single HPRD PPI networks. The black
dash-dot line represents the ROC curve by using single BioGrid PPl networks. The green dash-dot line represents the ROC curve by using single IntAct
PPI networks. The blue solid line represents the ROC curve by using the mixed PPl network. AUC values are listed in parentheses.
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ROC curves of cross—validation results by different methods
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Figure 5 ROC curves of cross-validation results of different methods by integrating five biological networks. The red solid line
represents the ROC curve by using the IMRF, method. The blue dash-dot line represents the ROC curve by using the DIR method. The green
dash-dot line represents the ROC curve by using the RWR method. The Magenta solid line represents the ROC curve by using the MRF-Deng

method. AUC values are listed in parentheses.

human disease genes. Compared to the MRF-Deng
method [30], two strategies have been developed to sig-
nificantly improve the performance of the MRF method
for disease gene identifications.

Firstly, parameters of our improved MRF methods are
estimated according to all labelled vertices in integrated
biological networks, instead of estimating them according
to only known vertices. Moreover, parameters are updated
together with sampling labels during iterations, instead of
using fixed parameters. The improved parameter estima-
tion method makes our MRF methods more stable and
more reliable.

Secondly, a new “prediction period” is added to Gibbs
sampling process. Parameters of this period is obtained by
taking average parameters in the previous “lag period” and

is fixed during iterations of this period. The input prob-
ability is also obtained by taking average of posterior prob-
abilities in the “lag period”. This strategy significant
improves the prediction accuracy of our method.

Predictions when integrating known gene-disease
associations, protein complexes, PPIs, pathways and
gene expression profiles achieve the AUC score of
0.743, which is better than the RWR method and the
DIR method by using the same datasets.

List of abbreviations

MRF, Markov random field; PPI, protein-protein interaction; RWR, random
walk with restart; DIR, data integration rank; MLE, maximum likelihood
estimation; MCMC, Markov chain Monte Carlo; OMIM, online Mendelian
inheritance in man; PCC, Pearson correlation coefficient; ROC, receiver
operating characteristic; AUC, area under the ROC curve.



Chen et al. BMC Medical Genomics 2014, 7(Suppl 2):S2
http://www.biomedcentral.com/1755-8794/7/52/S2

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

FXW and BC initiated this study and designed algorithms and experiments.
BC performed the experiments, analyzed the results, and drafted the
manuscript. FXW, JXW and ML revised the manuscript. All authors have read
and approved the final manuscript.

Declarations

The publication costs for this article were supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the National Natural
Science Foundation of China under Grant No.61232001 and No. 61370024, and
the Program for New Century Excellent Talents in University (NCET-12-0547).
This article has been published as part of BMC Medical Genomics Volume 7
Supplement 2, 2014: IEEE International Conference on Bioinformatics and
Biomedicine (BIBM 2013): Bioinformatics in Medical Genomics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcmedgenomics/supplements/7/S2.

Authors’ details

'Division of Biomedical Engineering, University of Saskatchewan, 57 Campus
Dr, S7N 5A9, Saskatoon, Canada. 2School of Information Science and
Engineering, Central South University, 410083, Changsha, P.R. China.
*Department of Mechanical Engineering, University of Saskatchewan, 57
Campus Dr,, S7N 5A9, Saskatoon, Canada.

Published: 22 October 2014

References

1. Oti M, Snel B, Huynen MA, Brunner HG: Predicting disease genes using
protein-protein interactions. J Med Genet 2006, 43(8):691-698.

2. Sun PG, Gao L, Han S: Prediction of human disease-related gene clusters
by clustering analysis. Int J Biol Sci 2011, 7(1):61-73.

3. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL: The human
disease network. Proc Natl Acad Sci USA 2007, 104(21):8685-8690.

4. Oti M, Brunner HG: The modular nature of genetic diseases. Clin Genet
2007, 71(1):1-11.

5. Wu X Jiang R, Zhang MQ, Li S: Network-based global inference of human
disease genes. Mol Syst Biol 2008, 4:189.

6. Altshuler D, Daly M, Kruglyak L: Guilt by association. Nat Genet 2000,
26(2):135-137.

7. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF,
Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C,

Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL,
Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C,
Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, et al: Towards a
proteome-scale map of the human protein-protein interaction network.
Nature 2005, 437(7062):1173-1178.

8. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H,
Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S,
Abraham C, Bock N, Kietzmann S, Goedde A, Tokséz E, Droege A,

Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE: A human protein-
protein interaction network: a resource for annotating the proteome.
Cell 2005, 122(6):957-968.

9. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L,
Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys
Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL,
Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R,
Pandey A: Human Protein Reference Database - 2009 update. Nucleic Acids
Res 2009, 37(Database).D767-D772.

10.  Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID:
a general repository for interaction datasets. Nucleic Acids Res 2006,
34(Database).D535-539.

11. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C,
Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J,
Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J,

Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H:
IntAct - open source resource for molecular interaction data. Nucleic
Acids Res 2007, 35(Database):D561-565.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

Page 11 of 12

Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res 2000, 28(1):27-30.

Vastrik |, D'Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B,
Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L:
Reactome: a knowledge base of biologic pathways and processes.
Genome Biol 2007, 8(3):R39.

Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF,
Altman RB, Klein TE: Pharmacogenomics knowledge for personalized
medicine. Clin Pharmacol Ther 2012, 92(4):414-417.

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH:
PID: the Pathway Interaction Database. Nucleic Acids Res 2009,
37(Database):D674-D679.

Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL,
Haase J, Janes J, Huss JW IIl, Su Al: BioGPS: an extensible and
customizable portal for querying and organizing gene annotation
resources. Genome Biol 2009, 10(11):R130.

Su Al, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R,
Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB: A gene atlas
of the mouse and human protein-encoding transcriptomes. Proc Nat/
Acad Sci USA 2004, 101(16):6062-6067.

Lukk M, Kapushesky M, Nikkild J, Parkinson H, Goncalves A, Huber W,
Ukkonen E, Brazma A: A global map of human gene expression. Nat
Biotechnol 2010, 28(4):322-324.

Lage K, Karlberg EO, Sterling ZM, Olason PI, Pedersen AG, Rigina O,
Hinsby AM, TUmer Z, Pociot F, Tommerup N, Moreau Y, Brunak S: A human
phenome-interactome network of protein complexes implicated in
genetic disorders. Nat Biotechnol 2007, 25(3):309-316.

Hwang T, Zhang W, Xie M, Liu J, Kuang R: Inferring disease and gene set
associations with rank coherence in networks. Bioinformatics 2011,
27(19):2692-2699.

Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R: Associating genes and
protein complexes with disease via network propagation. PLoS Comput
Biol 2010, 6(1):21000641..

Li Y, Agarwal P: A Pathway-Based View of Human Diseases and Disease
Relationships. PLoS One 2009, 4(2):e4346.

Ma X, Lee H, Wang L, Sun F: CGI: a new approach for prioritizing genes
by combining gene expression and protein-protein interaction data.
Bioinformatics 2007, 23(2):215-221.

Kohler S, Bauer S, Horn D, Robinson PN: Walking the interactome for
prioritization of candidate disease genes. Am J Hum Genet 2008,
82(4):949-958.

Zhang W, Sun F, Jiang R: Integrating multiple protein-protein interaction
networks to prioritize disease genes: a Bayesian regression approach.
BMC Bioinformatics 2011, 12(Suppl 1):S11.

Chen Y, Wang W, Zhou Y, Shields R, Chanda SK, Elston RC, Li J: In silico
gene prioritization by integrating multiple data sources. PLoS One 2011,
6(6):221137.

Chen B, Shi J, Zhang S, Wu FX: Identifying protein complexes in protein-
protein interaction networks by using clique seeds and graph entropy.
Proteomics 2013, 13(2):269-277.

Chen B, Wu FX: Identifying protein complexes based on multiple
topological structures in PPl networks. IEEE Trans Nanobioscience 2013,
12(3):165-172.

Strohman R: Maneuvering in the complex path from genotype to
phenotype. Science 2002, 296(5568):701-703.

Deng M, Chen T, Sun F: An integrated probabilistic model for functional
prediction of proteins. J Comput Biol 2004, 11(2-3):463-475.

Bentley DR: The Human Genome Project - an overview. Med Res Rev 2000,
20(3):189-196.

Chen B, Wang J, Wu FX: Prioritizing human disease genes by multiple
data integration. Bioinformatics and Biomedicine (BIBM), 2013 IEEE
International Conference on 2013, 621.

Li SZ: Markov random field models in computer vision. In Proceedings of
the European Conference on Computer Vision 1994, 361-370.

Besag J: Spatial Interaction and the Statistical Analysis of Lattice Systems.
J Royal Statist Soc B 1974, 36(2):192-236.

Kamberova G: Markov random field models: a Bayesian approach to
computer vision problems. Department of Computer & Information Science
Technical Reports University of Pennsylvania; 1992.

Suess EA, Trumbo BE: Introduction to probability simulation and Gibbs
sampling with R. Springer New York; 2010.


http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.ncbi.nlm.nih.gov/pubmed/16611749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16611749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21278917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21278917?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17502601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17502601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17204041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18463613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11017062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16189514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16189514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18988627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17145710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22992668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22992668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18832364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19919682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15075390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15075390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20379172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21824970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21824970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20090828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20090828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19194489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19194489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17098772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17098772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18371930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21731658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21731658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23112006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23112006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23974659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23974659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11976445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11976445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15285902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15285902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10797463?dopt=Abstract

Chen et al. BMC Medical Genomics 2014, 7(Suppl 2):S2
http://www.biomedcentral.com/1755-8794/7/52/S2

37. Kourmpetis YA, van Dijk AD, Bink MC, van Ham RC, ter Braak CJ: Bayesian
Markov Random Field Analysis for Protein Function Prediction Based on
Network Data. PLoS One 2010, 5(2):€9293.

38. McKsick VA: Mendelian Inheritance in Man and its online version, OMIM.
Am J Hum Genet 2007, 80(4):588-604.

39. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach |, Fobo G,
Frishman G, Montrone C, Mewes HW: CORUM: the comprehensive
resource of mammalian protein complexes - 2009. Nucleic Acids Res 2010,
38(Database):D497-D501.

40. Kikugawa S, Nishikata K, Murakami K, Sato Y, Suzuki M, Altaf-Ul-Amin M,
Kanaya S, Imanishi T: PCDq: human protein complex database with
quality index which summarizes different levels of evidences of protein
complexes predicted from h-invitational protein-protein interactions
integrative dataset. BMC Syst Biol 2012, 6(Suppl 2):S7.

doi:10.1186/1755-8794-7-52-S2
Cite this article as: Chen et al: Identifying disease genes by integrating
multiple data sources. BMC Medical Genomics 2014 7(Suppl 2):S2.

Page 12 of 12

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

www.biomedcentral.com/submit

Submit your manuscript at ( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/20195360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20195360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20195360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17357067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19884131?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The Bayesian labelling problem
	Gibbs distribution in MRF
	The MRF model for identifying human disease genes
	The Gibbs sampling
	Parameter estimation
	Estimating a prior probability
	Data sources
	Validation method and evaluation criteria
	Decision score and declaration of positives

	Results and discussion
	Stability and reliability of MRF methods
	Comparisons with the MRF-Deng method
	Integration of heterogeneous data sources
	Comparisons by using multiple data sources

	Conclusions
	List of abbreviations
	Competing interests
	Authors’ contributions
	Declarations
	Authors’ details
	References

