Zeng and Li BMC Medical Genomics 2014, 7(Suppl 2):S5
http://www.biomedcentral.com/1755-8794/7/52/S5

BMC
Medical Genomics

Supervised redundant feature detection for

tumor classification

Xue-Qiang Zeng'?', Guo-Zheng Li*"

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2013)

Shanghai, China. 18-21 December 2013

Abstract

Background: As a high dimensional problem, analysis of microarray data sets is a challenging task, where many
weakly relevant or redundant features affect overall performance of classifiers.

Methods: The previous works used redundant feature detection methods to select discriminative compact gene
set, which only considered the relationship among features, not the redundancy of classification ability among
features. This study propose a novel algorithm named RESI (Redundant fEature Selection depending on Instance),
which considers label information in the measure of feature subset redundancy.

Results: Experimental results on benchmark data sets show that RESI performs better than the previous state-of-
the-art algorithms on redundant feature selection methods like mMRMR.

Conclusions: We propose an effective supervised redundant feature detection method for tumor classification.

Background
Rapid advances in gene expression microarray technology
enable simultaneous measurement of the expression
levels for thousands or tens of thousands of genes in a
single experiment. Analysis of microarray data presents
unprecedented opportunities and challenges for data
mining in areas such as gene clustering, class discovery,
and tumor classification [1]. A typical data set may con-
tain thousands of genes but only a small number of sam-
ples (often less than a hundred). The number of samples
is likely to remain small at least for the near future due
to the expense of collecting microarray samples [2]. The
nature of relatively high dimensionality but small sample
size in microarray data causes the known problem of
“curse of dimensionality”. Therefore, selecting a small
number of discriminative ones from thousands of genes
is essential for successful sample classification [3-5].
Feature selection, a process of choosing a subset of fea-
tures from the original, is frequently used as a preproces-
sing technique in data mining. It has been proved effective
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in reducing dimensionality, improving mining efficiency,
increasing mining accuracy, and enhancing result compre-
hensibility [6-9]. The goal of the feature selection algo-
rithm is to select the minimum set of features that are
strongly related to the desired decision variable and have
the least redundancy among them [10,11]. Existing effi-
cient feature selection algorithms (feature ranking meth-
ods) usually assume feature independence, and assign a
discriminative score to each feature. Because the interac-
tions and correlations among features are not considered,
these algorithms fail to remove redundant features
completely.

Hall [12] pointed out that the prediction capability and
the inter-correlation of feature subset are two important
aspects in feature selection. However, the optimal feature
selection requires an exponentially large search space
(O(2™), where m is the number of features) [10]. In prac-
tise, researchers often resort to various approximations to
determine the optimal feature subset. The prediction cap-
ability is usually estimated by the interrelation of indivi-
dual feature with the target. For the issue of redundancy,
many researchers attempt to explicitly address feature
interactions by finding some low-order interactions, i.e.
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2-way (one feature and the label) and 3-way (two features
and the label) interactions.

In recent years, researchers have proposed many techni-
ques to eliminate redundant features according to the
above principle. Battiti proposed the Mutual Information
based Feature Selection (MIFS) method [13], and then
improved versions like MIFS-U [14] and mMIFS-U [15]
were proposed. Hall proposed the Correlation-based Fea-
ture Selection (CFS) method [12], Ding and Peng pro-
posed the minimum Redundancy-Maximum Relevance
(mRMR) method [16], Bontempi and Meyer proposed a
Causal filter selection method, called min-Interaction
Max-Relevance (mIMR) [17], Fleuret used the Conditional
Mutual Information Maximization (CMIM) to select fea-
ture [18]. These methods consider the problem of feature
selection from different motivations and various solutions
have been proposed. But the same point is that they are
trying to find the optimal discriminative feature subset by
considering to remove feature redundancy, where feature
redundancy is computed by various pair-wise similarity
measures, i.e. mutual information or conditional mutual
information.

However, the used traditional pair-wise similarity
metrics only consider the numerical values of given vari-
ables, but not the similarity of discriminative ability
among them. Therefore, feature redundancy can not be
measured correctly in terms of feature prediction ability
by existing methods. How to measure feature (subset)
redundancy is a fundamental problem, which should be
reconsidered in the field of feature selection. In the appli-
cation of classification, we consider a feature redundant
only when its predictive power is redundant, not that its
numerical value is similar with some selected features.
Because two highly similar features are obviously not
redundant to each other when the minor difference hap-
pen to be critical to the classification. In this paper, we
proposed a novel method to measure feature (subset)
redundancy by comparing features’ predictive powers
directly. Feature’s prediction power is recorded by its
instances’ distribution explicitly, which includes clear-dis-
cerned instances and blur-discerned instances. Based on
the predictive power distributions, a new feature redun-
dancy metric is defined on the ground of comparing pre-
dictive powers. Furthermore, we proposed a novel
algorithm named RESI (Redundant fEature Selection
depending on Instance). Experiments on several bench-
mark microarray data sets demonstrate the outstanding
performance of our proposed method.

Methods

Supervised redundant feature detection

Given a data set (X = [Xy, Xo, . . ., X,,], Y) with n
instances represented by m features (genes), where X
and Y are instances matrix and class label respectively.
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The task of classification is to tag instances with a label
in low probability of error. Theoretically, having more
features implies more discriminative power in classifica-
tion. However, many features are relevant to each other
and they have no contribution to classification, except
to degrade performance of classifiers [19]. Thus, it is
necessary to remove irrelevant and redundant features
as more as possible, without losing information greatly.
Generally, the task of feature selection in classification
issue is formally defined as the process of selecting the
optimal feature subset S € X to have high classification
performance.

Thus, qualities of relevant and non-redundant fea-
tures of the selected subset are two key points consid-
ered in feature selection methods. In existing methods,
predictive power of a feature subset has often been
divided into computation of the interrelation score of
individual features with the label. Due to computa-
tional limitation in high dimensional feature space,
redundancy degree of a feature subset is usually esti-
mated by pair-wise similarity measures, i.e. mutual
information or conditional mutual information of two
given variables.

However, to measure the feature subset redundancy is a
fundamental problem, which should be reconsidered in
the field of feature selection. Without including learning
model (i.e. wrapper methods), measuring the redundancy
degree of a feature subset as a whole is impractical. So,
approximately measuring individual pair-wise feature simi-
larity is a reasonable way which has been adopted by var-
ious existing methods. But, the previous pair-wise
similarity measures only consider the numerical values of
given features, but not the discriminative ability among
them. Therefore, feature redundancy is not measured cor-
rectly. For instance, two highly similar features are usually
considered as redundant to each other by the previous
pair-wise similarity measures. But this is not correct when
the minor difference of the two features happens to be cri-
tical to the classification.

In the context of classification, it is reasonable to
address the feature set redundancy from the view of
predictive power. So, we define the pair-wise feature
redundancy as follow.

Theorem 1 In the context of classification, a feature X,
is redundant to a given feature X if its predictive power
to label Y has already been expressed by feature Xg.

As argued in Theorem 1, the similarity should be mea-
sured by comparing the distribution of predictive power
between two features. Thus, the predictive power needs to
be measured in a comparable way. More concretely, we
need to record those instances which are clear-discerned
by the given feature and which are not.

Theorem 2 Given a feature X, an instance X" is clear-
discerned if the majority of its k nearest neighbour
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instances on feature X, have the same class labels with
that of X",

The intuitive idea of Theorem 2 is inspired from the k
Nearest Neighbor (kNN) classifier. We believe that The-
orem 2 holds true no matter which classification model
is applied finally. Based on the idea in Theorem 2, we
define the neighborhood pUrity of instance X“ on a
given feature X, as below,

ZXVEN,,(X;) (Y ==Y")

, (1)
k

U(X¥|Y) =

where 6(-) is the Kronecker delta function i.e. () = 1
when Y == Y” is true, otherwise () = 0, Y” is the target
label of instance X", X; is the value of instance X” on fea-
ture X, Ni (XZ) is the neighborhood of X* defined by the
k closest instances X" on feature X, (XE is close to X;’), k is
a predefined parameters. Equation 1 measures how many
instance labels are the same in the neighborhood of X“ via
feature X,

The value of U (XZ |Y) varies from 0 to 1. High U (Xg 1Y)
means the corresponding instance has more neighbors
with the same class. An instance is defined as clear-dis-
cerned when its U(X,|Y) is higher than a given thresh-
old 4, ie. U(XZIY) > u, otherwise it is blur-discerned.

By Equation 1, each feature’s predictive power is
recorded as a distribution of instances, i.e. the clear-dis-
cerned instances and the blur-discerned instances. Then,
redundancy of two given feature can be measured by
comparing the corresponding instance distributions
directly. We define the REdundancy Measure depending
on Instances (REMI) of feature X, to feature X,, under
label Y as follows.

Y S(UKHY) < & UCKYY) < o)

REMI(X,; X;Y) =
(%7 X41Y) S SUKLY) < 1)

2)

The numerator of Equation 2 gives the count of
instances which are blur-discerned on both feature X,
and feature X,, the denominator is the blur-discerned
instances which count on feature X,. The value of
REMI(X,; X,|Y) varies from 0 to 1. It is 0, when all
blur-discerned instances on feature X, are clear-
discerned on feature X,, which means the predictive
power of X, is completely complementary to that of X,
and we consider their corresponding redundancy is
zero. The value is 1 when no blur-discerned instance on
feature X, is clear-discerned on feature X,, which means
X, has no predictive power contribution to X, i.e. X, is
redundant to X,

As to measure the predictive power of selected fea-
tures, we use the metric of t-statistic. For binary classi-
fication, the definition of t-statistic on a feature p is
given as:
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pl — p?

varl/n! + var? /n?

tplY) = ®3)

where ;31, n! and var' are the mean value of features,
the number of examples and variance of one class, p?,
n* and var® have the similar meaning for the other class.

The meaning of t-statistic value is intuitive, which
measures the weighted distance between the centroid of
one class and the other class on the feature p. It is
usually believed that the value of ¢(p|Y) largely repre-
sents the discriminative power of the giving feature,
higher absolute score means greater discriminative
power. A feature is usually regarded as irrelevant when
its t-statistic value is trivial. The t-statistic measure has
demonstrated as an effective feature selection method
and widely used in the field of bioinformatics [20].

In total, we define the merit function of REMI as:

1 &
Tresa (Xp1S, ¥) = abs(X1)) =~ > REMI(Xy; Xi[Y) (4)

i=1

which denotes the merit score of candidate feature X,
given the selected features S (S = X;,, ;) and the label Y.
Furthermore, we propose a novel algorithm named RESI
(Redundant fEature Selection depending on Instance),
which combines REMI with the sequential forward
search strategy. The detail algorithm is described as in
Algorithm 1.

Algorithm 1 The RESI Algorithm

Input: Feature set X = [X}, X5, . ..
Target label Y
Output: Selected feature subset S

’ Xm]

:FeX;
: S < O
: for all feature X; in F do
if abs(¢(X;|Y)) <€ then
FeF\X;

end if
: end for
: Xp <= argmaxx,erabs(t(X,|Y));
:S<SUX,

10: F « F\ X,;

11: while pre-defined stopping criteria is not satified
do

12: Xp < arg maXngp]REMI(Xp|S, Y);

132 SeSuX,

14: F<eF\X,

15: end while

The RESI algorithm works in two stages, including irre-
levant features removing and redundant feature elimina-
tion. Firstly, the t-statistic value is computed for each
feature. The irrelevant features, whose absolute t-statistic

VN U W
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values are trival i.e. abs(¢£(X;|Y)) <€, are removed from the
candidate set. Then, the most discriminative features
with the highest abs(#(X,|Y)) are selected. In the stage of
redundant feature elimination, RESI starts with the cur-
rent selected subset, and adds one important feature at a
time. Given a selected feature subset of p—1 features S, a
new feature X,, is chosen from the rest of the feature sub-
set X \ S by evaluating the merit function Jrear (X,|S, ).
It will be terminated when pre-defined stopping criteria
is satisfied. For example, the number of selected features
is larger than a threshold or the score of Jreay (X,|S, Y) is
trivial.

In our experiments, the parameter € = 0.1, the num-
ber of neighborhood instances k = 3, the threshold of
clear-discerned instance y = 0.66.

Related works on redundant feature detection

As we mentioned in Section Introduction, the predictive
power and the inner redundancy of the selected feature
subset are two key points in feature selection methods.
In recent years, researchers have proposed various fea-
ture selection methods [21-23], most of which are
explained from the two aspects. Here, we give a short
review on related feature selection methods using for-
ward feature selection scheme. These methods are
briefly described in Table 1.

Hall proposed the Correlation-based Feature Selection
(CFS) method [12], where some correlation measures
are used to evaluate the goodness of a subset by consid-
ering the individual predictive ability of each feature and
the degree of correlation between them. The symmetri-
cal uncertainty (a normalized version of mutual infor-
mation), for discrete data, and the standard linear
correlation, for continuous data, are used by Hall to
measure /(X; Y) and I(X; X)).

Ding and Peng proposed the minimum Redundancy-
Maximum Relevance (mRMR) method in 2005 [16],
which requires that selected discriminative features are
maximally dissimilar to each other. mRMR is almost as

Table 1 Related feature selection methods
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the same as the MIFS method [13], except that the
parameter f3 is set as pil in mRMR. Both MIFS and

mRMR use mutual information to measure I(X; Y) and
I(X; X ;). Kwak and Choi proposed an improvement to
MIES, called MIFS-U [14], which uses a re-weighted
I&:Y) 1
H(X;)
ture redundancy. Without explicit claim, I(-;- ) is mea-
sured by the mutual information in the rest of paper.

Bontempi and Meyer proposed a causal filter selection
method, called min-Interaction Max-Relevance (mIMR)
[17]. Bontempi and Meyer try to maximize the mutual
information between X;., and Y directly. Due to the
number of the subset of X, is O(2), it is impractical to
compute I(X;.,; Y) in a precise way. Only low-order
interactions are considered in the approximate solution
given by mIMR. And in the final solution, the merit
function of mIMR can also be divided into two parts:
predictive power and feature set redundancy. Obviously,
the difference between mRMR and mIMR is the two-
way mutual information I(X; X,) is replaced by the
three-way mutual information I(X; X,; Y), and I(X; X,;
Y) = I(X,; X)) - 1(X,; X;|Y).

Fleuret used the Conditional Mutual Information
Maximization (CMIM) to select feature [18], which
examines the information between a feature and the tar-
get, conditioned on each current feature. It is clear that
CMIM is very similar with mIMR. The only difference
is the sum function is replaced by the maximum func-
tion to measure the feature redundancy.

Yang and Moody proposed using Joint Mutual Infor-
mation (JMI) to select feature [24], which tries to maxi-

-1
mize joint mutual information E p . I (Xp,X,-; Y). This is
i=

mutual information (Xp;Xi) to measure the fea-

the information between the targets and a joint random
variable, defined by pairing the candidate X, with each
current selected feature. But after deduction, the merit
function of JMI is exactly equivalent to that of mIMR.
Vidal-Naquet and Ullman proposed another criterion
used for computer vision, which is refereed as Informative

Methods Predictive power Redundancy measure Merit function of candidate feature Ref
p )
A Zi:l I (Xir Y)
CFs 106 V) 0% X) ( e [12]
o S I X))
p—1
MIFS 06 V) 106 X) I(X,;Y) — B Zi:l 1(X,; X;) [13]
. . . 1 p-1 .
MRMR 106 ) 106 X) X Y) =, Zizl I(Xp; Xi) 6]
, 1(X5Y) Y. ) P=1 ey .
MIFS-U 106 1) 1o T (X Xi) I(X,;Y) — B ZH [ I(LI(Xi))I(Xp’Xi)] [14]
-1
mIMR M i 1) 106G X V) 10X Y) =, Zpl I(Xi; X,) — (X X,|Y)]  0171024)
i=
CMIM, IF X, Y) 10X Xpr Y) IX5 Y) = max; epp-nllXp X) — 10X X V)] [18],[25]
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Fragments (IF) [25]. The authors motivate the criterion
min;epp-17[I(X, X5 Y) - I(X; Y)] by noting that it mea-
sures the predictive ability gain of combining a new fea-
ture X, with each existing feature X;, over simply using X;
by itself. The X; with the least “gain” from being paired
with X, is taken as the score for X,,. Interestingly, using
the chain rule I(X,, X; Y) = I(X; Y) + I(X,; Y|X)), therefore
IF is equivalent to CMIM.

From the short review, we can easily find the common
point of these methods. Although the motivations are var-
ious, the merit functions of all these methods are divided
into two parts: predictive power and feature redundancy.
And due to the practical limitation, one certain pair-wise
similarity measure is adopted to compute the predictive
power and feature redundancy. However, the traditional
pair-wise similarity measures, i.e. mutual information or
conditional mutual information, only consider the numerical
values of given variables, but not the the similarity of discri-
minative ability between them. Therefore, feature redun-
dancy can not be measured correctly in existing methods.

Data sets

There are fourteen data sets used in our study, which are
listed in Table 2. The data set of Arcene-NIPS2003 is gath-
ered from the NIPS'03 feature selection competition [26],
Breast-Duke is reported by West [27], all other data sets
are downloaded from the Kent Ridge Bio-medical Dataset
[28]. All these data sets have relative big feature/instance
ratio, and the feature numbers are no less than 2,000. For
the missing values in some existing data sets, they are
replaced by the corresponding means. For the data set of
OvarianQStar, only the first 373,401 features are used.

Experimental settings

We use the stratified 10-fold cross-validation procedure,
where each data set is split into ten subsets of equal

Table 2 Experimental data sets

Data sets Instances Class ratio Features
Arcene-NIPS2003 900 398/502 10,000
Breast 97 46/51 24,481
Breast-Duke 44 21/23 7,129
CNS 60 21/39 7,129
Colon 62 22/40 2,000
DLBCL-Stanford 47 23/24 4,026
DLBCL-Tumor 77 19/58 6,817
DLBCL-NIH 240 102/138 7,399
Leukemia 72 25/47 7,129
Lung 181 31/150 12,533
Lung-Michigan 96 10/86 7,129
Lung-Ontario 39 15/24 2,880
OvarianPBSII 253 91/162 15,154
OvarianQStar 216 95/121 373,401
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size. Each subset is used as test set once, and the corre-
sponding left subsets are combined together and used as
training set. Within each cross-validation fold, the gene
expression data are standardized. The expressions of the
training set are transformed to zero mean and unit stan-
dard deviation across samples, and the test set are trans-
formed according to the means and standard deviations
of the corresponding training set. The Irani’'s MDL
method is applied when discretization is required [29].
The 10-fold cross-validation is repeated 10 times, which
is also denoted as the 10 x 10 cross-validation measur-
ing procedure.

We should note that the 10 x 10 cross-validation mea-
suring procedure is more reliable than the randomized
re-sampling testing strategy and the leave-one-out cross-
validation due to the correlations between the test and
training sets, some detailed discussions can be found at
[30] Even in the small sample problem like gene expres-
sion data, 10 x 10 cross-validation is still one of the most
reliable measuring way [31].

The final classification performance is recorded by
the Balanced ACCuracy (BACC), which is defined as
follows.

1 e o
BAAC = 5 (sensitivity + specificity)
1( 1P TN (5)
= +
2 \TP+FN TN +FP

where TP, TN, FP, and FN, stand for the number of
true positive, true negative, false positive, and false nega-
tive samples, respectively. Without explicit clarification,
all the scores are averaged on 10 x 10 cross-validation.

To make conclusions sound, six widely used classifiers
are used, including Support Vector Machine (SVM)
with linear kernel and ¢ = 1, non-linear support vector
machine using Sequential Minimal Optimization (SMO)
and polynomial kernel, k Nearest Neighbor (kNN) with
k = 3, Logistic Regression (LR), Naive Bayes classifier
(NB) and decision tree with J48 algorithm (J48). All these
classifiers are trained on the training set to predict the
label of the test samples on the same cross-validation
partition.

The algorithms are implemented in JAVA language
based on WEKA [32], and carried out on a DELL PC
workstation with 24 x X5680 3.33GHz CPU and 64G
RAM.

Results and discussion

In order to examine the performance of our proposed
method, three state-of-the-art feature selection methods,
mIMR, mRMR and CMIM, are used to compare with
RESI Additional, a feature Ranking method using absolute
t-statistic score is also used as baseline. The parameter
of selected feature number has great influence on the
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performance comparison. We vary the selected dimension
from 1 to 80, which are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20,
30, 40, 50, 60, 70 and 80 in detail. Higher dimension is not
included because the number of relevant genes (whose /
(X3 Y) > 0) is limited on some data sets. On each data set
and each selected feature dimension, six widely used classi-
fiers i.e. SVM, SMO, LG, kNN, NB and J48 are applied to
examine the performances with the procedure of 10 x 10
cross-validation. The detailed comparative BACC results
with KNN classifier are plotted in Figure 1. Due to the
length limitation of the paper, only results on four repre-
sentative data sets, including the data set of Breast, Colon,
Leukemia and Lung, are included in Figure 1, which are
widely used by previous researchers [16,17]. The compara-
tive BACC results averaged on all fourteen data sets are
plotted in Figure 2. Note, the abscissas of Figure 1 and
Figure 2 use the Log coordinate and the Log base is 2.
From Figure 1 and Figure 2, it’s clear there is no
method has overwhelming performance over all classi-
fiers, although the plotted lines in Figure 2 fluctuate
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much more gently than the drawings on individual data
set. However, our RESI is relatively the best one among
all the feature selection methods. This is especially
obvious by using the classifier of LR, and we will
demonstrate the point by t-test later.

The performances of mIMR, mRMR and CMIM are
often tied, and mRMR is the best one in most cases. We
suggest it’s because all these methods use mutual infor-
mation to represent the predictive power, and the tradi-
tional mutual information of mRMR is the most robust
one to estimate feature redundancy in our experiments.

It’s also interesting to find that the performances of RESI
and Ranking are obviously better than that of others, when
the selected dimension is small, i.e. below 5. This is true
with almost all classifiers. We believe the superiority is
caused by the difference of two metrics, mutual informa-
tion and the absolute t-statistic, used to represent the pre-
dictive power. The absolute t-statistic measures the
weighted distance between the centroid of two classes,
which is directly related to the discriminative power of the
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giving feature. On the contrary, mutual information repre-
sents the general information between two variables. So
from our experimental results, the absolute t-statistic per-
forms better than mutual information to represent the
predictive power.

Investigating the difference between RESI and Rank-
ing, we find that their performances are similar when
the selected dimension is small. This is because the
absolute t-statistic is used to represent the predictive
power by both of them. And when only a few features
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Table 3 Comparative t-test results (wins/ties/losses)
summarized on data sets and classifiers

mIMR mRMR CMIM Ranking Total
RESI 40-33-11  36-37-11  41-33-10  31-36-17  148-139-49
mIMR - 9-42-33  31-28-25 20-30-34  71-133-132
mRMR - 36-36-12  23-32-29  103-147-86
CMIM - 18-27-39  65-124-147
Ranking - 119-125-92

are selected, the influence of feature redundancy is not
obvious. But as the selected dimension grows, the
impact of feature redundancy becomes more and more
critical to the BACC performance. Eliminating redun-
dant features is meaningful when the feature dimension
is not small, which is coincided with Figure 2, where
RESI is much better than Ranking when the dimension
grows.

Paired two-side t-test is also used to examine the differ-
ences between those methods. The corresponding t-test
results are showed in Table 3. Each cell (W/T/L) in Table 3
summarizes over all data sets and classifiers the wins/ties/
losses in BACC (at the significance level of 0.05) comparing
various feature selection methods each other. The last col-
umn of Table 3 gives the overall W/T/L values summarized
on corresponding compared methods. From Table 3, it’s
clear that RESI is the best feature selection method.

Conclusions
Redundant feature selection is an important topic in the
field of bioinformatics. Here, we propose a novel redun-
dant feature subset measure REMI by comparing feature
predictive powers directly, which is recorded by its
instance distribution explicitly including clear-discerned
instances and blur-discerned instances. Furthermore, a
novel feature selection method RESI based on REMI was
proposed. Experimental results on benchmark microarray
data sets demonstrate that RESI performs better than the
state-of-the-art algorithms like mRMR on fourteen bench-
mark data sets.

Future works include improving its efficiency and
applying it to more scientific fields.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript. GZL proposed the
algorithm and wrote this paper. XQZ jointly proposed the paper idea,

collected the data, implemented the computation on the datasets and
checked the manuscript.

Acknowledgements

This work was supported by the Natural Science Foundation of China under
grant nos. 61105053, 61273305 and 61463033, the Nature Science
Foundation of Jiangxi Province under grant no. 20132BAB201043, and China
Postdoctoral Science Foundation under grant no. 2013M541540.

Page 8 of 9

Declarations

Funding for open access charge: Natural Science Foundation of China.
This article has been published as part of BMC Medical Genomics Volume 7
Supplement 2, 2014: |EEE International Conference on Bioinformatics and
Biomedicine (BIBM 2013): Bioinformatics in Medical Genomics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcmedgenomics/supplements/7/S2.

Authors’ details

'Computer Center, Nanchang University, 999 Xuefu Road, Nanchang, 330029,
China. “Department of Control Science & Engineering, Tongji University,
4800 Cao An Road, Shanghai, 201804, China. 3The Key Laboratory of
Embedded System & Service Computing, Tongji University, 4800 Cao An
Road, Shanghai, 201804, China.

Published: 22 October 2014

References

1. Ge L, Du N, Zhang A: Finding informative genes from multiple
microarray experiments: A graph-based consensus maximization model.
Bioinformatics and Biomedicine (BIBM), 2011 IEEE International Conference on
2011, 506-511.

2. Dougherty ER: Small sample issue for microarray-based classification.
Comparative and Functional Genomics 2001, 2:28-34.

3. Zheng S, Liu W: Selecting informative genes by lasso and dantzig
selector for linear classifiers. Bioinformatics and Biomedicine (BIBM), 2010
IEEE International Conference on 2010, 677-680.

4. Zeng XQ, Li GZ: Incremental partial least squares analysis of big
streaming data. Pattern Recognition 2014, 47(11):3726-3735.

5. You M, Li GZ: Feature selection for multi-class problems by using
pairwise-class and all-class techniques. International Journal of General
Systems 2011, 40(4):381-394.

6. Li GZ Meng HH, Yang MQ, Yang JY: Combining support vector regression
with feature selection for multivariate calibration. Neural Computing and
Applications 2009, 18(7):813-820.

7. Shao H, Li G, Liu G, Wang Y: Symptom selection for multi-label data of
inquiry diagnosis in traditional chinese medicine. Science China
Information Sciences 2013, 56(5):1-13.

8. LiGZ Sun S, You M, Wang YL, Liu GP: Inquiry diagnosis of coronary heart
disease in chinese medicine based on symptom-syndrome interactions.
Chinese Medicine 2012, 7(1):9.

9. You M, Liu J, Li GZ, Chen Y: Embedded feature selection for multi-label
classification of music emotions. International Journal of Computational
Intelligence Systems 2012, 5(4):668-678.

10. Guyon |, Elisseeff A: An introduction to variable and feature selection. The
Journal of Machine Learning Research 2003, 3:1157-1182.

11. Zeng XQ, Li GZ, Yang JY, Yang MQ, Wu GF: Dimension reduction with
redundant gene elimination for tumor classification. BMC Bioinformatics
2008, 9(Suppl 6):8.

12. Hall MA: Correlation-based feature selection for discrete and numeric
class machine learning. Proceedings of the 2000 International Conference on
Machine Learning (ICML'00) 2000, 359-366.

13.  Battiti R: Using mutual information for selecting features in supervised
neural net learning. IEEE Transactions on Neural Networks 1994, 5(4):537-550.

14, Kwak N, Choi CH: Input feature selection for classification problems. /FEE
Transactions on Neural Networks 2002, 13(1):143-159.

15. Novovicova J, Somol P, Haindl M, Pudil P: Conditional mutual information
based feature selection for classification task. In Progress in Pattern Recognition,
Image Analysis and Applications. Volume 4756. Springer; 2007:417-426.

16. Peng H, Long F, Ding C: Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. /EEE
Transactions on Pattern Analysis and Machine Intelligence 2005,
27(8):1226-1238.

17. Bontempi G, Meyer P: Causal filter selection in microarray data.
Proceedings of the 2010 International Conference on Machine Learning
(ICML'10) 2010, 95-102.

18. Fleuret F: Fast binary feature selection with conditional mutual
information. The Journal of Machine Learning Research 2004, 5:1531-1555.

19.  Zeng XQ, Li GZ: Dimension reduction for p53 protein recognition by
using incremental partial least squares. IEEE Transactions on
NanoBioscience 2014, 13(2):73-79.


http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/7/S2
http://www.ncbi.nlm.nih.gov/pubmed/18628896?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22475180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22475180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18179724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18267827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18267827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18244416?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16119262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16119262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24893361?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24893361?dopt=Abstract

Zeng and Li BMC Medical Genomics 2014, 7(Suppl 2):S5
http://www.biomedcentral.com/1755-8794/7/52/S5

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Liu H, Li J, Wong L: A comparative study on feature selection and
classification methods using gene expression profiles and proteomic
patterns. Genome informatics 2002, 13:51-60.

Brown G: A new perspective for information theoretic feature selection.
Proceedings of the 2009 International Conference on Attificial Intelligence and
Statistics (ICAIS09) 2009, 5:49-56.

Liu H, Liu L, Zhang H: Feature selection using mutual information: An
experimental study. Proceedings of the 2008 Pacific Rim International
Conference on Artificial Intelligence (PRICAI'08) 2008, 235-246.

Bolén-Canedo V, Sanchez-Marorio N, Alonso-Betanzos A: A review of
feature selection methods on synthetic data. Knowledge and Information
Systems 2013, 34(3):483-519.

Yang HH, Moody J: Data visualization and feature selection: New
algorithms for nongaussian data. Advances in Neural Information Processing
Systems 1999, 12:687-693.

Vidal-Naquet M, Ullman S: Object recognition with informative features
and linear classification. Proceedings of the 2003 IEEE International
Conference on Computer Vision (ICC//03) 2003, 281-288.

Guyon |, Li J, Mader T, Pletscher PA, Schneider G, Uhr M: Competitive
baseline methods set new standards for the NIPS 2003 feature selection
benchmark. Pattern Recognition Letters 2007, 28(12):1438-1444.

West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H,
Olson JA Jr, Marks JR, Nevins JR: Predicting the clinical status of human
breast cancer by using gene expression profiles. Proceedings of the 2001
National Academy of Sciences 2001, 11462-11467.

Li J, Liu H, Wong L: Mean-entropy discretized features are effective for
classifying high-dimensional biomedical data. Proceedings of the 3rd ACM
SIGKDD Workshop on Data Mining 2003, 17-24.

Fayyad U, Irani K: Multi-interval discretization of continuous-valued
attributes for classification learning. Proceedings of the 1993 International
Joint Conference on Articial Intelligence (LJCAI'93) 1993, 1022-1027.

Dietterich TG: Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation 1998, 10:1895-1923.
Molinaro AM, Simon R, Pfeiffer RM: Prediction error estimation: a
comparison of resampling methods. Bioinformatics 2005, 21(15):3301-3307.
Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc, San Francisco;, 2.

doi:10.1186/1755-8794-7-52-S5
Cite this article as: Zeng and Li: Supervised redundant feature detection
for tumor classification. BMC Medical Genomics 2014 7(Suppl 2):S5.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/14571374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14571374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14571374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9744903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9744903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905277?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15905277?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Supervised redundant feature detection
	Related works on redundant feature detection
	Data sets
	Experimental settings

	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

