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Abstract

Background: Psychiatric disorders such as schizophrenia (57) and bipolar disorder (BP) are projected to lead the
global disease burden within the next decade. Several lines of evidence suggest that epigenetic- or genetic-mediated
dysfunction is frequently present in these disorders. To date, the inheritance patterns have been complicated by the
problem of integrating epigenomic and transcriptomic factors that have yet to be elucidated. Therefore, there is a need
to build a comprehensive database for storing epigenomic and transcriptomic data relating to psychiatric disorders.

Description: We have developed the PD_NGSAtlas, which focuses on the efficient storage of epigenomic and
transcriptomic data based on next-generation sequencing and on the quantitative analyses of epigenetic and
transcriptional alterations involved in psychiatric disorders. The current release of the PD_NGSAtlas contains 43 DNA
methylation profiles and 37 transcription profiles detected by MeDIP-Seq and RNA-Seq, respectively, in two distinct
brain regions and peripheral blood of SZ, BP and non-psychiatric controls. In addition to these data that were generated
in-house, we have included, and will continue to include, published DNA methylation and gene expression data from
other research groups, with a focus on psychiatric disorders. A flexible query engine has been developed for the
acquisition of methylation profiles and transcription profiles for special genes or genomic regions of interest of
the selected samples. Furthermore, the PD_NGSAtlas offers online tools for identifying aberrantly methylated and
expressed events involved in psychiatric disorders. A genome browser has been developed to provide integrative
and detailed views of multidimensional data in a given genomic context, which can help researchers understand
molecular mechanisms from epigenetic and transcriptional perspectives. Moreover, users can download the
methylation and transcription data for further analyses.

Conclusions: The PD_NGSAtlas aims to provide storage of epigenomic and transcriptomic data as well as
quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The PD_NGSAtlas
will be a valuable data resource and will enable researchers to investigate the pathophysiology and aetiology of
disease in detail. The database is available at http://bicinfo.nrbmu.edu.cn/pd_ngsatlas/.
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Background

Schizophrenia (SZ) and bipolar disorder (BP) are com-
mon and highly heritable psychiatric disorders that affect
approximately 4% of the world’s population and result in
considerable personal and societal burdens [1]. Over the
past decades, it has been widely accepted that both genetic
and environmental risk factors lead to the occurrence and
development of these disorders [2-4]. Moreover, a large
number of genetic association and linkage studies have
been performed to explore the pathogenesis of SZ and BP
[5,6]. However, the results do not replicate well, and they
identify risk alleles with small effects, indicating that non-
genetic factors may also result in disease [7]. Recent stud-
ies have highlighted a role for epigenetic processes in
mediating susceptibility, and have provided new insight
into disease pathogenesis.

DNA methylation, which consists of the addition of
a methyl group to the 5’-position of cytosine in CpG
dinucleotides, is an important epigenetic modification
involved in the regulation of transcription [8]. DNA
methylation has been shown to interfere with transcrip-
tion by directly inhibiting the binding of transcription
factors, enhancering blocking elements, or recruiting
methyl-CpG binding proteins (MBPs) to affect chroma-
tin structure [9]. DNA methylation plays a crucial role
in genomic imprinting, X chromosome inactivation and
regulating tissue-specific gene expression [8,10,11]. Ac-
cumulating evidence indicates that abnormal DNA
methylation at particular locations may affect neuronal
activity [12], brain growth and development [13], learn-
ing and memory [14], and cognitive performance [15],
and is associated with the pathophysiology of psychiatric
disorders [16]. Initial studies focused on DNA methyla-
tion alterations in some candidate genes. Using cultured
rat neurons, Chen et al. and Martinowich et al. showed
the importance of DNA methylation in the regulation of
brain-derived neurotrophic factor (BDNF), which is es-
sential for neuronal survival, development and synaptic
plasticity [17,18]. Subsequently, the first genome-wide
DNA methylation landscape profiled by Mill et al. aimed
to investigate DNA methylation changes associated with
SZ and BP using CpG-island microarrays of approxi-
mately 12,000 GC-rich regions in the prefrontal cortex
and in the germline [19]. They found evidence for
psychosis-associated DNA methylation differences in
numerous loci involved in glutamatergic and GABAergic
neurotransmission, brain development, and other pro-
cesses functionally linked to disease aetiology. Because
monozygotic (MZ) twins share common genetic informa-
tion and can be used as an ideal model for investigating
the contribution of epigenetic factors to disease aetiology,
Dempster et al. performed a genome-wide analysis of
methylation of DNA in blood samples from MZ twin pairs
discordant for major psychoses using microarrays, and
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they demonstrated disease-associated DNA methylation
differences between twins.

Although epigenetic studies promote our understand-
ing of psychiatric disorders, there have been few studies
of methylation and gene expression on a genome-wide
scale. Initial studies focused on DNA methylation alter-
ations in candidate genes, including RELN [20], SOX10
[21] and GAD67. DNA methylation of the reelin pro-
moter was suggested to be involved in downregulating
the gene in SZ, and the DNA methylation status of
SOX10 inversely correlated with expression levels of
SOX10 and other oligodendrocyte genes [21]. Rapid
advances in the development of next-generation sequen-
cing (NGS) technology facilitates correspondingly dra-
matic advances in elucidating how epigenetic processes
mediate gene expression and makes it possible to inte-
grate epigenomic and transcriptomic data to uncover the
aetiology and pathophysiology of psychiatric disorders.
Recently, we performed genome-wide methylation and
expression analyses in two brain regions and in periph-
eral blood samples [22,23]. Our results support the im-
portant roles of DNA methylation in SZ and BP and
highlight the complex relationships between DNA methy-
lation and gene expression in these disorders. In addition,
the results indicate that differentially expressed genes with
aberrant methylation patterns that we identified may rep-
resent novel candidates for the aetiology and pathology of
neuropsychiatric disorders.

To our knowledge, although a handful of DNA methy-
lation databases have been compiled, they either contain
limited methylation data or differ in biological scope.
Among these methylation databases, NGSmethDB [24]
and MethBank [25] were constructed to store genome-
wide methylomes. However, MethBank only supports
the storage, browsing and visualizing of whole-genome
DNA methylation data in two well-studied species,
D.rerio and M. musculus. In addition, NGSmethDB pro-
vides data sets for cell lines, fresh and pathological tissues
but not for specific diseases. Several methylation databases
centred on human diseases have also been compiled,
including DiseaseMeth [26] and the Cancer methylome
system (CMS) [27]. DiseaseMeth is a web-based resource
focused on the aberrant methylomes of human diseases.
However, most of the datasets are microarray-based. CMS
is a web-based database application that provides compre-
hensive and genome-wide epigenetic portraits of human
breast cancer and endometrial cancer. However, there is
limited, specialised and comprehensive database of psychi-
atric disorders that focuses on the storage of epigenomic
data based on next-generation sequencing. MethylomeDB
[28] is the only database that presents methylation profiles
of carefully selected non-psychiatric control, schizophre-
nia, and depression samples. However, the gene expression
levels in these sample have not been profiled, and the
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database has not been updated for a long time. Thus, a
reference database combining epigenomic and transcrip-
tomic datasets is urgently needed for the combined
analyses of the potential pathogenesis mechanisms of
psychiatric disorders.

In this study, we developed the PD_NGSAtlas, which
aims to store next-generation sequencing epigenomic
and transcriptomic data captured from the same individ-
uals and to perform quantitative analyses of epigenetic
and transcriptional alterations involved in psychiatric
disorders. The current version of the PD_NGSAtlas pro-
vides internal genome-wide DNA methylation and tran-
scription profiles from two generally inaccessible brain
regions and from accessible peripheral blood of SZ, BP
and non-psychiatric disorder controls. The PD_NGSAtlas
supports the search of methylation and transcription pro-
files for special genes or genomic regions of selected sam-
ples, which should enable a broad range of researchers to
explore the molecular mechanisms of psychiatric disorders
(Additional file 1: Figure S1). All retrieved results can be
downloaded freely for further analysis. Furthermore, the
PD_NGSAtlas offers online tools for identifying aberrantly
methylated and expressed genes involved in psychiatric
disorders. The database also features a genome browser,
which can be used to browse multidimensional data in a
given genomic context. In summary, the PD_NGSAtlas is a
user-friendly, web-based, ‘one-stop’ service for basic data
retrieval, analyses, visualisation and downloading, which
will help provide new insights into the aetiology of psychi-
atric disorders.

Construction and content

Clinical samples

All of the subjects were diagnosed by consensus for ei-
ther BP or SZ according to DSM-IV-TR criteria and the
control samples had no history of an Axis I disorder.
The diverse types of clinical characteristics were also
collected, including disease status, disease types, age, age
of onset, sex and twin status (Additional file 2: Table S1).
All the subjects in this study were free of confounding
neuropathology. DNA and RNA samples were obtained
from peripheral blood or from two distinct brain regions.
DNA and RNA samples of peripheral blood were ob-
tained from the Department of Psychiatry and Center
of Excellence — Neurosciences, Texas Tech University
Health Science Center (TTUHSC), whereas the post-
mortem brain tissues were collected from the Southwest
Brain Bank (SWBB), Department of Psychiatry, UTHSCSA,
TX USA. Written, informed consent was obtained from all
the participants. All of the brain samples were from freshly
frozen specimens that were stored in -80°C freezers.
Brodmann area 9 (BA9) and BA24 from the same hemi-
sphere were both used based on the criteria described by
Rajkowska and Goldman-Rakic [29].
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For all the samples stored in the PD_NGSAtlas, a tooltip
was added that appears when hovering over a potential
sample selection and lists its full parameters. Moreover,
users can click on the sample item in the “Tools’ section to
see its detailed clinical information that helps to better ex-
plore the nature of disease.

MeDIP-Seq

The current release of the PD _NGSAtlas contains 43
DNA methylation profiles detected using MeDIP-Seq by
our laboratory. The extracted genomic DNA samples
were fragmented into 100-500bp by sonication. DNA ends
were repaired to overhang a 3’-dA, and adapters were li-
gated to the DNA fragment ends. The double-stranded
DNA was denatured, and the DNA fragments were immu-
noprecipitated using a 5-mC antibody. Real-time PCR was
used to validate the immunoprecipitation quality. DNA
fragments of the proper size (usually 200-300 bp, includ-
ing the adapter sequence) were selected after PCR amplifi-
cation. Finally, the resultant libraries were sequenced as
paired-end 50 bp reads using the genome-wide massively
parallel sequencing platform Illumina HiSeq 2000.

RNA-Seq

RNA-Seq was performed to profile gene expression in
37 samples, including 14 SZ, 12 BP and 11 control sam-
ples. Oligo (dT) beads were used to isolate poly(A) mRNA
from the total RNA from these samples. Fragmentation
buffer was added and the resulting 200-300 bp fragments
were used as templates for random hexamer-primer
synthesis of first-strand ¢cDNAs. Second-strand cDNA
was synthesised using buffer, ANTPs, RNase H and DNA
polymerase 1. Fragments were purified using a QIAquick
PCR extraction kit and eluted with EB buffer for end
reparation and poly(A) addition. Based on the results of
agarose gel electrophoresis, fragments were connected
with sequencing adapters; PCR was performed by select-
ing suitable fragments as templates. The library was se-
quenced as paired-end 90 bp reads using an Illumina
Hiseq 2000.

Genomic features annotation

The genomic coordinates for the human genomic fea-
tures investigated were downloaded from the UCSC
table browser [30]. RefSeq gene promoters were defined
as t2 kb of sequence flanking the transcription start
sites. Table CpGislandext (UCSC) was used for the set
of CpG islands (CGIs). We excluded CGIs with ‘random’
chromosome locations. Following Andrew et al., the CpG
island shores were defined as the 2 kb regions near the
CGIs. In addition, some histone modifications and open
chromatin datasets were obtained from the ENCODE pro-
ject [31] (Table 1). All the coordinates of the epigenomic
and transcriptomic datasets and genomic features have
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Table 1 All data content and statistics used in PD_NGSAtlas
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Data content

Data statistics

Data description

Data sources

DNA Methylation data

50

Include distinct brain regions and peripheral blood of SZ, BP and controls
Include distinct brain regions and peripheral blood of SZ, BP and controls

Include reference genome and the 29 genomic functional elements from

Include reference genome, gene-, RNA-, CpG island- and repeat-related
Include CDS, downstream2k, exon, five-UTR, intron, romoters, refseq gene

Include RNA, lincRNA, miRNA, miRNA promoter, rRNA, scRNA, snRNA,

Include LINE, LTR, low complexity, SINE, satellite, simple repeat, unkown

MeDIP-Seq data
RNA-Seq data
UCSC table browser

UCSC table browser
UCSC table browser

UCSC table browser

UCSC table browser

UCSC table browser
UCSC table browser

Transcriptomic data 146
Genome information (Hg19) 30
UCSC table browser
Reference genome 1 DNA sequence
Genomic functional elements 29
functional elements
Gene-associated 9
and three-UTR, upstream2k
RNA-related 9
srpRNA and tRNA
CpG island-related 3 Include CpG islands, five-shores and three-shores
Repeat-related 8
repeat and DNA repeat
Regulation data 12

The 12 regulation data obtain from ENCODE project, including DNA methylation,

ENCODE project

histone and open chromatin data

DNA methylation-related 3
lines using Methyl-seq

Histone-related 6
cell lines

Open chromatin-related 3
using DNase-seq

DNA methylation regulation data involved in GM12878 H1-hESC and K562 cell
Include H3K4Me1 and H3K4Me3 involved in GM12878 H1-hESC and K562

Open chromatin data involved in GM12878 H1-hESC and K562 cell lines

ENCODE project

ENCODE project

ENCODE project

been remapped from NCBI36/hgl8 to GRCh37/hgl9
using the UCSC’s liftOver tool.

Genome-wide DNA methylation and transcription profiles
From the raw fastq files, Illumina quality scores were
converted into Sanger Phred quality scores using MAQ.
Quality control was performed on the raw sequence data
using FastQC. Additional file 3: Figure S2 highlights the
quality of our sequencing datasets. Reads from MeDIP-
Seq and RNA-Seq were mapped using the SOAP2 pro-
gram [32]. The uniquely mapped reads were retained for
further analysis. The genome methylation peaks were
further identified by MACS [33], and the threshold of
the p-value was set to 1.0e-5. In addition, gene expres-
sion levels were measured using RPKM [34]. Finally, all
the DNA methylation profiles cover 6,634,043 methyla-
tion peaks, and the transcription profiles involve 19,186
expressed genes.

The PD_NGSAtlas provides a user-friendly interface
for the acquisition of methylation profiles and transcrip-
tion profiles for specific genes or genomic regions of
selected samples. A comprehensive search interface is
provided (Figure 1la). For transcription data, users can
search gene expression levels by entering a gene symbol
(optional) and selecting several samples of interest
(Figure 1a). The search results are displayed as an overview
table that summarises the gene expression levels across se-
lected samples (Figure 1b). This table can show the gene

expression pattern across selected samples and can link to
the “Visualize’ section in which users can view gene expres-
sion profiles under a given genomic context through a
tailored genome browser (Figure 1lc). Similarly, users can
obtain DNA methylation profiles of a given gene symbol
or chromosome region across selected samples (Figure 2).
Furthermore, these DNA methylation profiles can be
visualised through a customised genome browser. All of
the above query results can be downloaded freely. These
valuable data resources should facilitate researcher on psy-
chiatric disorders.

Identification of aberrantly methylated and/or expressed
events in psychiatric disorders

In the PD_NGSAtlas database, to view global gene ex-
pression profiles, online tools can calculate the overall
distribution of gene expression and present it graphically
as a flex area chart (Figure 3a). The tool is useful for
determining whether data values are median-centred
across samples and thus suitable for cross-comparison.
Similarly, users can type in a specific gene symbol and
view its expression distribution across all samples in
which its expression changes (Figure 3a). Typically, users
can compare samples that belong to different experi-
mental variable subsets. For transcription data, a tool
was developed for users to identify genes that display
marked differences in the expression levels of two sets
of samples. In the current version of the database, a
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Figure 1 The view of gene expression across samples. (a) The search page allows the user to search the specific gene expression profile
across samples. A tooltip shows the sample information. (b) The search result page displays the heat map of gene expression levels across the
samples. A detail information will show the gene expression in selected samples when the user click the bar plot. (c) Visualization of the gene

two-tailed t-test and several other widely used methods
(including EdgeR [35] and DEGseq [36]) were provided
to identify the differentially expressed genes (DEGs).
The t-test is the most commonly used method to iden-
tify DEGs. With the development of high-throughput se-
quencing, several R packages were developed to identify
DEGs for RNA-seq data. EdgeR integrated three existing
methods and introduced two novel methods based on
MA-plots to detect and visualise gene expression differ-
ence, whereas DEGseq used empirical Bayes methods to
moderate the degree of overdispersion across transcripts,
improving the reliability of inference. In addition, the
Limma method can be used to identify the DEGs ac-
counting for age and sex. All the p-values obtained by
these methods were adjusted. In addition, the results of
the DEGs are shown in a volcano plot, an M-A plot and
a heatmap is provided to show the expression of the top
50 DEGs (Figure 3a). For DNA methylation data, aber-
rantly methylated peaks were detected between two
samples. For each peak, the number of reads for each
sample was calculated, and the significance was assessed
using chi-squared tests. Then, the resultant regions

with an FDR less than 5% and more than a two-fold
difference of read numbers were considered to be
differentially methylated regions (DMRs) [37]. In the
PD_NGSAtlas, a query interface was designed to enable a
comparison between disease samples and controls, which
users can employ to obtain DMRs (Figure 3b). We
propose that the combination of aberrantly methylated re-
gions and expressed genes can be used to elucidate the
molecular mechanisms underlying psychiatric disorders.

Visualizing the methylation and transcription profiles of
interesting genes and regions

To capture meaningful information from epigenetic
and transcriptomic data, a genome browser based on
JBrowse was proposed for users, and it allowed users to
compare multilevel genomic, epigenetic and transcrip-
tomic data visually to discover functional relationships
(Figure 4) [38]. Here, both methylation and transcription
data can be visualised in the same view in bigWig format,
which can help users to find the functional relationships
between the two types of data. Furthermore, users can
view other genome information including gene structure,
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Figure 2 The view of DNA methylation peaks across samples. (a) The Search page allows the user to search the DNA methylation of specific
gene across samples. A tooltip shows the sample information. (b) The search result page displays the DNA methylation peaks across the samples.

CpG islands, repeat elements and several genomic regula-
tion features against a human reference genome (Hgl9).
These data can intuitively reflect epigenetic and transcrip-
tomic changes between different samples, which would
be useful for the study of the molecular mechanisms of
psychiatric disorders. The genome browser offers several
easy-to-use tools, including the ability to navigate directly
to a region of interest by typing in the region coordinates,
to zoom in or out or drag a region, to view the annotation
details by double-clicking on the annotation track, and to
configure genomic annotation by clicking on the track
name. Importantly, users can upload their own data to be
visualised. The users’ data reside on a local computer
without the need to transfer any data to the server. As
shown in Figures 1-2, a visual interface can be accessed
through the links in the query results.

Relational database and web interface

The web interface was developed in Java using the Servlet
framework. The PD_NGSAtlas website is deployed on a
Tomcat 6.0.33 web server and runs under the Cent OS 5.5
system. It is supported by a MySQL database of DNA
methylation and transcription data. The JQuery was used

to render, generate and manipulate the gene expression
distribution views. The module for the identification of
differentially expressed genes (DEGs) is realised by R and
Perl script. In the ‘Visualize’ module, JBrowse (release
1.11.5), an open source genome browser, can be used to
navigate multiple omics data and diverse genome informa-
tion over the web. Moreover, the PD_NGSAtlas has been
fully tested in Google Chrome (version 17 and later),
Apple Safari (version 5 and later) and Mozilla Firefox
(version 10 and later).

Utility

It is worth noting that the integration of epigenetic and
transcriptomic data is intended to enhance the analysis
of the aetiology of psychiatric disorders at the gene level.
Taking the gene ZNF304 as an example, in the BA9 re-
gion, ZNF304 is specifically upregulated in patients with
SZ compared with controls (Figure 4, t-test, p<10e-3).
Furthermore, we found that the promoter of ZNF304
is hypomethylated in SZ samples compared with con-
trols (Figure 4). In addition to ZNF304, we found that the
expression of gene ZNF483 is higher in SZ samples
than in the controls, and the promoter of ZNF483 is
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hypomethylated in SZ samples from the BA24 region
of the brain. This is consistent with previous research im-
plicating ZNF483 in SZ [39,40]. These results suggest that
the combination of epigenetics and transcriptome studies
may provide new insights into the cause of psychiatric
disorders.

Discussion

The current version of the PD_NGSAtlas is the first re-
lease of our database, and it contains next-generation se-
quencing DNA methylation and gene expression profiles
of datasets obtained from human brain and blood sam-
ples. Psychiatric disorders are diseases of the central
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nervous system, and therefore, studies of patient-derived
living brain cells may provide the most pertinent infor-
mation. Post-mortem brains have been extensively used
in recent studies; however, obtaining a sufficient number
of brains in ideal condition is difficult. Thus, it is more
feasible to obtain peripheral samples that can act as po-
tential biomarkers of SZ and BP [41]. Psychiatric disor-
ders, including SZ and BP, have genetic components
[42], and CNS alterations might be reflected in periph-
eral tissues. Indeed, previous microarray analyses have
found numerous classes of genes that are expressed both
in blood and in the prefrontal cortex [43], including ap-
proximately half of the so-called SZ susceptibility genes
[44]. A previous study comparing the methylation status
of pre-mortem blood and post-mortem brain tissue
showed that significant variation in the methylation pro-
files of brain tissue were reflected in blood [45]. Add-
itionally, recent studies have shown that DMRs associated
with both chronic pain and ageing are similar in brain and
blood tissue [46]. Although the number of blood samples
in our current database is limited, peripheral samples for
the development of biomarkers and individualised therap-
ies may prove to be potent and complementary tools for
use in psychiatric research.

Given the importance of the data as a resource for the
community focused on psychiatric research, we have
made the PD_NGSAtlas publicly available. To build a
DNA methylation and gene expression database focusing
on human psychiatric diseases, continued efforts will
be made to update the PD_NGSAtlas data and improve
the genomic viewer and database functionality. In our
current study, we also included some sequencing-based
DNA methylation and gene expression profiles related
to SZ and BP collected from public databases [47]. We will
also encourage research scientists to submit their next-
generation sequencing data directly to the PD_NGSAtlas
and to make this database more comprehensive. The sub-
mitted datasets in the future will be manually reviewed and
then integrated into this database. In addition, some inter-
faces are also provided in our current database, and it will
be easy to integrate these datasets into the database in the
future.

In this study, we proposed the PD_NGSAtlas for the
visualisation and analysis of methylation and expression
datasets for psychiatric disorders; however, some limita-
tions to the current system need to be addressed in the
future. Although a number of datasets were collected and
processed into our database, the numbers of samples are
still limited. We expected to acquire more samples to make
the database more comprehensive in the future. In
addition, some statistical methods were incorporated into
the database to identify the DEGs. These methods should
be used with caution. The user should select the method
that is most suitable for a given dataset. For example, the
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edgeR and DEGSeq methods were specifically incorporated
for gene expression profiles based on raw read counts.
Moreover, it is notable that the newly submitted datasets
were mainly transferred by email to our current database.
In response to the rapid increase in the amount of sequen-
cing data produced by the next-generation sequencing
technologies, we expect to incorporate more effective
methods to enhance the efficiency of this process.

Conclusions

In this work, we present the PD_NGSAtlas, a specific
database for psychiatric disorders, which offers a com-
prehensive reference resource combining epigenetic and
transcriptomic data based on next generation sequen-
cing, and quantitative analysis of epigenetic and tran-
scriptional alterations involved in psychiatric disorders.
The PD_NGSAtlas aims to provide reference resources to
assist researchers to understand the epigenetic and tran-
scriptional effects involved in the aetiology and patho-
physiological mechanisms of psychiatric disorders.

Availability and requirements

PD_NGSAtlas is freely available at http://bioinfo.hrbmu.
edu.cn/pd_ngsatlas/. The web interface has been tested
in the following web browsers: Google Chrome (version
17 and later), Apple Safari (version 5 and later) and
Mozilla’s Firefox (version 10 and later). The “Help” page
of the PD_NGSAtlas Web interface includes a step-by-
step description of all PD_NGSAtlas features.

Additional files

Additional file 1: Figure S1. The overview of the PD_NGSAtlas. (a) The
search page of the database shows. (b) The detail page of search gene
expression, search methylation peaks and DMRs. (c) The gene expression
of specific gene was shown in the search result page. The users can also
view the distribution of the gene expression across samples by clicking
the bar button. (d) The DNA methylation of specific gene across samples
was shown. (e) The identified DMRs across the samples selected by users.
(f) The visualization of DNA methylation and gene expression.

Additional file 2: Table S1. The clinical characteristics of samples used
in PD_NGSAtlas.

Additional file 3: Figure S2. Median Phred score vs. base position. The
quality scores of the reads were satisfactory, most of the called bases had
a Phred score = 30.
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