
RESEARCH Open Access

A fast and high performance multiple data
integration algorithm for identifying human
disease genes
Bolin Chen1, Min Li2, Jianxin Wang2, Xuequn Shang1, Fang-Xiang Wu3,4*

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2014)
Belfast, UK. 2-5 November 2014

Abstract

Background: Integrating multiple data sources is indispensable in improving disease gene identification. It is not
only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in
various biological networks, but also due to the fact that gene-disease associations are complex. Although various
algorithms have been proposed to identify disease genes, their prediction performances and the computational
time still should be further improved.

Results: In this study, we propose a fast and high performance multiple data integration algorithm for identifying
human disease genes. A posterior probability of each candidate gene associated with individual diseases is
calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability
estimation strategies and two feature vector construction methods are developed to test the performance of the
proposed algorithm.

Conclusions: The proposed algorithm is not only generated predictions with high AUC scores, but also runs very
fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The
average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological
networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running
time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms.

Background
The term disease broadly refers to any condition that
impairs normal conditions of part or all of an organism.
Among various diseases, genetic disorders are those
related to disfunction of one or multiple genes in the
human genome. A genetic disorder may arise from or
lead to mutations of one or more genes, or associate
with over-/under expression of one or more genes [1].
This phenomenon is also a reflection of the module
characteristic of real biological systems [2], where genes,
proteins or other molecules often interact with each
other to perform majority cellular processes [3-5]. Even

disfunction of a single kind of gene may lead to disas-
sembling some protein complexes or disturb a whole
normal cellular pathway, thereby resulting in genetic
disorders.
The issue of disease gene identification is to find those

genetic disorder related genes, or called disease genes
for short, for each specific genetic disease. Various kinds
of evidence have shown that disease genes are not ran-
domly distributed, but rather tend to lie close to each
other in many biological networks if they are associated
the same or similar diseases [1,2,6,7].
Various kinds of biological data sources have shown

their power for identifying disease genes. Oti et al. [2]
use several sets of protein-protein interaction (PPI) data
to predict disease genes. They argue that the use of PPI
data can greatly increase the prediction performance for
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disease gene identifications. Fraser et al. [8] investigate
both yeast and human functional genomic data and
argue that protein complexes contain valuable informa-
tion which is helpful for detecting disease genes. Li
et al. [9] investigate genetic diseases from a pathway
based point of view. They find that individual pathways
often enrich genes related to the same or similar diseases.
Ma et al. [10] propose a combining gene expression and
protein interaction (CGI) method to prioritize genes
associated with a specific phenotype or trait. Ganegoda et
al. [11] and Li et al. [12] use tissue-specific data together
with PPI information to predict disease genes within
individual tissues. Li et al. [13] also use Gene Ontology
(GO) annotations to identify disease genes by combining
topological features of PPI networks.
Besides different data sources, many different computa-

tional methods have also been employed for identifying
disease genes. Lage et al. [14] propose a Bayesian method
to analyze a phenome-interactome network. Wu et al. [7]
use a linear regression method to calculate the concor-
dance score between a PPI network and a phenotype net-
work. A tool called CIPHER is developed to predict
disease genes based on those concordance scores.
Vanunu et al. [15] formulate a smoothness-related priori-
tization function in a PPI network, which predicts not
only disease genes but also disease associated protein
complexes. Zhang et al. [16] develop a Bayesian regres-
sion approach to explain similarities of disease pheno-
types by using diffusion kernels of one or several PPI
networks. Köhler et al. [17] propose a random walk with
restart (RWR) algorithm to detect disease genes by using
a global network distance measure and random walk
analysis.
Among those algorithms, the RWR algorithm [17] often

yields better performance than other algorithms in terms
of the prediction accuracy and the running time. However,
the RWR algorithm can only take a single network as the
input. When multiple kinds of biological networks need to
be integrated, the RWR algorithm can only simply merge
them into a mixed network as the input. Although this
strategy can integrate useful information from different
data sources, it integrates noises from them as well.
Predictions of the RWR algorithm from a mixed network
do not always perform better than those from individual
networks. To improve the data integration method, Chen
et al. [18] define a data integration rank (DIR) score to
select the most informative evidence among a set of data
sources. Chen et al. [19,20] recently propose two improved
Markov random field (MRF) algorithms, which can auto-
matically assign weights to different data sources by using
Gibbs sampling processes. They often yield better perfor-
mance than those using only single data source, and the
MRF algorithms are even more better than the the DIR
method in terms of the prediction accuracy. However, the

DIR algorithm is too time-consuming due to the calculat-
ing of a normalized similarity measure for all gene pairs,
while the MRF algorithms spend more time to maintain
a long Markov chain for every gene during the Gibbs
sampling processes.
In paper [21], we have proposed a logistic regression

based algorithm to reduce the computational time of the
MRF algorithm. It directly formulates the issue of disease
gene identification as a binary logistic regression problem
by using similar feature vectors as the MRF algorithm.
No Markov chains need to be maintained for all genes,
which makes the algorithm runs very fast. However, the
logistic regression based algorithm in [21] is only a single
network based algorithm, and the feature vector con-
struction method is limited to using information of only
direct neighbors. In this paper, we propose a fast and
high performance multiple data integration algorithm to
generalize the logistic regression based algorithm in [21].
Two aspects of generalization are proposed: (1) the gen-
eralization of the feature vector construction method;
and (2) the extension of the application scope for using
multiple data integrations. To be more specific, we first
theoretically introduce how binary logistic regression
model is used to formulate the disease gene identification
issue. Then, the feature vector construction method is
generalized by using not only direct neighbors but also
higher-order neighborhood information in a network.
After that, the logistic regression based algorithm is
extended to the multiple data integration case, where the
parameters (weights) of different data sources can be
tuned automatically. A prior probability estimation
method is also proposed by using protein complex infor-
mation, together with a validation method and evaluation
criteria. The numerical experiments show that the pro-
posed algorithm not only achieves high AUC score, but
also runs very fast even in the multiple data integration
case. It outperforms many existing algorithms for identi-
fying human disease genes.

Methods and materials
Problem formulation
Let H be a bipartite graph consisting of two disjoint sets
of vertices, where one set represents all known human
genes {g1, g2, . . . , gN}, while the other set represents all
known genetic diseases {d1, d2, . . . , dr}. The associa-
tions between those genes and genetic diseases can be
obtained from either the Online Mendelian Inheritance
in Man (OMIM) database [22] or similar databases.
Although a disease dk may associate with one or sev-

eral genes, the number of all known disease genes m is
much smaller than N . Hence, associations of most
other genes are still not known and need to be analyzed.
Without loss of generality, we can reorder the set of all
human genes as a vector (g1, g2, . . . , gN ), according to
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a set of given gene-disease associations, where gn+1,
gn+2, . . . , gn+m are genes associated with at lease one
known disease (disease genes), and g1, g2, . . . , gn are
others. Here N = n + m, and n is the number of all
genes that are not known to associate with any dis-
eases and they are called unknown genes in this paper.
For a specific disease dk, the issue of disease gene

identification is to find a set of candidate genes which
may have associations with dk. To achieve this, let

xk =
(
xk1, x

k
2, ..., x

k
n+m

)
be a vector of binary class labels

(i.e. taking the value zero or one) defined on all genes,
where xki = 1 represents gene gi being a disease gene of

dk , and xki = 0 otherwise. Since we have to address each
genetic disease one by one, we take dk for example, and
ignore the superscript k in the vector xk for simplicity as
x = (x1, x2, . . . , xn+m), hereafter. Therefore, the identifi-
cation of disease genes is equivalent to find labels of xi
for all unknown genes. Identification of disease genes
for other diseases can be similarly conducted by chan-
ging dk to another disease.
In this paper, the issue of disease gene identification is

formulated as a two-class classification problem by
using Bayesian analysis and logistic regression. The con-
ditional probability p(xi = 1| F) for each unknown gene

is first calculated in an inference stage, and a decision
score is then obtained according to this probability in a
decision stage [23]. Here F represents the information
used to make the inference, such as a vector of prior
labels of x, the connectivity of the bipartite graph H, the
neighborhood relationships of g1, g2, . . . , gN , and
the similarity relationship between d1, d2, . . . , dr . The
flow diagram of the proposed algorithm is depicted in
Figure 1.

Prior label estimation
The logistic regression based algorithm needs a vector
of prior labels for x. For those known disease genes, one
can directly assign 1 or 0 according to the known gene-
disease associations. For those unknown disease genes, a
prior probability of each gene get the label 1 should be
first estimated.
The simplest way is to assign the prior probability as 0

for all unknown genes. The prediction results in this
case is denoted as P0 hereafter.
However, one can make it better by using additional

prior information, such as protein complex data, to esti-
mate prior probabilities for unknown genes. This is not
only due to the fact that they are naturally available
from various databases, but also due to their capability

Figure 1 The general idea of the proposed logistic regression based algorithm. (a) A prior probability of each gene is first predefined. (b)
The class label of each gene is then assigned according to its prior probability. (c) A biological network gives the neighborhood connections
between individual genes. (d) A feature matrix is constructed based on the labels of individual vertices and the biological network. (e) A binary
logistic regression is conducted by using class labels as categorical dependent variables and individual features as predictor variables. (f) A
posterior probability is obtained from the binary logistic regression for each unknown genes. (g) The posterior probability is transformed into a
decision score for each unknown genes. (a) - (f) make up the inference stage, while (g) is the decision stage.
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to describe the module characteristic of disease genes. If
a disease is resulted from the disfunction of a protein
complex, then any component of the complex should
associate with the disease with a high probability.
Similar to the method used in [19,20], if a gene gi

encodes a protein in a complex, then let

p̂i =
A
B

(1)

be its prior probability, where A is the number of dis-
ease genes of the specific disease in the complex, and B
is the number of all disease genes in the complex. If gi
appears in multiple protein complexes, we use the maxi-
mum value as its prior probability. If gi does not belong
to any protein complex, let

p̂i =
C
D

(2)

be its prior probability, where C is the number of all
currently known disease genes of the specific disease,
and D is the total number of genes in human genome.
Once a prior probability p̂i is estimated for gi, its prior

label of x̂i can be obtained as follows. First, generate a
random number following the standard uniform distri-
bution. If the value of the random number is large than
p̂i, then assign 0 as the prior label for gi. Otherwise,
assign 1 as the prior label for gi. Repeat this step for all
unknown genes, one can obtain prior labels for all of
them. The prediction results generated by using those
prior labels is denoted as Pc hereafter.

Logistic regression
For a two-class classification problem, each gene is
labelled with either 1 or 0. A vector of all binary values
of x is called a configuration. In the previous MRF algo-
rithm [19,20], the configuration x is formulated as an
MRF which follows a Gibbs distribution. However, the
Markovianity characteristic of the MRF model makes it
only considering direct neighbors to construct feature
vectors, which limits the capability of the method to use
other topological attributes in a biological network. It is
also very time consuming to maintain Markov chains
for all unknown genes. In [21], we have introduced a
logistic regression based algorithm to directly estimate
the configuration by using the same feature vectors.
However, the application of the logistic regression based
algorithm is still limited to single biological network. A
multiple data integration method should be further
investigated. To generalize the formulation of feature
vectors by using other topological attributes and extend
its applicability to multiple data integration, we propose
an improved logistic regression based algorithm in this
study as follows.

Let C1 be a set of genes with label 1 and C0 be a set
of genes with label 0. Suppose the following four kinds
of probabilities are given: the class-conditional densities
p(x|C1) and p(x|C0), which indicate the probability of
the configuration x conditional on C1 and C0, respec-
tively, and the class prior densities p(C1) and p(C0),
which indicate the prior probability of genes in C1 and
C0 being labelled with 1 and 0, respectively.
According to the Bayes’ rule, the posterior probabil-

ities of those genes in C1 that are labelled with 1 can be
described as a logistic sigmoid function [23,24]

p (C1|x) = p (x|C1) p (C1)

p (x|C1) p (C1) + p (x|C0) p (C0)
=

et

et + 1
(3)

and the posterior probabilities of those genes in C0

that are labelled with 0 can be similarly written as

p (C0|x) = p (x|C0) p (C0)

p (x|C1) p (C1) + p (x|C0) p (C0)
=

1
et + 1

(4)

where the variable t is defined as

t = ln
p (x|C1) p (C1)

p (x|C0) p (C0)
, (5)

which is related to the four kinds of probabilities.
Although t is often unavailable for a real problem,

under general assumptions [23], t can be formulated as
a function of different features t = f (·) associated with
the integrated networks. To be more specific, let x be a
prior configuration of all human genes and f be a func-
tion. For any given gene gi, let ji be the feature vector
of gi that is related to the prior configuration x̂ . The
posterior probability that the specific gene gi has label 1
and 0 are

p
(
xi = 1|φi, f

)
=

exp
(
f (φi)

)
exp

(
f (φi)

)
+ 1

, (6)

and

p
(
xi = 0|φi, f

)
=

1

exp
(
f (φi)

)
+ 1

. (7)

respectively. Note that the sum of these two probabil-
ities (6) and (7) must equal to 1 in this two-class classi-
fication problem. A linear function f (ji) = wT ji with
variables (feature vectors) ji and coefficients (para-
meters) w is the most commonly used function to
ensure the calculation of the posterior probability not
too complex.
The key step of the proposed algorithm is the con-

struction of feature vectors. In the previous methods
[19,21], the numbers of direct neighbors that connects
to disease genes and non-disease genes are employed as
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the feature vector for each gene. Take gi for example, its
feature vector can be written as

φi = (1,φi1,φi0)
T , (8)

where ji1 and ji0 are the number of direct neighbors
of gi that connected to vertices with labels 1 and 0,
respectively. It is a three dimensional vector, where the
first element represents the constant term. All feature
vectors of individual genes together form a feature
matrix as

F1 =

⎡
⎢⎢⎢⎣
1 φ11 φ10

1 φ21 φ20
...
...

...
1 φN1 φN0

⎤
⎥⎥⎥⎦

N×3

(9)

where N is the number of all human genes. The corre-
sponding parameters are w = (w0, w1, w2)

T. Predictions
generated by using (9) are denoted as F1 hereafter.
In this study, two extended feature vector construction

methods are proposed as follows. Firstly, in a single bio-
logical network, not only the number of direct neighbors
of gi, but also the number of its second order neighbors
are employed to construct the feature vector as

φi =
(
1,φi1,φi0,φ′

i1,φ
′
i0
)T (10)

where ji1 and ji0 are the numbers of direct neighbors
of gi connected to vertices with labels 1 and 0, respec-
tively, and φ′

i1and φ′
i0 are the numbers of the second

order neighbors of gi connected to vertices with labels 1
and 0, respectively. The contribution of those indirect
neighbors has been investigated for predicting disease
genes in [20,25,26]. The feature matrix in this situation
can be written as

F2 =

⎡
⎢⎢⎢⎣
1 φ11 φ10 φ′

11 φ′
10

1 φ21 φ20 φ′
21 φ′

20
...
...

...
...

...
1 φN1 φN0 φ′

N1 φ′
N0

⎤
⎥⎥⎥⎦

N×5.

(11)

The corresponding parameter vector w = (w0, w1, w2,
w3, w4)

T is a five dimensional vector. Predictions gener-
ated by using (11) are denoted as F2 hereafter.
Secondly, in the multiple data integration situation,

suppose there are l biological networks. Let φ
j
i1,φ

j
i0 be

the number of direct neighbors of gi connected to ver-
tices with labels 1 and 0 in the jth network, respectively.
The feature vector obtained from those l networks

φi =
(
1,φ1

i1,φ
1
i0, ...,φ

l
i1,φ

l
i0

)T
(12)

is a 2l + 1 dimensional vector. All those feature
vectors together form a feature matrix as

F3 =

⎡
⎢⎢⎢⎣
1 φ1

11 φ1
10 · · · φl

11 φl
10

1 φ1
21 φ1

20 · · · φl
21 φl

20
...
...

... · · · ... ...
1 φ1

N1 φ1
N0 · · · φl

N1 φl
N0

⎤
⎥⎥⎥⎦

N×(2l+1).

(13)

The corresponding parameter vector w = (w0, w1, w2,. . . ,
w2l−1, w2l)

T is a 2l + 1 dimensional vector, and N is the
number of all human genes. Predictions generated from
(13) by integrating multiple networks is denoted as F3
hereafter.

Parameter estimation
Parameter estimation can be conducted on a training set
consists of known disease genes, where known genes
associated with dk are labelled with 1 and known genes
associated with other diseases are labelled with 0. How-
ever, as we discussed in [19,21], the exclusion of most
unknown genes reduces the number of vertices with
label 0 significantly, thereby making the estimation of
parameters inaccurate. Predictions from those inaccurate
parameters are unreliable in disease gene identification.
It is noteworthy that the majority of human genes

should not be disease genes associated with dk. Hence,
the inclusion of all unknown genes with prior labels as
the training set will make the training set more reason-
able, where the number of vertices with label 0 is signifi-
cantly increased, while the number of vertices with label
1 does not change too much. Such a training set, which
consists of both known genes and unknown genes, has
proved its powerful and efficient to estimate meaningful
parameters in [19-21].
Given a prior configuration x̂ for all vertices, a maxi-

mum-likelihood estimation (MLE) method can be
employed to estimate the parameter vector w. The likeli-
hood function can be written as

L (w; x1, x2, ..., xN) =
N∏
i=1

p
(
xi|φi,f

)
. (14)

where xi is the label of gi, ji is its feature vector that is
calculated according to x̂, f is a linear function of ji with
the form as f (ji) = wT ji, and N is the number of all
human genes. The log likelihood of (14) is
ln L (w; x1, x2, . . . , xN )

=
N∑
i=1

[
xiwTφi − ln(1 + exp(wTφi))

]
. (15)

The log likelihood (15) is a convex function [27].
Hence, we can find an unique global optimal solution
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by solving a convex optimization problem. In this study,
the standard MATLAB function fminunc() is employed
to find a numerical solution of (15) (by calculating the
minimum of − ln L (w; x1, x2, . . . , xN)). The the initial
value of w is simply set as zero for the fminunc()
function.

Decision score and evaluation methods
The logistic regression based algorithm returns a set of
posterior probabilities during the inference stage. One
can directly use those probabilities to make decisions in
the following decision stage. However, the posterior
probabilities do not always work well due to the hard-
ness to set a threshold for a genetic disease. Inspired by
the DIR method [18], we propose to use a percentage
value of a posterior probability as the decision score for
each gene. The decision score is calculated as follows

qi =
| {j|pi ≥ pj

} |
n

, i = 1, 2, ..., n (16)

where {p1, p2, . . . , pn} is the posterior probabilities of
individual unknown genes, and qi is the top percentage
value of pi among all those posterior probabilities. A
candidate gene is more likely to be associated with dk, if
its decision score is larger than majority of others.
To evaluate the performance of the proposed algo-

rithm, the leave-one-out cross validation paradigm is
employed by using above decision scores. The receiver
operating characteristic (ROC) curve is employed as one
of the evaluation criteria, which shows the relationship
between the true positive rate (TPR) and the false posi-
tive rate (FPR) by varying a threshold for determining
positives. The area under the ROC curve (AUC) is
employed to show the overall performance of algorithms.
The positive control genes are those known disease

genes associated with dk. For those negative control
genes, although they are indispensable to calculate false
positives and true negatives, it is generally hard to
obtain a true negative dataset [28]. In this study, the
negative control genes are randomly selected from
known disease genes that do not associate with dk. Since
those genes have been widely studied as disease genes
for other genetic diseases, it is less likely for them to be
disease genes for a different specific disease. If there are
s known disease genes associated with dk, we randomly

select
⌊ s
2

⌋
such genes as a negative control set. Each

gene belonging to the negative control set is also vali-
dated by using the leave-one-out cross validation
paradigm.
The proposed algorithm is compared with four pre-

vious algorithms: (1) the initial logistic regression based
algorithm proposed in [21]; (2) the RWR algorithm pro-
posed in [17]; (3) the MRF algorithm proposed in [19];

and (4) the DIR algorithm proposed in [18]. The first
algorithm is applicable to a single network. The second
and the third algorithms are applicable to both single
network and multiple data integration. The fourth algo-
rithm works only for multiple data integration. All those
algorithms identify disease genes with high prediction
performance and they work better than many previous
methods [17-19,21].

Algorithm
The step-by-step description of the proposed logistic
regression based algorithm is given as follows.
Input: The vector of all human genes (g1, . . . , gn+m),

where (g1, . . . , gn) are unknown genes, and (gn+1, . . . ,
gn+m) are known genes; l integrated biological networks
G1, G2, . . . , Gl; a set of protein complexes; and a set of
gene-disease associations.
Output: The vector of decision score for each

unknown gene for each disease.

1: For a specific disease dk , calculate prior probabil-
ities for all human genes, where the prior probability
of unknown genes p̂1, ..., p̂n are calculated according
to (1) and (2).
2: For each known gene gn+i, i = 1, . . . , m, if gn+i is
known to be associated with dk , let p̂n+i = 1. Other-
wise, let p̂n+i = 0.
3: Assign prior labels x̂ =

(
x̂1, x̂2, ..., x̂n, x̂n+1, ..., x̂n+m

)
for all genes according to the prior probabilities(
p̂1, ..., p̂n+m

)
, respectively.

4: Calculate the feature vector ji for each gi accord-
ing to the integrated biological networks and x̂.
5: Estimate parameters ŵ by maximizing the log
likelihood ln L(w; x1, x2, ..., xN) in (15) based on x̂
and ji, i = 1, . . . , n + m. A binary logistic regres-
sion is performed here by taking the vector x̂ as the
categorical dependent variables and those label-
related feature vectors ji as predictor variables.
Here i = 1, . . . , N.
6: Calculate the posterior probability p1, . . . , pn for
each unknown gene according to (6) by using ŵ and
ji.
7: Calculate the decision scores q1, . . . , qn according
to (16).
8: Repeat all the steps for another disease until every
disease is checked.

Results and discussion
Data sources
We use the same datasets as [19] in order to directly
compare with previous methods. To be more specific,
gene-disease associations are collected from the Morbid
Map list of the Online Mendelian Inheritance in Man
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(OMIM) [22]. Since a disease generally only associates
with a few disease genes, it is hard to perform a logistic
regression based on such small amount of positive sam-
ples. Hence, merging similar diseases into a disease
class, and identifying disease genes associated with
the disease class can circumvent this problem to some
extent. Goh et al. [1] manually classify all diseases in
OMIM into 22 primary disease classes. The dataset con-
tains 1284 genetic diseases and 1777 disease genes. In
this study, we use twelve disease classes that consist of
815 genes to test the performance of the proposed
algorithm.
The PPI dataset is derived from the database of HPRD

(Release 9) [29]. Duplicated edges between the same
pair of vertices and self-loop edges are deleted. The final
PPI network consists of 9465 vertices and 37039 edges.
Two another PPI datasets are derived from the database
of BioGrid (Release 3.2.108) [30] and the database of
IntAct (downloaded on Jan 26, 2014) [31], respectively,
which are used to select edges of biological networks.
The pathway datasets are obtained from the database

of KEGG [32], Reactome [33], PharmGKB [34], and PIN
[35]. There are 280, 1469, 99 and 2679 pathways in
those datasets, respectively. The total number of pro-
teins/genes consisting of those pathways is 8614.
A pathway co-existing network is constructed by taking
individual proteins/genes as vertices. Edges are con-
structed between two vertices, if they co-exist in any
pathway.
The human gene expression profiles are obtained from

BioGPS (GSE1133) [36,37], which contains 79 human
tissues in duplicates, measured using the Affymetrix
U133A array. Pairwise Pearson correlation coefficients
(PCC) are calculated. A pair of genes are linked by an
edge if the PCC value is large than 0.5, similar to the
method used in [1,18] to construct the gene co-expres-
sion network.
The human protein complexes are collected from the

database of CORUM [38] and PCDq [39]. There are
1677 and 1103 protein complexes in datasets with at
least two proteins, respectively. There are in total 3881
proteins in those protein complexes.
In summary, three kinds of biological networks are

constructed and all protein (or gene) IDs are mapped
onto the form of gene symbol. In order to test the per-
formance of multiple data integration of our method,
we selected those vertices that appear at least four times
in all five biological networks (three PPI networks, a
pathway co-existing network and a gene co-expression
network). The final datasets consist of 7311 human
genes, 815 out of which are known associated with 12
disease classes. The details of those datasets used in this
study can be found in the “Availability of supporting
data” section.

Comparisons between different priors
If there is no prior information available for the applica-
tion of the proposed algorithm, zero prior P0 still works
in most situations. However, if there is general prior
information available in practice (such as the protein
complex information), the proposed algorithm should
work better than that using P0.
Figure 2 compares the logistic regression based algo-

rithm by using either the zero prior P0 or the protein
complex prior Pc. We can see from Figure 2 that Pc

always works better than P0 in all three kinds of feature
vectors in terms of the AUC score. The highest
improvement is achieved when F1 is employed, where
the AUC score increases from 0.737 to 0.765. There is
only slight improvement when F3 is employed in multi-
ple data integration, where the AUC score increases
from 0.821 to 0.830. This may due to the fact that F1
using P0 achieves the lowest prediction AUC score for
identifying disease genes. It has the highest potential to
be improved. While F3 using P0 in the multiple data
integration already achieves a very high AUC score.
There is only a little room for it to be further improved
by using additional prior information.
Although the improvement of the protein complex

information is not so significant for F2 and F3, the
increased AUC score still indicates that additional knowl-
edge is helpful for improving the prediction performance.
This characteristic makes the proposed algorithm very
promising, since it is flexible in terms of the usage of dif-
ferent prior information. Any prior knowledge related to
gene-disease associations can be employed to estimate
the prior labels.

Comparisons between different feature vectors
Figure 3 compares the logistic regression based algo-
rithm by using different feature vectors. F1 and F2 are
tested on the single HPRD PPI network, and F3 is tested
by integrating the following three biological networks:
(1) the HPRD PPI network, (2) the pathway co-existing
network and (3) the gene co-expression network. They
are the same experimental results as Figure 2 shows, but
from a different point of view.
We can see from Figure 3 that F3 achieves the highest

AUC score in both P0 and Pc, while F1 always obtains
the lowest AUC score. In the zero prior situation P0, F1
reaches the AUC score at only 0.737, F2 on the same
single PPI network reaches that at 0.766, while F3 by
integrating three networks achieves the AUC score at
0.821. In the protein complex prior situation Pc, the
AUC score of F1 is 0.765. It increases to 0.769 by using
F2 on the same single PPI network, and it continually
rises to 0.830 by using F3 in the multiple data integra-
tion. Both F2 and F3 proposed in this study work better
than the initial feature vector F1.
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Comparing with previous algorithms
To test the efficiency of the proposed algorithm, four
previous algorithms are employed as comparison in
either single network or multiple data integration. The
initial logistic regression works only in single network,
while the DIR algorithm works only in multiple data
integration.
The comparison is first conducted in terms of the

computational time. All those tests are conducted on a
Windows 7 professional computer (Inter(R) Core(TM) i7
CPU, 3.07 GHz, 8.0 GB RAM, 64-bit OS). The MATLAB
version is 7.10.0.499 (R2010a), 64-bit (win 64). Each algo-
rithm is evaluated by using the leave-one-out cross vali-
dation paradigm, where each known gene is left out
once. The probabilities of all unknown genes (include the
left out one) are calculated by using each algorithm. All
algorithms are conducted on the same datasets and the
same computational conditions. Figure 4 illustrates the
average computational time for each leave-one-out
experiment among different algorithms.
We can see from Figure 4 that the MRF algorithm is

the slowest algorithm. A leave-one-out experiment
spends around 95.72 seconds for the single network,
and it increases to about 273.77 seconds when three
biological networks are integrated. The initial logistic
regression based algorithm F1 runs very fast. It only
spends approximately 0.54 seconds in the single net-
work. The improved logistic regression based algorithms
F2 and F3 also runs very fast. It only takes around 1.5
seconds when F2 is used, and it increases to about 12.54
seconds when three biological networks are integrated
by using F3, which is almost the same as the DIR algo-
rithm (11.52 seconds). The RWR algorithm also runs
very fast, and it does not vary too much in both situa-
tions. It is due to the fact that the RWR algorithm uses

Figure 2 Comparisons between different priors of the logistic regression based algorithm by using three kinds of feature vectors.
(a) The ROC curve of the proposed algorithm by using F1 on the single HPRD PPI network. (b) The ROC curve of the proposed algorithm by
using F2 on the single HPRD PPI network. (c) The ROC curve of the proposed algorithm by using F3 by integrating three biological networks: the
HPRD PPI network, the pathway co-existing network and the gene co-expression network. AUC values are listed in parentheses.

Figure 3 Comparisons between different feature vectors of the
logistic regression based algorithm. (a) The ROC curve of
different feature vectors by using P0. (b) The ROC curve of different
feature vectors by using Pc. AUC values are listed in parentheses.
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the mixed network as input. No matter how many net-
works are integrated, it combines them together as a
single mixed network. Hence, the number of integrated
networks does not affect the computational time
significantly.
The comparison is then conducted in terms of the

AUC scores. When only the single HPRD PPI network is
employed, as illustrated in Figure 5(a), the proposed
logistic regression based algorithm using F2 works better
than all of the previous single network based algorithms.
The AUC score is 0.766, which achieves 2.9%, 4.5% and
2.9% improvements compared with the initial logistic
regression based algorithm using F1, the MRF algorithm
and the RWR algorithm, respectively. When three biolo-
gical networks are employed, as illustrated in Figure 5(b),
the proposed logistic regression based algorithm using F3
achieves the highest AUC score among all these multiple
data integration algorithms. The AUC score is 0.830
when protein complex prior Pc is used, which is 9.9%,
11.9% and 11.4% improvements compared with the MRF
algorithm, the RWR algorithm and the DIR algorithm
under the same situation, respectively.
The comparison is finally conducted in terms of the

AUC scores for each of the 12 disease classes. It can be
seen from the Figure 6(a) that the proposed logistic
regression based algorithm (F2Pc) is the most stable algo-
rithm in the single network. Its AUC score is larger than
the other three algorithms in many cases. When three
biological networks are integrated, the proposed logistic
regression based algorithm (F3Pc) achieves the highest

AUC score in all cases, which makes the algorithm very
promising in terms of multiple data integration.

Conclusions
In this paper, we have proposed an improved logistic
regression based algorithm to identify disease genes by
using either a single network or multiple networks. A
Bayesian analysis method is first used to formulated the
disease gene identification issue as a two-class classifica-
tion problem. A binary logistic regression model is then
employed to calculate the posterior probability of each
unknown gene obtained the label 1. Parameters of the
model are estimated based on the whole gene set, and the
final decision scores are obtained by using the percentage
values of individual posterior probabilities.

Figure 4 Comparison of the computational time among
different algorithms. The grey bars illustrate the average time of
different algorithms that work on the single HPRD PPI network.
From left to right, they are the average computational time of the
MRF algorithm, the RWR algorithm, the initial proposed algorithm
by using the F1Pc and the proposed logistic regression based
algorithm by using F2Pc, respectively. The blue bars illustrate the
average time of different algorithms by integrating three biological
networks. From left to right, they are the average computational
time of the MRF algorithm, the RWR algorithm, the proposed
logistic regression based algorithm by using the F3Pc and the DIR
algorithm, respectively. The number above each bar gives the
average time (by second) for each leave-one-out experiment.

Figure 5 ROC curves of cross-validation results of the proposed
logistic regression based algorithm and three previous methods.
(a) The ROC curves of different algorithms conducted on the single
HPRD PPI network. (a) The ROC curves of different algorithms
conducted on the integrated three biological networks: the HPRD PPI
network, the pathway co-existing network and the gene co-expression
network. AUC values are listed in parentheses.
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Compared with previous algorithms, the proposed
logistic regression based algorithm not only runs fast, but
also generates predictions with high AUC scores. It only
takes around 1.50 seconds in the single PPI network, and
the AUC score is larger than all of the three single net-
work based competing algorithms. Although the running
time for the multiple networks is a little longer than the
RWR algorithm and the DIR algorithm, it is still compar-
able, and the AUC score of the proposed algorithm is
much better than those two algorithms. Compared with
the MRF algorithm, the computational time has been sig-
nificantly reduced, while the predictive performance
becomes much better in terms of the AUC score. The
best AUC score of the proposed algorithm is 0.766 in
the single network, and it increases to 0.830 if three net-
works are integrated. The high prediction performance
and the short computation time make the proposed algo-
rithm very promising for identifying human disease
genes.

Availability of supporting data
The Matlab code of the proposed algorithm with data can
be found in https://www.dropbox.com/s/bs0ekmu718u4
sea/Package15.zip
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