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Abstract

Background: Developing efficacious medications to treat methamphetamine dependence is a global challenge in
public health. Topiramate (TPM) is undergoing evaluation for this indication. The molecular mechanisms underlying
its effects are largely unknown. Examining the effects of TPM on genome-wide gene expression in methamphetamine
addicts is a clinically and scientifically important component of understanding its therapeutic profile.

Methods: In this double-blind, placebo-controlled clinical trial, 140 individuals who met the DSM-IV criteria for
methamphetamine dependence were randomized to receive either TPM or placebo, of whom 99 consented to
participate in our genome-wide expression study. The RNA samples were collected from whole blood for 50 TPM- and
49 placebo-treated participants at three time points: baseline and the ends of weeks 8 and 12. Genome-wide
expression profiles and pathways of the two groups were compared for the responders and non-responders at Weeks
8 and 12. To minimize individual variations, expression of all examined genes at Weeks 8 and 12 were normalized to
the values at baseline prior to identification of differentially expressed genes and pathways.

Results: At the single-gene level, we identified 1054, 502, 204, and 404 genes at nominal P values < 0.01 in the
responders vs. non-responders at Weeks 8 and 12 for the TPM and placebo groups, respectively. Among them,
expression of 159, 38, 2, and 21 genes was still significantly different after Bonferroni corrections for multiple testing.
Many of these genes, such as GRINA, PRKACA, PRKCI, SNAP23, and TRAK2, which are involved in glutamate
receptor and GABA receptor signaling, are direct targets for TPM. In contrast, no TPM drug targets were identified in
the 38 significant genes for the Week 8 placebo group. Pathway analyses based on nominally significant genes
revealed 27 enriched pathways shared by the Weeks 8 and 12 TPM groups. These pathways are involved in relevant
physiological functions such as neuronal function/synaptic plasticity, signal transduction, cardiovascular function, and
inflammation/immune function.

Conclusion: Topiramate treatment of methamphetamine addicts significantly modulates the expression of genes
involved in multiple biological processes underlying addiction behavior and other physiological functions.
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Background
Methamphetamine (METH), an N-methyl derivative of
amphetamine commonly abused recreationally, is a power-
fully addictive psychostimulant that affects the central ner-
vous system (CNS) dramatically [1]. Dependence on the
drug has risen to an epidemic level worldwide [2], and in
2007, 529,000 Americans (ca. 0.2% of the US population)
were METH users [3].
METH induces long-term changes in behavior, includ-

ing sensitization and dependence [4,5], as well as deficits
in cognitive function [6-8], and causes psychiatric symp-
toms such as hallucinations and delusions [9]. Its use
and abuse have been associated with several significant
health risks, including cardiac dysrhythmia, stroke, high
blood pressure, hyperthermia, and CNS abnormalities
[10,11] that are thought to reflect changes in the signal-
ing and metabolism of neurotransmitters such as dopa-
mine, serotonin, and glutamate [10,12-16].
Unfortunately, no efficacious medication for METH de-

pendence has been developed to date [17]. There is a great
need, not only for novel treatments, but for understand-
ing of its molecular mechanisms. Topiramate (TPM), a
sulfamate-substituted derivative of the monosaccharide
D-fructose [18], has been efficacious in the treatment of
alcohol dependence [19] and in promoting smoking cessa-
tion among alcohol-dependent smokers [20]. A prelimin-
ary study suggests that it also may be useful for treating
cocaine dependence [21]. These therapeutic effects have
been attributed to its hypothesized potential to reduce the
release of cortico-mesolimbic dopamine, the neurotrans-
mitter primarily responsible for the acquisition and main-
tenance of drug-seeking behaviors for the majority of
abused drugs, including amphetamines. Thus, TPM might
be efficacious for treating METH dependence [22]. How-
ever, the effects of TPM on METH-dependent subjects
seem to be complex. Whereas earlier studies have not un-
covered any deleterious interactions between TPM and
METH with respect to cognitive performance, attention,
or concentration, TPM tends to enhance METH-induced
increases in attention and decrease perceptual-motor
function [22]. Also, TPM accentuates markedly the posi-
tive subjective effects of METH, although not craving or
reinforcement [23]. Although several hypotheses have
been offered on the basis of clinical laboratory studies for
the effects of TPM on METH dependence [22-25], the
molecular mechanisms remain unclear.
In a recently completed double-blind, multi-center,

placebo-controlled clinical trial of the treatment of
METH dependence with TPM, mixed results were ob-
tained [26]. Thus, although TPM did not increase abstin-
ence from METH use, it significantly reduced urine
METH concentrations and observer-rated severity of de-
pendence [26]. From this trial, a genome-wide expres-
sion analysis was conducted on RNA extracted from the
blood of participants, with the goal of identifying differ-
entially expressed genes and pathways in the responders
and non-responders. Such a global gene expression in-
vestigation not only provides evidence at the molecular
level explaining the interaction of TPM and METH but
also may help us to evaluate the pharmacological effect
of TPM on METH dependence.

Results
Grouping study participants used for transcriptome
analysis
On the basis of 209 chips that passed quality control, 49
participants in the placebo group and 50 in the TPM
group were included. According to the criteria for pri-
mary efficacy outcome [26] (also see Methods), these
participants were classified as responders or non-
responders. For these participants, only 43 had a gene
expression study at all three time points, 27 and 24 of
which could be classified as responders or non-
responders, respectively. For the other 16 participants,
either no valid urine samples were tested or the patients
were excluded for other reasons at Weeks 8 and 12 (see
Additional file 1: Figure S1). To increase the sample size,
we included some participants having valid gene expres-
sion data at Week 8 but not at Week 0 (baseline) among
the Week 8 samples, as well as those participants with
valid gene expression data at both Weeks 8 and 12 but
not at baseline. Finally, we identified 5 responders and
17 non-responders in the Week 8 TPM group, 4 re-
sponders and 17 non-responders in the Week 8 placebo
group (see Additional file 1: Figure S1A), 6 responders
and 11 non-responders in the Week 12 TPM group, and
2 responders and 13 non-responders in the Week 12
placebo group (see Additional file 1: Figure S1B).

Identification of genes differentially expressed in
responders and non-responders at Weeks 8 and 12
At a significance level of 0.01, we identified 1,054 (FDR:
0.009 ? 0.010; range <1 ? 10 −5 - 0.035), 502 (FDR: 0.027 ?
0.021; range: <1 ? 10 −5 - 0.070), 204 (FDR: 0.113 ? 0.034;
range: 0.003 - 0.160), and 404 (FDR: 0.033 ? 0.024;
range: <1 ? 10 −5 - 0.084) differentially expressed genes
between responders and non-responders for the Week
8 TPM, Week 8 placebo, Week 12 TPM, and Week 12
placebo groups, respectively (see Additional file 2:
Tables S1-S4 for details). Of these four groups, the Week 8
TPM group had the lowest FDR. To take into account the
number of genes tested in the four groups, 159, 38, 2, and
21 genes, respectively, remained significant at Bonferroni-
corrected P values < 0.05.
In the Week 8 TPM group, 159 genes were significantly

changed with a Bonferroni-corrected P value of < 0.05,
with 97 being up-regulated and 62 down-regulated com-
paring positive and negative responders. Importantly, none
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of these 159 genes overlapped with the 38 genes detected
in the Week 8 placebo group at a Bonferroni-corrected
P value of 0.05 (Additional file 2: Table S2). Tables 1 and
2 show, respectively, the representative up-regulated and
down-regulated genes whose functions are related to cell
adhesion/motion, nervous system development and func-
tion/synaptic plasticity, signal transduction, ubiquitination/
intracellular protein transport, mitochondrial function/
metabolism and energy pathways, and immune system
function categories.
In the Week 12 TPM group, we detected only two

genes, ITCH and MKNK2, whose expression remained
significant after Bonferroni correction for multiple testing
(Additional file 2: Table S3). Both were down-regulated by
TPM and are in the nervous system development and
function/synaptic plasticity category. Although the exact
reason is unknown, we suspect that the small size of the
Week 12 TPM group might have contributed. None of
them overlapped with those 21 genes changed by placebo
at Week 12 with Bonferroni-corrected P values < 0.05
(Additional file 2: Table S4).

Pathways identified by IPA
The differentially expressed genes were subjected to
pathway analysis using the IPA. A total of 114, 41, 54,
and 25 pathways with at least three genes overexpressed
were enriched at a nominal P value of < 0.05 between re-
sponders and non-responders for Week 8 TPM, Week 8
placebo, Week 12 TPM, and Week 12 placebo, respect-
ively. Among these pathways, 21 significantly enriched
pathways with an FDR of < 0.05 at either time point or
FDR < 0.10 at both time points were shared exclusively
by the Week 8 and Week 12 TPM groups (Table 3), sug-
gesting they are more likely to be the pathways related
to the treatment effect of TPM in METH-dependent
subjects. No significantly enriched pathways were shared
exclusively by the Week 8 and Week 12 placebo groups,
with FDRs < 0.10 at both time points. Although 163,
149, 137, and 120 pathways were detected for the Week
8 TPM, Week 8 placebo, Week 12 TPM, and Week 12
placebo groups, respectively, at a significance level of
0.05, only 46, 5, 6, and 0 pathways remained significant
after Bonferroni correction for multiple testing. A com-
parison of these significant pathways after correction for
multiple testing revealed that only two pathways (i.e., B-
cell receptor signaling and renin-angiotensin signaling)
were shared exclusively by the Week 8 and Week 12
TPM groups, and no pathways were shared by the Week
8 and Week 12 placebo groups.

Pathways identified by onto-tools pathway-express
Next, we performed pathway analysis on the nominally
significantly expressed genes using Onto-Tools Pathway-
Express. A total of 47, 21, 32, and 25 KEGG pathways
with at least three overexpressed genes were enriched at
nominal P values < 0.05 between responders and non-
responders for the Week 8 TPM, Week 8 placebo, Week
12 TPM, and Week 12 placebo groups, respectively.
Among them, eight significantly enriched KEGG pathways
with FDRs < 0.05 at either time point or FDRs < 0.10 at
both time points were shared exclusively by the Week 8
and Week 12 TPM groups (Table 3). Comparing the path-
ways detected by Onto-tools with those detected by IPA,
we found three were shared: synaptic long-term potenti-
ation, Fc epsilon RI signaling, and natural killer-cell signal-
ing. In contrast, no significantly enriched KEGG pathways
were shared by the Week 8 and Week 12 placebo groups,
with FDRs < 0.10 at both time points. Again, although 81,
64, 60, and 65 pathways were detected for the Week 8
TPM, Week 8 placebo, Week 12 TPM, and Week 12 pla-
cebo groups, after Bonferroni correction, only 19, 5, 3, and
5 pathways remained significant. Furthermore, only two
pathways (i.e., MAPK signaling and T-cell receptor signal-
ing) were shared exclusively by the Week 8 and Week 12
TPM groups, and no pathways were shared by the Week 8
and Week 12 placebo groups.
Combining the results of IPA and Onto-Tools Pathway-

Express, at the nominal P values < 0.05 and further
restricting by FDRs < 0.05 at either time point or < 0.10
at both, a total of 27 pathways were identified (see
Table 3). These pathways are involved in a spectrum of
physiological functions: some are associated mainly
with signal transduction (Fc epsilon RI signaling, LPS-
stimulated MAPK signaling, p38 MAPK signaling, and
SAPK/JNK signaling), whereas others are related to
cardiovascular function (cardiac hypertrophy signaling,
and renin-angiotensin signaling), and inflammation/
immune function (B-cell activating-factor signaling,
CCR3 signaling in eosinophils, CCR5 signaling in macro-
phages, chemokine signaling, CXCR4 signaling, epithelial
cell signaling in Helicobacter pylori infection, natural killer
cell signaling, and role of PKR in interferon induction and
antiviral response).
The essential pathways related to neuronal function/

synaptic plasticity include alpha-adrenergic signaling,
ephrin receptor signaling, ErbB signaling, FGF signaling,
GnRH signaling, mTOR signaling, neurotrophin/TRK sig-
naling, and synaptic long-term potentiation. The genes in
the synaptic long-term potentiation pathway that were
changed by TPM at Week 8 and Week 12 are depicted in
Figure 1.

Discussion
The current study is the first genome-wide expression in-
vestigation into the effects of TPM for the treatment of
METH dependence. By profiling genome-wide expression
patterns in human white blood cells from METH-
dependent subjects who received either oral TPM or



Table 1 A list of 48 representative genes significantly up-regulated in week 8 topiramate groupa

Gene symbol Gene name Week 8 TPM

FC ? SDb P Valuec FDRd

Cell adhesion/Motion

CD164 CD164 molecule, sialomucin 2.67 ? 0.38 1.00 ? 10 −6 5.07 ? 10 −5

ITGA4 Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 2.24 ? 0.27 4.00 ? 10 −6 1.31 ? 10 −4

ITGB1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2,
MSK12)

2.20 ? 0.25 1.10 ? 10 −5 2.64 ? 10 −4

SCYL2 SCY1-like 2 (S. cerevisiae) 2.45 ? 0.30 4.00 ? 10 −6 1.31 ? 10 −4

Synaptic plasticity and nervous system development/function

DLG1 Discs, large homolog 1 (Drosophila) 1.66 ? 0.12 2.00 ? 10 −6 8.22 ? 10 −5

GDI2 GDP dissociation inhibitor 2 1.63 ? 0.09 <1.00 ? 10 −6 <1.00 ? 10 −5

HIF1A Hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) 2.22 ? 0.26 4.00 ? 10 −6 1.31 ? 10 −4

SCFD1 Sec1 family domain containing 1 1.63 ? 0.12 3.00 ? 10 −6 1.09 ? 10 −4

SNAP23 Synaptosomal-associated protein, 23kDa 1.95 ? 0.19 2.00 ? 10 −6 8.22 ? 10 −5

TRAK2 Trafficking protein, kinesin binding 2 1.44 ? 0.07 <1.00 ? 10 −6 <1.00 ? 10 −5

ZFR Zinc finger RNA binding protein 2.14 ? 0.22 1.00 ? 10 −6 5.07 ? 10 −5

Signal transduction

AKAP11 A kinase (PRKA) anchor protein 11 2.23 ? 0.29 1.10 ? 10 −5 2.60 ? 10 −4

CCNYL1 Cyclin Y-like 1 1.62 ? 0.10 3.00 ? 10 −6 1.09 ? 10 −4

ERBB2IP Erbb2 interacting protein 2.28 ? 0.23 <1.00 ? 10 −6 <1.00 ? 10 −5

FGFR1OP2 FGFR1 oncogene partner 2 1.57 ? 0.11 4.00 ? 10 −6 1.31 ? 10 −4

MAPK1IP1L Mitogen-activated protein kinase 1 interacting protein 1-like 1.39 ? 0.06 <1.00 ? 10 −6 <1.00 ? 10 −5

PIK3AP1 Phosphoinositide-3-kinase adaptor protein 1 1.70 ? 0.14 5.00 ? 10 −6 1.54 ? 10 −4

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha) 2.04 ? 0.23 7.00 ? 10 −6 1.92 ? 10 −4

PIP5K3 Phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, type III 1.95 ? 0.20 1.00 ? 10 −5 2.53 ? 10 −4

PTEN Phosphatase and tensin homolog 2.01 ? 0.10 <1.00 ? 10 −6 <1.00 ? 10 −5

RABEP1 Rabaptin, RAB GTPase binding effector protein 1 1.42 ? 0.08 5.00 ? 10 −6 1.54 ? 10 −4

RAP2A RAP2A, member of RAS oncogene family 1.75 ? 0.15 8.00 ? 10 −6 2.13 ? 10 −4

RAP2C RAP2C, member of RAS oncogene family 1.84 ? 0.16 3.00 ? 10 −6 1.09 ? 10 −4

SKAP2 Src kinase associated phosphoprotein 2 1.76 ? 0.15 5.00 ? 10 −6 1.54 ? 10 −4

SOS2 Son of sevenless homolog 2 (Drosophila) 2.51 ? 0.25 <1.00 ? 10 −6 <1.00 ? 10 −5

TGFBR2 Transforming growth factor, beta receptor II (70/80kDa) 1.49 ? 0.09 8.00 ? 10 −6 2.13 ? 10 −4

TOB1 Transducer of ERBB2, 1 2.28 ? 0.27 1.00 ? 10 −6 5.07 ? 10 −5

ZFAND6 Zinc finger, AN1-type domain 6 2.25 ? 0.20 <1.00 ? 10 −6 <1.00 ? 10 −5

Ubiquitination/Intracellular protein transport

CUL5 Cullin 5 2.25 ? 0.29 6.00 ? 10 −6 1.72 ? 10 −4

FBXL5 F-box and leucine-rich repeat protein 5 1.69 ? 0.09 <1.00 ? 10 −6 <1.00 ? 10 −5

FBXO28 F-box protein 28 1.45 ? 0.08 5.00 ? 10 −6 1.54 ? 10 −4

PCNP PEST proteolytic signal containing nuclear protein 2.54 ? 0.35 3.00 ? 10 −6 1.09 ? 10 −4

PSMD12 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 12 1.77 ? 0.12 <1.00 ? 10 −6 <1.00 ? 10 −5

RNF11 Ring finger protein 11 3.29 ? 0.39 <1.00 ? 10 −6 <1.00 ? 10 −5

RNF149 Ring finger protein 149 1.51 ? 0.10 8.00 ? 10 −6 2.13 ? 10 −4

SEC62 SEC62 homolog (S. cerevisiae) 1.69 ? 0.12 <1.00 ? 10 −6 <1.00 ? 10 −5

SMURF2 SMAD specific E3 ubiquitin protein ligase 2 1.64 ? 0.10 <1.00 ? 10 −6 <1.00 ? 10 −5

SRP54 Signal recognition particle 54kDa 1.56 ? 0.10 3.00 ? 10 −6 1.09 ? 10 −4
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Table 1 A list of 48 representative genes significantly up-regulated in week 8 topiramate groupa (Continued)

UBE2D1 Ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast) 2.41 ? 0.30 2.00 ? 10 −6 8.22 ? 10 −5

XPO1 Exportin 1 (CRM1 homolog, yeast) 1.98 ? 0.18 <1.00 ? 10 −6 <1.00 ? 10 −5

YME1L1 YME1-like 1 (S. cerevisiae) 1.69 ? 0.11 <1.00 ? 10 −6 <1.00 ? 10 −5

Mitochondrial function/Metabolism and energy pathways

ATP8A1 ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1 2.11 ? 0.24 9.00 ? 10 −6 2.38 ? 10 −4

GALNT7 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7
(GalNAc-T7)

1.87 ? 0.17 3.00 ? 10 −6 1.09 ? 10 −4

MAN1A1 Mannosidase, alpha, class 1A, member 1 2.26 ? 0.28 6.00 ? 10 −6 1.72 ? 10 −4

NUDT5 Nudix (nucleoside diphosphate linked moiety X)-type motif 5 1.34 ? 0.04 <1.00 ? 10 −6 <1.00 ? 10 −5

PGK1 Phosphoglycerate kinase 1 1.35 ? 0.06 6.00 ? 10 −6 1.72 ? 10 −4

SLC25A46 Solute carrier family 25, member 46 2.20 ? 0.25 3.00 ? 10 −6 1.09 ? 10 −4

TXNL1 Thioredoxin-like 1 1.49 ? 0.08 1.00 ? 10 −6 5.07 ? 10 −5

aGenes are selected from a total of 97 significantly up-regulated genes with Bonferroni-corrected P Values < 0.05 (i.e., 0.05/3698 genes = 1.35 ? 10 −5).
bFC, denoting fold change, is defined as the reciprocal of the ratio of the expression values of Positive Responders over Negative Responders; SD,
standard deviation.
cP Value was calculated using the ordinary Student ? s t test for each gene.
dFDR, denoting false discovery rate, was estimated by the Benjamini-Hochberg (BH) method.
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placebo, we identified various number of genes that are
differentially expressed between responders and non-
responders in the TPM-treated and placebo control
groups. Further clustering of these altered genes according
to their function revealed the significantly enriched
pathways governing neuroplasticity and neurotoxicity/
neurodegeneration (see Figure 2). Given the primary pur-
pose of this clinical trial, in this discussion, we focus pri-
marily on how TPM may regulate molecular pathways of
synaptic plasticity underlying METH? s reward and reinfor-
cing effects that influence abstinence.
Exposure to drugs of abuse triggers various gene expres-

sion changes resulting in complex neural adaptations that
determine the addictive properties of abusive drugs [27].
Among these changes, modifications in long-term synaptic
potentiation (LTP) of neuroplasticity are fundamental in
instilling reward and reinforcing the drug effects [28]. With
evidence from decades of molecular research, it is estab-
lished that METH alters LTP through activation of dopa-
mine or glutamate surface receptors or both [29] that are
linked to the intracellular signal transduction extracellular-
signal-regulated-kinase (ERK) pathway. Among the surface
neurotransmitter receptors regulating this pathway, the
only receptor gene we found to be differentially expressed
in the responders and non-responders to TPM was iono-
tropic glutamate receptor N-methyl D-aspartate-associated
protein 1 (GRINA). This protein is a subtype of N-methyl
D-aspartate (NMDA) receptors that are antagonized by
TPM [30,31] and activated by METH [32,33]. In the TPM
responder group, GRINA was down-regulated at Week 8,
implying fewer NMDA receptors at the synapse. Although
expression of none of the other primary target genes of
TPM (such as GABAA and AMPA/kainate glutamate
receptors) was altered by TPM, three genes coding for
membrane trafficking proteins (DLG1, SNAP23, and
TRAK2) associated with these receptors were up-regulated
in TPM responders compared with non-responders and
placebo-treated subjects. The DLG1 gene encodes a synap-
tic scaffolding protein (also known as synapse-associated
protein 97) involved in synapse formation [34] and traf-
ficking of AMPA [35,36], kainate [37], and NMDA [38,39]
glutamate receptors. SNAP23 is a scaffolding protein that
aids in stabilizing NMDA receptors at the neuronal surface
[40]. The TRAK2 product is involved in GABAB-receptor
trafficking [41]. In rat neocortex, DLG1 mRNA is up-
regulated by the NMDA antagonist phencyclidine but not
by METH [42]. Considering these factors, it is possible
that TPM-associated alterations in the expression of
AMPA, kainite, and GABAA receptors at the neuronal
surface are more likely to be further governed by post-
transcriptional modifications such as receptor phosphoryl-
ation and trafficking to and from the synaptic membrane,
rather than through alterations in their transcription.
Once METH activates its neural receptors, they activate

ERK via the upstream cytoplasmic regulators of the ERK
pathway; activated ERK translocates from the cytoplasm to
the nucleus and phosphorylates cAMP response element
binding protein (CREB) [27] to facilitate METH-induced
gene expression, serving as the mediator between the nu-
cleus and the target receptors of METH at the neuronal
surface [43]. The drug might activate the ERK pathway
via either up-regulation of gene transcription, post-
transcriptional activation of protein phosphorylation, or
both. In the present study, expression of several genes of
the ERK pathway was down-regulated in responders at
Week 8 of TPM treatment compared with non-responders
and the placebo-treated subjects (see Figure 1A), suggest-
ing a ? reversal? of METH-induced up-regulation of ERK



Table 2 A List of 45 representative genes significantly down-regulated in week 8 topiramate groupa

Gene symbol Gene name Week 8 TPM

FC ? SDb P Valuec FDRd

Cell adhesion/Motion

CDC2L2 Cell division cycle 2-like 2 −1.39 ? 0.07 1.10 ? 10 −5 2.64 ? 10 −4

CDC42EP2 CDC42 effector protein (Rho GTPase binding) 2 −2.01 ? 0.19 1.00 ? 10 −6 5.07 ? 10 −5

EMILIN2 Elastin microfibril interfacer 2 −1.41 ? 0.05 <1.00 ? 10 −6 <1.00 ? 10 −5

JAK3 Janus kinase 3 (a protein tyrosine kinase, leukocyte) −1.68 ? 0.11 1.00 ? 10 −6 5.07 ? 10 −5

TUBB2C Tubulin, beta 2C −1.39 ? 0.06 2.00 ? 10 −6 8.22 ? 10 −5

Nervous system development and function/synaptic plasticity

ADAT1 Adenosine deaminase, tRNA-specific 1 −1.61 ? 0.08 <1.00 ? 10 −6 <1.00 ? 10 −5

CIRBP Cold inducible RNA binding protein −1.74 ? 0.13 1.00 ? 10 −6 5.07 ? 10 −5

DGCR14 3-phosphoinositide dependent protein kinase-1 −1.45 ? 0.04 <1.00 ? 10 −6 <1.00 ? 10 −5

FKBP4 FK506 binding protein 4, 59 kDa −1.49 ? 0.10 6.00 ? 10 −6 1.72 ? 10 −4

NAPA N-ethylmaleimide-sensitive factor attachment protein, alpha −2.04 ? 0.21 1.00 ? 10 −6 5.07 ? 10 −5

P2RX1 Purinergic receptor P2X, ligand-gated ion channel, 1 −1.72 ? 0.13 2.00 ? 10 −6 8.22 ? 10 −5

PRKACA Solute carrier family 1 (glial high affinity glutamate transporter), member 3 −1.69 ? 0.15 1.10 ? 10 −5 2.64 ? 10 −4

SHC1 SHC (Src homology 2 domain containing) transforming protein 1 −1.23 ? 0.04 3.00 ? 10 −6 1.09 ? 10 −4

TRIM8 Tripartite motif-containing 8 −1.45 ? 0.06 4.00 ? 10 −6 1.31 ? 10 −4

Signaling transduction

ARHGEF2 Rho/rac guanine nucleotide exchange factor (GEF) 2 −1.62 ? 0.11 2.00 ? 10 −6 8.22 ? 10 −5

BCR Breakpoint cluster region −1.43 ? 0.06 <1.00 ? 10 −6 <1.00 ? 10 −5

GRINA Glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 −2.49 ? 0.28 <1.00 ? 10 −6 <1.00 ? 10 −5

LIMK2 LIM domain kinase 2 −3.05 ? 0.44 4.00 ? 10 −6 1.31 ? 10 −4

PHPT1 Phosphohistidine phosphatase 1 −1.33 ? 0.06 7.00 ? 10 −6 1.92 ? 10 −4

PLCB2 Phospholipase C, beta 2 −1.93 ? 0.13 <1.00 ? 10 −6 <1.00 ? 10 −5

RHOT2 Ras homolog gene family, member T2 −1.46 ? 0.05 <1.00 ? 10 −6 <1.00 ? 10 −5

Ubiquitination/Intracellular protein transport

AP2A1 Adaptor-related protein complex 2, alpha 1 subunit −2.04 ? 0.20 1.10 ? 10 −5 2.64 ? 10 −4

NPEPL1 Aminopeptidase-like 1 −1.26 ? 0.03 <1.00 ? 10 −6 <1.00 ? 10 −5

SHARPIN SHANK-associated RH domain interactor −2.13 ? 0.26 1.00 ? 10 −5 2.53 ? 10 −4

TRAPPC5 Trafficking protein particle complex 5 −1.58 ? 0.11 6.00 ? 10 −6 1.72 ? 10 −4

UBE2M Ubiquitin-conjugating enzyme E2M (UBC12 homolog, yeast) −1.70 ? 0.12 1.00 ? 10 −6 5.07 ? 10 −5

UBXN6 UBX domain protein 6 −2.40 ? 0.29 2.00 ? 10 −6 8.22 ? 10 −5

USP4 Ubiquitin specific peptidase 4 (proto-oncogene) −1.46 ? 0.06 2.00 ? 10 −6 8.22 ? 10 −5

WBP2 WW domain binding protein 2 −1.85 ? 0.18 4.00 ? 10 −6 1.31 ? 10 −4

Mitochondrial function/metabolism and energy pathways

ATAD3B ATPase family, AAA domain containing 3B −1.47 ? 0.07 <1.00 ? 10 −6 <1.00 ? 10 −5

B4GALT3 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 3 −1.26 ? 0.04 1.00 ? 10 −6 5.07 ? 10 −5

COASY Coenzyme A synthase −1.29 ? 0.06 1.20 ? 10 −5 2.79 ? 10 −4

COX5B Cytochrome c oxidase subunit Vb −1.44 ? 0.09 1.20 ? 10 −5 2.79 ? 10 −4

GANAB Glucosidase, alpha; neutral AB −1.63 ? 0.08 <1.00 ? 10 −6 <1.00 ? 10 −5

MRPL37 Mitochondrial ribosomal protein L37 −1.30 ? 0.04 <1.00 ? 10 −6 <1.00 ? 10 −5

NAGK N-acetylglucosamine kinase −1.30 ? 0.05 4.00 ? 10 −6 1.31 ? 10 −4

NDUFV3 NADH dehydrogenase (ubiquinone) flavoprotein 3, 10 kDa −1.63 ? 0.08 <1.00 ? 10 −6 <1.00 ? 10 −5
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Table 2 A List of 45 representative genes significantly down-regulated in week 8 topiramate groupa (Continued)

PFKL Phosphofructokinase, liver −1.53 ? 0.10 3.00 ? 10 −6 1.09 ? 10 −4

UROD Uroporphyrinogen decarboxylase −1.35 ? 0.06 5.00 ? 10 −6 1.54 ? 10 −4

Immune system function

CISH Cytokine inducible SH2-containing protein −1.34 ? 0.05 1.00 ? 10 −6 5.07 ? 10 −5

HLA-E Major histocompatibility complex, class I, E −1.25 ? 0.04 <1.00 ? 10 −6 <1.00 ? 10 −5

JMJD3 Jumonji domain containing 3, histone lysine demethylase −2.03 ? 0.16 <1.00 ? 10 −6 <1.00 ? 10 −5

MSRB2 Methionine sulfoxide reductase B2 −1.68 ? 0.13 2.00 ? 10 −6 8.22 ? 10 −5

OAS1 2′,5′-oligoadenylate synthetase 1, 40/46 kDa −1.84 ? 0.15 1.00 ? 10 −6 5.07 ? 10 −5

TAPBP TAP binding protein (tapasin) −1.60 ? 0.06 <1.00 ? 10 −6 <1.00 ? 10 −5

aGenes are selected from a total of 62 down-regulated genes with Bonferroni-corrected P Values < 0.05 (i.e., 0.05/3698 genes = 1.35 ? 10 −5).
bFC, denoting fold change, is defined as the ratio of the expression values of Positive Responders over Negative Responders; SD, standard deviation.
cP Value was calculated using the ordinary Student ? s t test for each gene.
dFDR, denoting false discovery rate, was estimated by the Benjamini-Hochberg (BH) method.
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pathway genes. At Week 8, these TPM-related down-
regulated genes included ERK-1 (MAPK3) and its up-
stream regulators, protein kinase A (PRKACA), protein
kinases C and Z (PRKCD and PRKCZ), Ras-related genes
(ARHGEF2, RHOT2, and RRAS), and EP300, which en-
codes a transcriptional co-activator that forms a complex
with CREB-binding protein (CBP). By Week 12, besides
EP300, the transcription factor CREB gene CREB5 expres-
sion was down-regulated in TPM responders.
Given these findings, it is reasonable to hypothesize

that (1) reversal of ERK and CREB over-expression re-
sults in blocking of METH-dependent transcription ac-
tivity and consequently disruption of METH-induced
LTP and (2) non-responders may harbor variants that
affect expression of genes that are down-regulated in
TPM responders. These possibilities have gained support
from several lines of evidence reported by other investi-
gators. For example, Narita et al. [29] demonstrated that
blockade of protein kinase C (PKC) abolishes behavioral
sensitization to METH. Human laboratory studies have
indicated a partial inhibition of METH ? s reinforcing ef-
fects by TPM at the same dosage used in the current
study [23]. More importantly, our findings corroborate
the concept that TPM would be a possible treatment for
METH addiction through facilitating the inhibitory ef-
fects of GABA and blocking glutamate excitatory effects
on dopamine neurons [22,23].
Apart from pathways governing neural plasticity, the

functional category with the largest number of affected
pathways was in immune function (see Table 3). Data on
TPM? s effects on immune mediators is sparse, with a few
studies emerging recently. Among the ten immune
function-related pathways detected in the current study,
only the T-cell receptor signaling pathway has been re-
ported previously to be regulated by TPM [44]. A com-
mon feature of all these pathways and the pathways
governing neuroplasticity is their use of the mitogen-
activated-protein-kinase (MAPK) pathway as the central
component. As this is not the primary focus of this report,
a detailed discussion of those immune-related pathways
will not be provided here.
The reliability of our findings is strengthened by a

number of aspects of our study design: First, the present
study included both a positive (TPM non-responders)
and a negative (placebo) control group. Inclusion of a
placebo group provided us with a reference necessary
for the exploration of gene expression alterations in-
duced specifically by TPM rather than by the absence or
reduction of METH use or any other non-specific fac-
tors. For example, EP300, a member of the CREB gene
family, was down-regulated in both the Weeks 8 and 12
TPM responder and the Week 12 placebo responder
groups, suggesting that the regulatory effect of the gene
is not specific to TPM, whereas CREB5, discussed above,
was down-regulated only in Week 12 TPM responders,
suggesting a TPM-specific effect. Further, the inclusion
of a positive control group aided us in identifying genes
and pathways associated with METH abstinence, which
was the primary outcome of this clinical study. Second,
we analyzed expression data from three time points,
namely, the baseline (prior to starting TPM treatment)
and Weeks 8 and 12 for each individual. This approach
allowed us to correct for any confounding effects that
might be caused by significant individual gene expres-
sion differences among subjects at baseline, by normaliz-
ing the extent of expression at Weeks 8 and 12 with the
patient ? s own baseline expression and increasing the reli-
ability of the findings by utilizing Week 12 expression
patterns to confirm those that occurred at Week 8. The
third main strength of the present study is that the dose
of TPM administered throughout the treatment period
was well within the drug ? s therapeutic range [22,23], and
therefore, we can confidently conclude that the TPM-
dependent expression alterations we detected were not
related to TPM? s toxic effects, but rather to its thera-
peutic effects. Finally, we believe that, with the level of



Table 3 Significantly enriched pathways detected exclusively in week 8 and week 12 topiramate groups (n = 27)a

Week 8 TPM Week 12 TPM

Pathway nameb No. genes P Value FDRc No. genes P Value FDRc

Neuronal function/Synaptic plasticity (n = 8)

Alpha-adrenergic signalinga 17 0.025 0.042 10 0.0036 0.029

Ephrin receptor signalinga 36 1.70 ? 10 −4 7.18 ? 10 −4 17 5.75 ? 10 −4 0.0095

ErbB signaling pathwayb 18 0.0026 0.0081 8 0.0078 0.035

FGF signalinga 18 0.0040 0.0086 8 0.017 0.074

GnRH signaling pathwayb 20 0.0017 0.0060 11 0.0012 0.013

mTOR signaling pathwayb 15 4.47 ? 10 −5 3.78 ? 10 −4 5 0.033 0.090

Neurotrophin/TRK signalinga 17 9.33 ? 10 −4 0.0027 7 0.017 0.074

Synaptic long term Potentiationa,b 29 6.17 ? 10−6 7.44 ? 10−5 10 0.012 0.058

Signal transduction (n = 6)

Adipocytokine signalingb 14 0.0070 0.017 9 9.30 ? 10 −4 0.013

Fc Epsilon RI Signalinga,b 24 1.51 ? 10−4 6.73 ? 10−4 11 0.0018 0.021

LPS-stimulated MAPK signalinga 23 2.75 ? 10 −6 4.65 ? 10 −5 9 0.0025 0.024

NF-κB signalinga 33 3.02 ? 10 −5 2.04 ? 10 −4 14 0.0016 0.021

p38 MAPK signalinga 20 0.0037 0.0082 9 0.014 0.062

SAPK/JNK signalinga 18 0.011 0.021 14 1.35 ? 10 −5 5.56 ? 10 −4

Cardiovascular function (n = 2)

Cardiac hypertrophy signalinga 42 2.45 ? 10 −4 9.22 ? 10 −4 16 0.013 0.062

Renin-angiotensin signalinga 27 3.55 ? 10 −5 2.24 ? 10 −4 14 8.91 ? 10 −5 0.0025

Inflammation/Immune function (n = 8)

B cell activating factor signalinga 10 0.013 0.023 5 0.022 0.090

CCR3 signaling in eosinophilsa 24 0.0013 0.0035 13 5.25 ? 10 −4 0.0095

CCR5 signaling in macrophagesa 13 0.030 0.048 11 5.62 ? 10 −5 0.0019

Chemokine signalinga 21 4.37 ? 10 −5 2.54 ? 10 −4 8 0.0096 0.049

CXCR4 signalinga 28 0.0065 0.014 11 0.045 0.14

Epithelial cell signaling in Helicobacter pylori infectionb 16 0.0011 0.0048 8 0.0063 0.031

Natural killer cell signalinga,b 26 1.15 ? 10−4 5.54 ? 10−4 12 0.0013 0.019

Role of PKR in Interferon Induction and Antiviral Responsea 11 0.0051 0.011 5 0.025 0.094

Other (n = 3)

Hepatic cholestasisa 24 0.014 0.026 12 0.0076 0.042

Macropinocytosisa 17 6.46 ? 10 −4 0.0021 8 0.0043 0.034

Xenobiotic metabolism signalinga 37 0.044 0.065 19 0.0053 0.036
aIngenuity Pathways Knowledge Base Pathways with Number of Genes ≥ 3, P Values < 0.05, FDRs < 0.05 at either Week 8 or Week 12 and FDRs < 0.10 at both were
selected by Ingenuity Pathway Analysis (IPA) URL: http://www.ingenuity.com/.
bKyoto Encyclopedia of Genes and Genomes (KEGG) pathways with Number of Genes ≥ 3 and Gamma P Values < 0.05, and FDRs < 0.05 at either Week 8 or Week
12 and FDRs < 0.10 at both were selected by Onto-Tools URL: http://vortex.cs.wayne.edu/ontoexpress/. For pathways identified by both IPA and Onto-Tools (shown
in italic), only IPA results were presented.
cFDR, denoting false discovery rate, was estimated by the Benjamini-Hochberg (BH) method.
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rigorousness of the clinical and statistical criteria em-
ployed in defining treatment responders and significantly
altered genes and pathways, the chance that our findings
are falsely positive is minimal.
However, this study is limited by several factors, of

which the most notable is the small sample size for some
comparison groups. Especially, the number of responders
in the TPM and placebo groups were not balanced for
either Week 8 or Week 12 (4 and 2 subjects for Weeks 8
and 12 in the placebo group vs. 5 and 6 subjects in TPM
group for Weeks 8 and 12). However, these numbers are
not distinctly smaller than those in other pharmacoge-
nomic/expression studies published in the literature [45]
and provided us with an 85% statistical power to draw
conclusions about individual genes and pathways [46]. On
the other hand, it could be argued that the imbalance in

http://www.ingenuity.com/
http://vortex.cs.wayne.edu/ontoexpress/


Figure 1 Enriched synaptic long-term potentiation canonical pathway, identified by ingenuity pathway analysis based on differentially
expressed genes (P value < 0.05) with the ordinary student? s t-test. The pathway was also detected by onto-tools pathway-express.
(A) Week 8 TPM group (29 genes: ATF2, CAMK2D, CAMK2G, CREB1, EP300, GNAQ, GRINA, MAP2K1, MAPK1, MAPK3, PLCB2, PPP1CA, PPP1CB, PPP1CC,
PPP1R10, PPP1R12A, PPP1R14B, PPP1R7, PPP3CB, PPP3CC, PRKACA, PRKACB, PRKAR1A, PRKCD, PRKCH, PRKCI, PRKCQ, PRKCZ, and RRAS); and (B) Week 12
TPM group (10 genes; ATF4, CREB5, EP300, GNAQ, KRAS, PPP1R10, PRKACB, PRKAR2A, PRKCB, and PRKCQ). Symbols with a single border represent
single genes; those with a double border represent complexes of genes or the possibility that alternative genes might act in the pathway. Red
symbols represent up-regulated gene clusters and green symbols represent down-regulated clusters.
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the number of responders in the two groups was attribut-
able in part to weaker effects of the placebo in promoting
abstinence compared with TPM. Because of the small
samples, we did not consider covariate effects such as age,
sex, and ethnicity in assessing single-gene effects. Al-
though we believe the results obtained from such samples
are reliable, extra attention should be paid in interpreting
the expression pattern of single genes, especially those
identified from the placebo groups. Another main limita-
tion of our study is that we used a peripheral white blood
cell model to study the gene expression alterations associ-
ated with neuronal functions. Peripheral blood is an easily
accessible source of RNA for analysis of environmental ex-
posure and disease conditions [47-49]. Circulating leuko-
cytes can be used to infer gene expression in other tissues
[50]. Indeed, constituents of blood maintain the balance of
homeostasis, modulate immunity or inflammation, partake
in stress signaling, and facilitate cellular communication
in vascular-associated tissues, including those of the CNS
[51]. Sullivan et al. [52] conducted a secondary data
analysis of transcriptional profiling of 79 diverse human
tissues and found that whole blood shared substantial
gene expression similarities with multiple brain tissues
such as the amygdala, caudate nucleus, prefrontal cortex,
and whole brain (the median Spearman correlation coeffi-
cient for the group was 0.52), indicating that gene expres-
sion in whole blood can be a robust and valid surrogate
for gene expression in the brain [52]. However, in another
recent study, only weak correlation was detected between
gene expression in the brain and that in blood samples
[53]. Under such conditions, although the gene expression
data from whole blood may provide useful information to
infer the biological processes underlying the interaction of
TPM and METH in the neuronal system, more direct evi-
dence obtained from brain tissues is necessary in order to
verify the findings reported in this study.

Conclusions
In summary, with application of rigorous clinical and
statistical criteria, we demonstrated that TPM mitigates
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METH ? s reinforcing effects, possibly through reversal of
some of the dysregulated genes in pathways governing
synaptic plasticity to their normal state. Further studies
are necessary to replicate these findings as well as to
identify genetic variations that may have resulted in
regulatory differences observed in TPM responders vs.
non-responders. Identification of such molecular mecha-
nisms will help greatly in developing efficacious medica-
tions for the treatment of METH dependence.

Methods
Study design and blood sample collection
This was a double-blind, multi-center, placebo-controlled,
randomized, parallel-group study for METH-dependent
outpatients [26]. Under the inter-agency agreement be-
tween the National Institute on Drug Abuse and the
Veterans Affairs (VA) Cooperative Programs, eight medical
centers participated. The sites? Institutional Review Boards
and the VA Human Rights Committee approved the proto-
col for and conduct of the study.
Subjects meeting the eligibility criteria after a 14-day

screening period and a baseline assessment were ran-
domized into equivalent-size groups for oral treatment
with TPM or placebo daily for 91 days. There was a dose
titration phase (Days 1 to 35) to a maximum tolerated
dose of TPM not to exceed 200 mg/day, a maintenance
phase (Days 36 to 84), and a taper phase (Days 85 to
91). To continue in the study, subjects had to maintain a
minimum daily dose of 50 mg. Blood samples were col-
lected on Day 1 (considered the baseline) and at the end
of Weeks 8 and 12 from every participant who con-
sented to participate in the genetics/expression study.
The rationale for using weeks 8 and 12 of TPM treat-
ment in the genetic/expression study was that these two
time points were in the middle of the maintenance phase
of the maximum dose for each patient and the end of
treatment, respectively. At the two time points, because
the TPM dose given to each patient became relatively
stable, this would reduce variability of drugs received
among patients, thus likely increasing statistical power
of identifying differentially expressed genes and path-
ways. All blood samples for this study were collected in
PAXgeneTM blood tubes using standard phlebotomy
technique.

Primary efficacy outcome measure
The primary efficacy outcome measure was METH use
or non-use during each week of the entire period from
weeks 1 to 12. For each participant, urine samples were
collected three times per week. A positive use week was
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defined as any week in which at least one of the urine
tests was positive for METH and a negative use week as
one in which all three tests were negative. The value was
considered to be missing if no urine sample was col-
lected. On the basis of the primary efficacy outcome
measures for the entire trial period, each study partici-
pant in either the TPM or the placebo group was classi-
fied as either a positive or negative responder to the
treatment, which was referred to as responder or non-
responder in this study. For example, a TPM responder
at Week 8 means for this participant receiving TPM
treatment no METH was detected in all the three urine
samples for Week 8 (negative use week); whereas for a
TPM non-responder, METH was detected in one or
more urine samples. Our aim was to determine which
genes were differentially expressed in the responders
and non-responders of the TPM or placebo group dur-
ing a given week. Because we collected blood samples
from each participant at baseline and Weeks 8 and 12,
we formed four analysis groups: Week 8 TPM, Week 8
placebo, Week 12 TPM, and Week 12 placebo, accord-
ing to the positive or negative use information at Weeks
8 and 12, respectively. Because not all participants con-
tributed blood samples at both time points, the final
sample sizes were different for each group.

RNA isolation and gene expression analysis
Blood samples were collected at approximately the same
time of day for each participant for all three time points
to control for potential circadian rhythm effects on
gene expression. Total RNA was extracted using the
PAXgene ? Blood RNA Isolation Kit (Qiagen, Valencia,
CA, USA). Genome-wide expression of each sample was
assessed with a Human Genome U-133 Plus 2.0 array
(Affymetrix Inc., Santa Clara, CA, USA) by Expression
Analysis Inc. (Durham, NC). Briefly, the double-stranded
cDNA was used in a T7 RNA polymerase in vitro tran-
scription reaction (Ambion, Austin, TX, USA) contain-
ing biotin-labeled ribonucleotides CTP and UTP. The
resulting labeled cRNAs were then hybridized to HG-
U133plus2.0 arrays.

Quality control and bioinformatics analysis of array data
Outlier array detection and quality assessment: In total,
there were 212 HG-U133plus2.0 arrays from 99 study par-
ticipants, which included 91 arrays at baseline, 65 at Week
8, and 56 at Week 12. The 212 ? .CEL? files generated by
the Microarray Suite (MAS 5.0; Affymetrix) were con-
verted into ? .DCP? files using dChip 2008 software (http://
biosun1.harvard.edu/~cli/dchip_2008_05.exe). We used
the ? % array outlier? diagnostic metric to detect outlier ar-
rays, defined as the percentage of outlier probe sets in one
array [54]. If this percentage exceeded 5%, the array was
called an ? outlier.? Three arrays at baseline were found to
have a ? % array outlier? metric > 5% and were excluded
from further analysis. For quality assessment of the
remaining 209 chips, the distributions of log2-transformed
raw probe-level intensities were visualized by boxplots,
and no anomalies were found (data not shown).
Data pre-processing and normalization: Data quality

assessment was followed by data pre-processing and
normalization with the Robust Multi-Array Average (RMA)
algorithm [55], implemented in the RMA function in the
Bioconductor Affy package [56]. The RMA is a statistical
method comprising three procedures performing the
following functions: (i) convolution background correc-
tion; (ii) probe-level quantile normalization; and (iii)
median polish summarization for each probe set to esti-
mate the log2 scale expression values. A matrix of ex-
pression values was computed for the 209 ? .CEL ? files.
The expression values after normalization were similar
across arrays.
Probe set filtering: The HG-U133plus2.0 array contains

54,675 oligonucleotide-based probe sets. However, not all
of these sets correspond to well-defined genes. By using
the latest Affymetrix annotation file (dated November 30,
2008), we found that a total of 33,752 (61.73%) probe sets
correspond to unique genes, whereas the remaining probe
sets do not and were thus excluded from our statistical
analysis. Furthermore, we implemented a series of filter-
ing procedures to reduce the number of probe sets to
be tested, which is summarized as follows: (i) Filtering
? Absence call? probe sets: We applied a Bioconductor
package called ? Presence-Absence Calls with Negative
Probesets? (PANP) that uses Affymetrix-reported probe
sets with no known hybridization partners. PANP uses a
simple empirically derived approach to generate P values
for thresholds to define ? presence/absence? calls. The
? presence/absence? calls and P values are returned as two
matrices: ? Pcalls? and ? Pvals,? respectively. Probe sets
with < 50% present calls among all arrays within each
group were removed, which is considered restrictive
[57,58], leaving ~15,000 probe sets for further analysis. (ii)
Filtering biologically irrelevant genes and duplicate probe
set(s) for each selected gene: Among the ~15,000 probe
sets, control sets of various housekeeping genes (e.g.,
GAPDH) and spiked-in controls (e.g., Ec-bioB, Ec-bioC,
Ec-bioD), as well as those genes that are not well defined
or have unknown functions were removed. After removing
duplicate probe set(s) for the same gene, such that only
the probe set with the smallest test statistic was kept for
each gene [59], about 7,500 genes remained. (iii) Filtering
out genes with low fold changes (FCs): Genes with log2
(FC) < 0.67 ? standard deviation (SD) away from the group
mean (i.e., between the first and the third quartile assum-
ing that log2(FC) follows a normal distribution) were re-
moved. After these sequential steps of filtering, about
3,500 genes were left for downstream statistical analyses

http://biosun1.harvard.edu/~cli/dchip_2008_05.exe
http://biosun1.harvard.edu/~cli/dchip_2008_05.exe
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for each group. A schematic diagram of the detailed data
mining and analysis plan is shown in Figure 3.

Statistical analysis to identify differentially expressed genes
and pathways
After data quality checking, pre-processing, normalization,
and probe set filtering, we analyzed the microarray data at
both the single-gene level (where one seeks to determine
whether each gene is expressed differently under different
conditions) and the pathway level (where one intends to
determine if a biological pathway shows a different expres-
sion pattern under different conditions). Considering the
individual variations at the baseline, we normalized each
Figure 3 Schematic diagram of study workflow, including probe set f
significant single genes and pathways. The probe intensities measured
by Robust Multichip Average followed by a baseline correction step. Probe
for Week 12 placebo group, only two positive responders were included, p
corresponding to control or less well-defined genes, and duplicated probe
(denoted by σ) for a total of L (~7500) genes also were removed, as most o
significant extent. The remaining genes were tested by the ordinary Studen
analysis. In total, 3698, 3532, 3328, and 3405 genes were tested for the Wee
groups, respectively.
individual? s Week 8 and Week 12 expression values by the
corresponding baseline values prior to the identification of
differentially expressed genes and biological pathways.

Single-gene analysis The primary goal of this step is to
detect those genes with significantly different expressions
in two comparison groups that cannot be ascribed to
chance or natural variability [60]. The ordinary Student? s
t-test, implemented by MATLAB (MathWorks, Natick,
MA), was employed for testing differential expressions in
a gene-by-gene manner. To correct for multiple testing,
both Bonferroni correction and false discovery rate (FDR);
i.e., the expected proportion of falsely rejected null
iltering steps and statistical test strategies for detecting
in 209 hybridized Affymetrix HG-U133 plus 2.0 arrays were normalized
s marked ? Presence ? in fewer than four arrays in each group (because
robes with two valid measurements were kept) were removed. Probes
s were removed. Genes with low FCs; i.e., within 1 standard deviation
f them were not likely to be differentially expressed to a statistically
t? s t-test, and genes with P values < 0.05 were used for pathway
k 8 TPM, Week 8 placebo, Week 12 TPM, and Week 12 placebo
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hypotheses among the rejected hypotheses, which was es-
timated by the Benjamini-Hochberg (BH) procedure [61],
were applied.
Pathway analysis Because gene expression is a well-
coordinated system, expressions of different genes gener-
ally are not independent. Pathway analysis can reduce
the number of hypotheses to a more manageable num-
ber that directly addresses questions of biological inter-
est. During the past few years, various bioinformatics
tools have been developed for pathway analysis, although
none has gained widespread acceptance [60]. Therefore,
in the current study, significantly enriched pathways of
differentially expressed genes were detected using the
following bioinformatics tools:
Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.
com/) The IPA is a web-based bioinformatics tool [62].
A given set of input genes was associated with molecu-
lar networks based on their connectivities in the In-
genuity Pathways Knowledge Base. Fisher ? s exact test
was used to determine the probability that each bio-
logical function assigned to that data set was attribut-
able to chance alone [63].
Onto-Tools Pathway-Express (http://vortex.cs.wayne.edu/
projects.htm) The Onto-Tools Pathway-Express [64,65]
implements an innovative ? Impact Factor Analysis? based
on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database. Distinct from either ? Over-
Representation Analysis? (ORA) or ? Gene Set Enrichment
Analysis? (GSEA), Onto-Tools Pathway-Express uses a
systems biology approach to identify pathways that are sig-
nificantly impacted in any condition monitored by high-
throughput gene expression technology. This new ? Impact
Factor Analysis? not only incorporates the classical prob-
abilistic component but also includes important biological
factors that are not captured by the existing techniques;
e.g., the magnitude of the expression changes of each gene,
the position of the differentially expressed genes on given
pathways, the topology of the pathway that describes how
genes interact, and the type of signaling interactions be-
tween them [64]. Based on a given set of input genes, for
each pathway detected, a perturbation factor gamma P
value and a corresponding FDR were calculated, taking
into consideration the normalized FC of the gene and the
number of genes upstream of its position in the pathway.
Because IPA and Onto-Tools Pathway-Express have ap-
plied distinct statistical algorithms based on independent
knowledge databases, these two bioinformatics tools are
complementary, and thus their results are combined.
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