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Abstract

regularized logistic regression.

Background: Faced with an increasing number of choices for biologic therapies, rheumatologists have a critical
need for better tools to inform rheumatoid arthritis (RA) disease management. The ability to identify patients who
are unlikely to respond to first-line biologic anti-TNF therapies prior to their treatment would allow these patients
to seek alternative therapies, providing faster relief and avoiding complications of disease.

Methods: We identified a gene expression classifier to predict, pre-treatment, which RA patients are unlikely to
respond to the anti-TNF infliximab. The classifier was trained and independently evaluated using four published
whole blood gene expression data sets, in which RA patients (n=116=44+ 15+ 30 + 27) were treated with
infliximab, and their response assessed 14-16 months post treatment according to the European League Against
Rheumatism (EULAR) response criteria. For each patient, prior knowledge was used to group gene expression
measurements into disease-relevant biological signaling mechanisms that were used as the input features for

Results: The classifier produced a substantial enrichment of non-responders (59 %, given by the cross validated
test precision) compared to the full population (27 % non-responders), while identifying nearly a third of

non-responders. Given this classifier performance, treatment of predicted non-responders with alternative biologics
would decrease their chance of non-response by between a third and a half, substantially improving their odds of
effective treatment and stemming further disease progression. The classifier consisted of 18 signaling mechanisms,

to validate and refine the classifier for clinical use.

which together indicated that higher inflammatory signaling mediated by TNF and other cytokines was present
pre-treatment in the blood of patients who responded to infliximab treatment. In contrast, non-responders were
classified by relatively higher levels of specific metabolic activities in the blood prior to treatment.

Conclusions: We were able to successfully produce a classifier to identify a population of RA patients significantly
enriched in anti-TNF non-responders across four different patient cohorts. Additional prospective studies are needed
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Background

Rheumatoid arthritis (RA) is a chronic and debilitating
autoimmune disease that primarily affects synovial joints.
Currently, the most prevalent targeted therapies in RA are
the anti-tumor necrosis factor (anti-TNF) agents inflixi-
mab, adalimumab, and etanercept, which act to neutralize
the signaling of this pro-inflammatory cytokine [1-4]. How-
ever, a substantial proportion of patients (approximately
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30-40 %) fail to respond to anti-TNF therapy, exposing
them to unnecessary adverse effects as their disease pro-
gressively worsens [1, 4]. Abatacept (T-cell inhibitor), ri-
tuximab (anti-CD20; B-cell inhibitor) and tocilizumab
(anti-interleukin 6 receptor; anti-IL6R) have all been shown
to be efficacious in many patients that fail anti-TNF therapy
[5, 6]. Thus, there is a clear need for a test to provide early
identification of the subset of patients who are unlikely to
respond to anti-TNF therapies so that these patients can
be given alternative treatment options to reduce further
disease progression.
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The overall likelihood of non-response to anti-TNFs
and other biologics are similar (around 30-40 % [7]).
Thus, if such a test could provide a high confidence pre-
diction that a patient has an elevated likelihood of not
responding to anti-TNF therapy, then it would indicate
that this patient could have a greater chance of respond-
ing to an alternative biologic. For example, if a test were
to inform a patient that they only had 40 % chance of
responding to anti-TNF therapy, then their best course
of action would be to receive an alternative biologic
therapy, increasing their chance of responding to therapy
from 40 % (on anti-TNF therapy) to 60-70 % (on an al-
ternative biologic).

Although significant efforts have been made to identify
classifiers (biomarkers or biomarker panels) to predict
response to targeted biologic therapies in RA, predictive
value has not generally been observed across independ-
ent cohorts. Several studies have presented blood-based
gene expression classifiers that appear to predict re-
sponse to anti-TNF [8-12], anti-IL6 [13] and anti-CD20
[14] therapies. However, not all reported performance
measures accurately reflect how the classifiers would be
expected to perform on new samples (see [15] for an
overview of common problems with gene expression
classifiers). Additionally, one study found that of eight
reported gene expression signatures for predicting re-
sponse to anti-TNF therapy, most failed to produce pre-
dictive value in an independent test cohort [16],
although the statistical significance these findings were
not evaluated.

We investigated whether a blood-based gene expres-
sion classifier could predict response to a targeted bio-
logic therapy in RA when subjected to statistically
rigorous evaluation across multiple patient cohorts. The
current study focused on identifying likely non-
responders to the anti-TNF treatment infliximab, a
chimeric monoclonal antibody, due to availability of suit-
able gene expression data sets with accompanying re-
sponse data. To overcome some of the heterogeneity of
these different studies, we used novel systems biology
methods that integrate multiple simultaneous measures
of gene expression with a priori knowledge of thousands
of protein and gene regulatory relationships, including
immune-related pathways. Multiple gene expression
readouts for individual signaling mechanisms produce a
quantitative assessment of the mechanisms driving sig-
naling in individual patients from the downstream ef-
fects of these mechanisms on gene expression [17].

Methods

Data analysis

All data used in this study (Table 1) came from clinical
trials that were approved by the appropriate ethics com-
mittees, and our analysis of this public data did not
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require ethical approval. Statistical methods were per-
formed using the R software package version 3.1.3 [18].
Raw data were downloaded from GEO [16] and proc-
essed using tools from the limma package [19]. Affyme-
trix CEL files were processed using the brainarray chip
definition file version 17.1.0 ENTREZG [20] where pos-
sible. Technical replicates were averaged for GSE11827
and GSE3592, with the exception of samples GSM82658
and GSM82661 from GSE3592 which were omitted be-
cause they were ambiguously annotated to patient ID.
Probes and probe sets were mapped to Entrez Gene IDs,
and those that corresponded to multiple Entrez Gene
IDs were omitted from further analysis. Where multiple
probes or probe sets corresponded to a single Entrez
Gene ID, average expression was computed.

Mechanism strength scoring

Gene expression measurements in each data set were
grouped into biological mechanisms for classifier train-
ing and evaluation. Specifically, a mechanism is defined
as a set of genes that were previously identified as differ-
entially expressed in response to a change in the activity
or abundance of a biologically active molecule, as well as
the of direction of regulation for each gene in the gene
set [21]. Each gene with increased or decreased in ex-
pression in a mechanism is based on one or more cause
and effect relationships curated from peer-reviewed,
published literature [17].

The Strength algorithm provides a measure of the
relative activity for any given mechanism based on the
differential expression of genes in that mechanism [17].
For the purposes of this study the differential expression
of each gene was computed with respect to the popula-
tion median within each data set. Briefly, the strength
score for a mechanism is the weighted mean of the
(log2) differential expression of genes, where the weight-
ing factors are the direction of regulation of gene ex-
pressions in the mechanism based on prior observation
(+1 for increase relationships, -1 for decrease
relationships).

As the data sets were collected on different microarray
platforms (Table 1), the set of genes used to compute
the strength score for a given mechanism differed some-
what for each data set. In total, classifier development
was restricted to 1667 mechanisms from the Selventa
knowledge base that had at least four genes measured in
each of the six infliximab data sets (see Additional file 1
for the list of 1667 mechanisms and their strength
scores).

Classifier development

Multi-mechanism linear models were constructed
through  regularized logistic  regression  (lasso
regularization) using the glmnet R package [22]. Model



Table 1 Data sets used in this study

Data set Use in this study Microarray platform Blood  Treatment Co- Therapies Previous Treatment Response Criteria Patient

sample with Biologics (Time after Treatment) breakdown

GSE12051 [10] Classifier training Sentrix Human-6 Whole  Infliximab All pts: MTX, prednisone  No anti-TNFs EULAR DAS28 poor: NR 7 NR, 37 R

Expression BeadChip blood and NSAID EULAR DAS28
moderate/good: R (14 weeks)

GSE19821 [36] Classifier training Stanford Custom Array Whole  Infliximab All pts: MTX No anti-TNFs EULAR DAS28 poor: NR 5NR, 10R

blood Some pts: prednisone EULAR DAS28
and/or NSAID moderate/good: R (16 weeks)
GSE58795 [37,38]  Classifier training Human RSTA Custom Whole  Infliximab All pts: MTX No biologics in prev.  EULAR DAS28 poor: NR 7NR, 23 R
Affymetrix 20 blood Some pts: prednisone, 3 months EULAR DAS28
DMARDs and/or NSAIDs moderate/good: R (14 weeks)

GSE33377 [16] Classifier training Affymetrix Human Whole Infliximab or Al pts: MTX No anti-TNFs EULAR DAS28 poor: NR Infliximab:
(infliximab) and Exon 1.0 ST Array blood  Adalimumab 13NR, 14 R
evaluation (adalimumab) EULAR DAS28 good: R (14 weeks) Adalimurnab:

11 NR, 4 R

GSE42296 [39] Classifier evaluation Affymetrix Human PBMCs  Infliximab All pts: MTX No anti-TNFs in prev.  ACR0/20: NR 13NR 6R

Gene 1.0 5T Array Some pts: prednisone 3 months ACR50/70: R (14 weeks)
and/or NSAID
GSE3592 [8] Classifier evaluation INSERM Homo sapiens PBMCs  Infliximab All pts: MTX and Unknown ADAS28 < 1.2: NR 7NR 6R
14 K array_Liverpool2 prednisone
Some pts: NSAIDs ADAS28 2 1.2: R (3 months)
GSE25160 [40] Classifier evaluation Affymetrix Human PBMCs  Tocilizumab  All pts: MTX No anti-TNFs ACR0/20: NR 4 NR, 9 R
Gene 1.0 5T Array Some pts: prednisone ACR50/70: R (14 weeks)
GSE37107 [41] Classifier evaluation lllumina HumanHT-12 Whole  Rituximab Some pts: prednisone, Discontinued anti-TNF,  ADAS28 < 1.2: NR 6 NR, 8 R
V3.0 Expression BeadChip  blood DMARDs and/or NSAIDs  at Ieastl1 month wash ADAS28 > 12: R (6 months)
out period
GSE11827 [42] Classifier evaluation INSERM Homo sapiens PBMCs  Anakinra All pts: MTX None ADAS28 < 1.2: NR 7NR 7R

14 K array_Liverpool3

Some pts: prednisone
or NSAID

ADAS28 = 1.2: R (3 months)

ACR, American College of Rheumatology; DAS28, disease activity score using 28 joint counts; DMARD, Disease-modifying antirheumatic drug; EULAR, European League Against Rheumatism; MTX, methotrexate; NR,
non-responder; NSAID, nonsteroidal anti-inflammatory drug; PBMCs, peripheral blood mononuclear cells; pts, patients; R, responder
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parameters were rescaled such that the classifier scores
fell between 0.5 and 9.5 for the training samples. Classi-
fier scores from test samples that were less than zero
were set equal to zero, and scores greater than ten were
set equal to ten. Classifier score thresholds were selected
such that 60 % of the non-responders in the training co-
hort fell above the threshold (60 % non-responder sensi-
tivity on the training cohort), a strategy that we found to
be effective for identifying a group of non-responders with
high specificity in the test cohorts.

Since each training data set was measured on a differ-
ent microarray platform, there was no expectation that
the signal for each data set would be directly comparable.
However, when samples are compared against a common
reference, expression values between various microarray
platforms have an approximate 1:1 ratio [23, 24]. Here we
compared each sample to the median sample for that data
set under the assumption that the median patient from
each data set would be similar. However, the small sample
sizes of the data sets and the differences in the ratios of
anti-TNF responders to non-responders in each data set
suggest that the median samples likely differ somewhat
between the studies.

Classifier validation

Classifier performance was estimated using cross valid-
ation. To provide an in-batch estimate of performance,
repeated 10-fold cross validation was used (1000 repeats)
to reduce the variance of the performance estimates
compared to leave-one-sample-out cross validation [25].
For 10-fold cross validation, samples were randomly di-
vided into ten groups, where each of the training data
sets was split approximately equally among the groups.
A classifier was then trained as described above on sam-
ples from nine of the ten groups, and tested on the left
out group. The training/test scenario was repeated until
each group served as the test group exactly once. The
whole process repeated for a total of 1000 cross validation
repeats. To provide an out-of-batch estimate of perform-
ance, leave-one-batch-out cross validation was performed
by training on each combination of all but one data set
and testing on the left-out data set. One-sided AUROC
p-values were computed using the Wilcox rank sum test.

Evaluation of previously published classifiers

Five previous studies have described eight different gene
expression classifiers for predicting response to anti-TNF
therapy in RA from blood. Here we denote each classi-
fier by the study author name and number of genes in
the classifier, and indicate the anti-TNF therapy and
blood sample type used for classifier training: Lequerré_20
and Lequerré_8 (infliximab treatment, PBMCs) [8];
Julia_8 (infliximab, whole blood) [10]; Stuhlmuller_82,
Stuhlmuller_11, and Stuhlmuller_3 (adalimumab, monocytes)
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[12]; Tanino_8 (infliximab, whole blood) [11]; and
Sekiguchi_18 (infliximab, whole blood) [9]. Only one gene
from Stuhlmuller 3 was measured across all four whole
blood infliximab data sets, and thus we omitted this classi-
fier from our analysis. Because each of these studies only
provided a list of genes but no mathematical formula for
predicting response from these genes, each classifier was
re-trained on the four whole blood data sets using the spe-
cified genes and same clustering method specified in the
original studies. The performance of each classifier was
assessed via leave-one-sample-out cross validation across
the four whole blood infliximab data sets. Julia_8 was ori-
ginally trained on GSE12051, so GSE12051 was omitted
from cross validation for Julia_8 to avoid feature selection
bias [15]. With the exception of Julia_8, classifier scores
were determined based on the distance between the test
sample and the median of each cluster, and response pre-
dictions were based on the response call assigned to the
nearest cluster median. Julia_8 uses the k-nearest neigh-
bors algorithm (k=3) which does not produce discrete
clusters, so predicted non-responders were assigned clas-
sifier scores of 1, and predicted responders were assigned
scores of 0.

Classifier error Due to uncertainty in DAS28 scores
Response calls are often based on DAS28 scores, which
are known to have a measurement standard deviation of
0.6 [26]. To estimate the maximum expected classifier per-
formance based on this known measurement error, the
corresponding measurement noise was imposed onto the
DAS28 measurements from GSE58795 (the only data set
for which, in addition the response calls, individual DAS28
scores were available), and alternative noisy response calls
were determined for each patient (using EULAR DAS28
response calls). The original ADAS28 scores were used as
the classifier scores, representing a perfect classifier based
on the “true” DAS28 scores underlying the noisy response
calls. The AUROC was then calculated using this classifier
to predict the noisy response calls. The process was re-
peated 1000 times and the median AUROC was computed
to represent the maximum expected performance of a clas-
sifier for the prediction of DAS28-based response calls.

Results

Datasets for classifier training

Public databases were screened extensively for candidate
data sets to be used in development of a blood-based re-
sponse classifier for infliximab treatment in RA. Four data
sets were identified from North American or European
cohorts of RA patients that contain transcriptome-wide
measurement of gene expression at baseline in whole
blood and unambiguously annotated standard clinical re-
sponse criteria to infliximab therapy: Gene Expression
Omnibus (GEO) accession IDs GSE12051, GSE19821,



Thomson et al. BMC Medical Genomics (2015) 8:26

GSE58795, and GSE33377. Although the published anno-
tations for GSE33377 do not identify the patients in this
study that received infliximab or adalimumab treatment,
the authors of this study kindly provided this information
(M. Coenen, personal communication) allowing for the
classifier to be trained exclusively on infliximab-treated pa-
tients. Whole blood infliximab data sets were the focus of
the present study because they provide a sufficient number
of total patients (n=116) for classifier training, and re-
sponse calls in these studies were all based on the same
criteria (Table 1). Clinical measures, such as age, gender,
ethnicity, and previous disease treatments, were not avail-
able for individual patients across all studies and thus were
not used for classifier training or characterization. Patient
populations, experimental protocols, gene expression pro-
filing, and response criteria differed somewhat in each
study (Table 1).

Classifier development

Gene expression measurements in each training data set
(GSE12051, GSE19821, GSE58795, and GSE33377;giximab)
were median centered and grouped into 1667 biological
mechanisms for classifier training and evaluation (see
Methods). The Strength algorithm [17] was used to pro-
vide a measure of the relative activity for each mechanism
based on the differential expression of genes in that mech-
anism. Regularized logistic regression on mechanism
strength scores and response calls from the four whole
blood infliximab data sets produced a classifier model for
anti-TNF non-response consisting of a linear combination
of 18 mechanisms (Table 2). The classifier threshold was
specifically tuned to for higher specificity at the expense
of sensitivity in order to provide high confidence identifi-
cation of non-responders (see Methods).

Evaluation of classifier performance

The gold standard for evaluating the performance of a
classifier is to test the classifier on a large independent
validation cohort. However, given the limited amount of
available data on which to train and evaluate the classi-
fier, bias can be inadvertently introduced in the selection
of a small validation cohort, such that selection of a differ-
ent subset of the samples to serve as the validation cohort
might significantly affect results. We employ two statisti-
cally rigorous approaches to validate the classifier in the
face of the limited number of samples.

First, rather than designate a single validation cohort, we
repeatedly selected different validation cohorts to produce a
statistically robust evaluation of performance that is inde-
pendent from the selection of a single validation cohort.
In particular, we used repeated 10-fold cross validation to
provide a nearly unbiased assessment (slight underesti-
mate) of classifier performance [25]. The classifier per-
formed with high specificity (median specificity = 92 %,
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Table 2 Classifier linear model

Mechanism Coefficient ~ Number of supporting genes
(Constant) 480 -
CDK2 057 9-11
DPPA4 433 32-49
ERBB2 1632 146-180
FOXA2 0.84 91-106
Gamma secretase 359 81-96
IL11 -4.99 27-32
MAP2K3 1.15 5-6
MBD1 -0.23 5-8
MEIST 140 89-118
MST1R -0.56 32-39
NF1 -3.02 66-77
NFE2L2 522 122-145
Norepinephrine 221 28-36
NOS2 -0.12 9-10
NR2F6 -0.85 5-6
PPARG 4.60 496-630
S100A8/S100A9 complex —4.76 16-19
Sulindac sulfide —4.13 21-26

Patients with classifier scores above 5.96 are predicted non-responders and
thus potential candidates for alternative biologic therapy. Patients with classifier
scores below this threshold were not predicted as non-responders and are
assumed to be a mix of responders and non-responders. The number of
genes supporting each mechanism varies based on the microarray platform
used in each of the four training data sets. Note that the magnitudes of the
coefficients do not necessarily indicate relative importance of the mechanisms
for predicting non-response

median precision = 60 %), while still correctly identify-
ing a significant fraction of non-responders (median
sensitivity = 31 %; Table 3). The median area under the re-
ceiver operating characteristic curve (AUROC) was 71 %
(with a 95 % confidence interval (CI) of 60-81 %, p-value =
0.0003; Table 3, Fig. 1la). When repeated 10-fold cross
validation was performed while randomizing the re-
sponse calls for each repeat, a median AUROC of 50 %
was achieved, and only eleven of the 1000 repeats pro-
duced AUROCs above 71 %, further confirming the sig-
nificance of the classifier performance. The classifier had a
median cross-validated likelihood ratio of 3.94, indicating
that it was able to identify a subpopulation enriched in
non-responders (~0.75:1 responder to non-responder ra-
tio) compared to the full population (~2.5:1 responder to
non-responder ratio), and place nearly one third of the
non-responders in this subpopulation. Clinically, this
would correspond to providing almost one third of the
non-responders with a prediction that treatment with an
alternative biologic could reduce their likelihood of non-
response from 60 % (the test precision, corresponding to
the 0.75:1 responder to non-responder ratio) to 30-40 %
(the non-response rates of other biologics).
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Table 3 Classifier performance assessed via repeated 10-fold cross validation

Data sets Treatment Patient Median Median Median Median Median likelihood
breakdown  AUROC(95 % ClI)  specificity(95 % Cl)  sensitivity(95 % Cl)  precision(95 % Cl)  ratio(95 % Cl)

GSE12051, GSE19821, Infliximab 32 NR, 84 R 71 %**(60-81 %) 92 %(84-97 %) 31 9%(16-50 %) 60 %(36-81 %) 3.94(1.78-8.7)

GSE58795,

GSE33377‘mﬂ\x‘\mab

Repeated 10-fold cross validation performance for a classifier trained on four whole blood infliximab data sets
R, responder; NR, non-responder; Cl, confidence interval. ** indicates AUROC p-value < 0.01

Second, to evaluate the ability of the classifier to predict
response in independent patient cohorts (i.e., in cohorts
collected completely independently from any samples
used in the training), leave-one-batch-out cross validation
was performed, in which only three of the four whole
blood data sets were used in training and the fourth left
out to be used exclusively for testing [27]. This out-of-
batch cross validation was repeated such that each data
set served as the left-out test. This approach was prefera-
ble to designating a single data set at the test data set as it
allowed us to assess the performance for each possible se-
lection of a test data set, and allowed us to observe and
average across the variability from one small test cohort
to the next. Because this approach relied on training on

fewer patients (between 72 and 101, depending on which
data set is treated as the validation cohort), it provided
an underestimate of the performance expected from train-
ing on the full set of 116 patient. With a mean AUROC of
71 %, the leave-one-batch-out performances were gener-
ally consistent with the 10-fold cross validation perform-
ance (Table 4): 82 % (p-value = 0.003; GSE12051), 90 %
(p-value =0.006; GSE19821), 57 % (p-value=0.32;
GSE58795), and 57 % (p-value = 0.28; GSE33377ipfliximab)
(Fig. 1b). The smaller number of patients used in each test
cohort led to significantly more variability and wider con-
fidence intervals relative to the 10-fold cross validation
(Table 4). Classification of non-responders in each left-out
cohort was again similar to that observed with 10-fold
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Fig. 1 Patient stratification from cross validation. The patient stratification plot shows the whole blood classifier score for each patient for (a) a
representative 10-fold cross validation matching the median AUROC of 71 % across all cross validation repeats, and (b) leave-one-batch-out cross
validation. Patients were sorted by classifier score and colored by their clinical response calls. The dotted lines represent the classifier threshold
for predicting non-responders. No classifier threshold is shown for 10-fold cross validation because patient scores result from 10 different models
(one from each cross validation fold) with 10 different score thresholds. The data set of origin is indicated for each sample at the bottom of
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Table 4 Classifier performance assessed via leave-one-batch-out cross validation

Leftout  Treatment Patient breakdown AUROC(95 % Cl)  Specificity(95 % Cl) Sensitivity(95 % Cl) Precision(95 % Cl) Likelihood ratio(95 % Cl)
data set

GSE12051 Infliximab 7 NR, 37 R 82 % (66-98 %) 97 %(86-100 %) 14 9%(0-58 %) 50 %(1-99 %) 5.29(04-74.9)

GSE19821 Infliximab 5 NR, 10 R 90 % (74-100 %) 100 %(59-100 %) 40 %(5-85 %) 100 9(9-100 %) oo(N/A)

GSE58795 Infliximab 7 NR, 23 R 57 9%(26-87 %) 91 9%(72-99 %) 43 %(10-82 %) 60 9%(15-95 %) 4.93(1.0-23.8)

GSE33377 Infliximab 13 NR, 14 R 57 %(34-80 %) 86 %(57-98 %) 31 %(9-61 %) 67 %(22-96 %) 2.15(0.5-9.9)

Leave-one-batch-out cross validation performance for a classifier trained on three of the four whole blood infliximab data sets, and tested on the left-out data set. The
likelihood ratio for GSE19821 is infinite and the confidence interval cannot be calculated because no responders were labeled as non-responders by the classifier
R, responder; NR, non-responder; Cl, confidence interval. " indicates AUROC p-value < 0.01

cross validation, with a mean specificity of 94 %, a mean
precision of 69 %, and a mean sensitivity of 32 % across all
four data sets (Table 4). These results demonstrate that a
classifier trained across multiple patient cohorts can pre-
dict response in an independent cohort with performance
similar to in-batch cross validation. Furthermore, the sig-
nificant variability observed in performance between data
sets supports the use of leave-one-batch-out cross valid-
ation instead of designating a single data set as the test
cohort.

Classifier error due to uncertainty in DAS28 scores

The response calls in all of the whole blood infliximab
data sets are based on DAS28 scores (Table 1), which are
known to have a measurement standard deviation of 0.6
[26]. By simulating variability in DAS28 scoring, we found
that even if the true disease activity were known, the vari-
ability in measuring DAS28 would limit the performance
of a DAS28-based classifier to have an AUROC no greater
than 89 % (see Methods). This analysis provides an upper
limit on the ability of a classifier to differentiate between
responders and non-responders in RA.

Prediction consistency between whole blood and PBMCs

Because PBMCs are a sub-set of whole blood with the
vast majority of disease relevant cells [28, 29], we sought
to evaluate how well the classifier, which was trained
on whole blood data, performed on two PBMC inflix-
imab data sets: GSE42296 and GSE3592 (Table 1). The
classifier provided reasonable stratification in one data
set (GSE42296; AUROC =74 %, p-value=0.053) but

Table 5 Classifier performance on additional RA test cohorts

not in the other (GSE3592; AUROC =55 %, p-value = 0.42;
Table 5), consistent with the performance of the classifier
in leave-one-batch-out cross validation.

The successful stratification in one of the PBMCs data
sets prompted investigation of whether it would be pos-
sible to train a classifier to predict response to infliximab
treatment across both whole blood and PBMC. Repeated
10-fold cross validation of a classifier trained on all
six infliximab data sets resulted in a median AUROC
of 69 % (95 % CI =60-78 %, p-value =9 x 10™°), and leave-
one-batch-out cross validation produced similar performance
(mean AUROC =69 %): 59 % (p-value =0.23; GSE12051),
82 % (p-value =0.03; GSE19821), 66 % (p-value=0.11;
GSE58795), 68 % (p-value = 0.06; GSE33377 ,a1iximab), 71 %
(p-value = 0.09; GSE42296), and 67 % (p-value=0.18;
GSE3592). There was no apparent difference in perform-
ance between the whole blood and PBMC data sets. To-
gether, these results suggest that there may be sufficient
common signal across PBMCs and whole blood for the
prediction of response to anti-TNF therapy.

Comparison with previously published classifiers

A previous study evaluated the performance of eight pub-
lished anti-TNF gene expression classifiers using a single
dataset, GSE33377 [16]. We sought to compare these same
eight classifiers, which were developed using either whole
blood or PBMCs (see Methods), to that in the present
study using the four whole blood infliximab data sets used
here. One classifier (Stuhlmuller_3) was omitted because
only one of the three genes in this classifier was measured
across all four whole blood data sets. Using the selected

Data set  Treatment Blood Patient AUROC(95 % Cl)  Specificity(95 % Cl) ~ Sensitivity(95 % Cl)  Precision(95 % Cl)  Likelihood
sample breakdown ratio(95 % Cl)
GSE42296  Infliximab PBMCs 13NR, 6 R 74 %(51-98 %) 100 %(42-100 %) 31 %(9-61 %) 100 9(28-100 %)  oo(N/A)
GSE3592  Infliximab PBMCs 7NR 6 R 55 %(19-90 %) 67 %(22-96 %) 14 %(0-58 %) 33 %(1-91 %) 043(0.1-3.6)
GSE33377 Adalimumab  Whole blood 11 NR, 4R 61 %(22-100 %) 100 %(28-100 %) 18 %(2-52 %) 100 9%(9-100 %) =o(N/A)
GSE11827  Anakinra PBMCs 7NR, 7R 29 9%(0-65 %) 100 %(47-100 %) 14 9%(0-58 %) 100 9(1-100 %) oo(N/A)
GSE25160 Tocilizumab  PBMCs 4 NR, 9R 50 %(9-91 %) 100 %(47-100 %) 25 %(1-81 %) 25 %(1-81 %) 0.75(0.1-5.2)
GSE37107  Rituximab Whole blood 6 NR, 8 R 33 %(0-72 %) 75 %(35-97 %) 33 %(4-78 %) 50 9%(7-93 %) 1.33(0.3-6.9)

R, responder; NR, non-responder, Cl, confidence interval. No AUROC p-values were less than 0.05
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genes and clustering method from each of these classifiers
(see Methods), we performed leave-one-sample-out cross
validation across the four whole blood data sets (Fig. 2).
All classifiers produced AUROCs that were substantially
less than the 71 % observed in the current study, and none
were statistically significant (p-value <0.05; Table 6):
59 % (p-value = 0.06; Lequerré_20), 50 % (p-value = 0.50;
Lequerré_8), 57 % (p-value = 0.11; Julia_8), 48 % (p-value =
0.61; Stuhlmuller_82), 40 % (p-value = 0.94; Stuhlmuller_11),
54 % (p-value = 0.26; Tanino_8), and 53 % (p-value = 0.30;
Sekiguchi_18). Although its performance was not statisti-
cally significant, Lequerré 20 was identified as the best
performing of these classifiers here as well as in a previous
study [16].

Classifier prediction on other biologics

The strategy of using a classifier to direct some RA patients
away from first-line biologic anti-TNF therapies would only
prove effective if these patients were viable candidates
to respond to second- and third-line biologic therapies.
Thus, it was also important to evaluate whether pa-
tients identified by the classifier as likely non-responders

o
=
@ _|
o
2 ©
> o 7|
-—
‘0
c < — Present Study
% o | — Lequerré_20
—— Lequerré_8
Julia_8
g - — Stuhimuller_82
Stuhlmuller_11
— Tanino_8
o | — Sekiguchi_18
o

I I I I I I
1.0 08 06 04 02 00

Specificity

Fig. 2 Comparison of classifier with previously published classifiers.
The receiver operator characteristic (ROC) curves for our classifier
and each previously published classifier show the sensitivity and
specificity relationships for different thresholds. The ROC curve for
our classifier results from a representative 10-fold cross validation
repeat, matching Fig. 1. The ROC curves for the other classifiers result
from leave-one-sample-out cross validation. The ROC curve for our
classifier is the only one that demonstrates a strong consistent bias
to the upper left, consistent with it being the only one with a
statistically significant AUROC. Because Julia_8 only produces
classifier scores of 0 or 1, many samples have the same score which
leads to the non-stepwise behavior of the corresponding ROC curve.
The dashed grey line indicates the null hypotheses of random
stratification, corresponding to an AUROC of 50 %
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to infliximab therapy tended to be non-responders to
other biologics. We thus identified additional data sets
where RA patients were treated with biologic therapies,
and where the specific treatment and subsequent response
call was unambiguously known for each patient (Table 1).
When the performance of the present classifier was evalu-
ated in RA cohorts treated with other targeted biologic
therapies, it was observed that stratifications were not sig-
nificantly associated with non-response to adalimumab,
anakinra, tocilizumab, or rituximab (Table 5). Note that
the anakinra and tocilizumab data sets were PBMC sam-
ples, and thus interpretation of these results requires the
additional assumption that the classifier can be applied
across blood sample types. However, the limited size of all
abovementioned cohorts and the use of PBMCs in two of
these studies does not preclude the possibility that statisti-
cally significant associations between the classifier score
and patient response to other therapies may be found in
larger cohorts.

Biological characterization of Infliximab Non-responders
The 18 mechanisms in the classifier are known to regu-
late numerous biological pathways, most predominately
response to wounding (FOXA2, ERBB2, IL11, MAP2KS3,
NF1, S100A8:S100A9), immune defense response (gamma
secretase complex, IL11, MAP2K3, MST1R, NOS2, NR2F6,
PPARG, S100A8:S100A9, sulindac sulfide) and nervous
system development (FOXA2, gamma secretase complex,
MEIS1, NF1, norepinephrine, PPARG). Noted exceptions
are DPPA4 and MBD], for which their functions are not
well understood, and CDK2, which functions ubiquitously
in tissues undergoing proliferation. The 18 mechanism
scores were computed from between 1110 and 1387 total
unique genes, depending on the microarray platform used
in each study (see Additional files 2 and 3), with signifi-
cant overlaps between the gene sets for each mechanism
(Fig. 3). These genes were further analyzed for significant
enrichment of functional annotations using the ToppGene
bioinformatics resources [30] (Additional file 4). Increased
expression of genes involved in defense, wounding, and
inflammatory responses supported classifier prediction
of response. The signaling pathways most enriched for
genes with increased expression supporting a response
prediction were TNF, NF-kB, and HIF1A. In contrast,
non-response prediction was supported by increased ex-
pression of genes involved lipid and drug metabolism
pathways, and specifically fatty acid oxidation in response
to hormone stimuli.

Discussion

Clinical feasibility of predicting anti-TNF Non-response

As the current treatment paradigm largely uses anti-
TNF therapy after the failure of oral disease-modifying
antirheumatic drug (DMARDs), we selected the classifier
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Table 6 Performance of previously published classifiers assessed via repeated leave-one-sample-out cross validation

Classifier AUROC(95 % Cl) Specificity(95 % Cl) Sensitivity(95 % Cl) Precision(95 % Cl) Likelihood ratio(95 % Cl)
Lequerré_20 59 9%(48-70 %) 58 9%(47-69 %) 50 9%(32-68 %) 31 9%(19-46 %) 1.2(0.78-1.8)
Lequerré_8 50 %(38-62 %) 61 9%(50-71 %) 47 %(29-65 %) 31 %(19-46 %) 1.19(0.76-1.9)

Julia 57 %(48-69 %) 74 9%(60-86 %) 40 %(21-61 %) 45 %(24-68 %) 1.57(0.79-3.1)
Stuhlmuller_82 48 %(37-59 %) 40 %(30-52 %) 63 %(44-79 %) 29 %(18-41 %) 1.05(0.76-14)
Stuhlmuller_11 40 %(29-52 %) 43 %(32-54 %) 47 %(29-65 %) 24 9%(14-36 %) 0.82(0.54-1.2)
Tanino 54 9%(43-65 %) 51 9%(40-62 %) 50 9%(32-68 %) 28 %(17-42 %) 1.02(0.68-1.5)
Sekiguchi 53 %(41-66 %) 24 9%(15-34 %) 75 9%(57-89 %) 27 %(18-38 %) 0.98(0.78-1.2)

Each classifier was re-trained on the four whole blood data sets (GSE12051, GSE19821, GSE58795, GSE33377;fiiximab) Using the genes and clustering method specified
in the original studies. The performance of each classifier was assessed via leave-one-sample-out cross validation across. Julia_8 was originally trained on GSE12051, so
GSE12051 was omitted from cross validation for Julia_8 to avoid feature selection bias

Cl: confidence interval. No AUROC p-value < 0.05
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to minimize the false identification of non-responders
(i.e., the incorrect identification of responders as poten-
tial non-responders) and maximize the specificity of
the classifier. A classifier prediction of non-response
would inform the physician that the patient has an el-
evated likelihood of failure to anti-TNF therapy, and
treatment of this patient with an alternative biologic
therapy may reduce their likelihood of non-response
by a third to a half (based on the classifier’s likelihood
ratio of 3.75, and the overall likelihood of non-response
of 30-40 % for anti-TNFs and other biologics [7]).
Such a strategy that increases the likelihood of response
could more rapidly control disease progression, signifi-
cantly affect quality of life, and save tens of thousands of
dollars in ancillary healthcare costs associated with each
ineffectively-treated patient [31].

While the reported performance of the classifier could
indeed provide clinical utility, largely due to the equal ef-
fectiveness of alternative biologics compared to anti-TNF
therapy, additional data is required to validate the classifier.
In addition to validating the current classifier, additional
data sets could be used to further refine the classifier. The
imperfect classification offered by the classifier can be at-
tributed at least in part to experimentally controllable
factors such as the differences in sample collection and
processing protocols, microarray platform, and patient
clinical characteristics. Thus, it is reasonable to expect in-
creased performance in future iterations of the classifier
based on fully-consistent training data. It remains unclear
how close classifier performance could get to the max-
imum 89 % AUROC performance expected due to DAS28
measurement error.

The validity of the classifier is further supported by the
relevance of the classifier mechanisms and their under-
lying genes to RA. The mechanisms and underlying genes
of the classifier suggested that the blood of anti-TNF non-
responders may generally have lower cytokine signaling
involved in inflammation, including TNF and NF-kB path-
ways, while having higher levels of specific metabolic
activities associated lipolysis and fatty acid oxidation,
compared to responders. Systemic inflammation, and
TNF specifically, have been suggested to influence the
metabolic dysregulation, atherosclerosis, and higher risk
for cardiovascular disease associated with RA [32, 33]. Al-
though blocking TNF activity has been demonstrated to
reverse some of the effects of the metabolic syndrome
observed in RA [34, 35], the specific mechanisms in the
classifier have not, to our knowledge, previously been as-
sociated with response to anti-TNF treatments. Future
studies may elucidate specific roles for these mechanisms
in the response to anti-TNF therapy, or may potentially
reveal that downstream genes regulated by the mecha-
nisms in the classifier overlap with others more directly
linked to TNF-related pathways.
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Limitations of the work

The main limitations of this work involve the relatively lim-
ited number of samples used for classifier training and
evaluation. The variability in performance in the leave-one-
batch-out analysis may result from the failure of the classi-
fier to predict in some cohorts, or may simply result from
the small number of samples in each data set (suggested by
the same average performance observed in repeated 10-fold
cross validation). While the use of retrospective samples
in various internal validation cohorts (through repeated
10-fold and leave-one-batch-out cross validation) is statis-
tically valid and rigorous, ultimately a large prospective
study is needed for classifier validation. Furthermore, a
well-controlled prospective study would enable collection
of appropriate clinical information, which was generally
missing for individual patients from the published data
sets used herein. Evaluation or refinement of the classifier
on a larger number of patients would provide more pre-
cise estimates of performance (smaller confidence inter-
vals), and would be needed to provide physicians with
sufficient evidence that such a test could indeed be used
to help guide patient treatment.

Conclusions

The results of the present study demonstrate that by train-
ing across data from multiple studies we were able to pro-
duce a predictive classifier for non-response to anti-TNF
treatment that is robust to the test population. Given sig-
nificant differences in batch, microarray platform, and pa-
tient populations, this initial effort integrating distinct
experimental data sets suggests that a classifier to identify
non-responders is achievable with the current method-
ology. Additional data is required to prospectively validate
the classifier and provide additional refinement.

Additional files

Additional file 1: Mechanism strength scores. Mechanism strength
scores for all 1667 mechanisms for the training data sets, and for the 18
classifier mechanisms for all data sets presented herein.

Additional file 2: Classifier mechanisms. This file contains the genes
used to compute the strength score for each of the 18 mechanisms in
the classifier, as well as the direction of contribution of each gene to
each mechanism score.

Additional file 3: Classifier mechanisms. This file is a cytoscape model
of the same information presented in Additional file 1, and used to
generate Fig. 3.

Additional file 4: Functional enrichment analysis of classifier gene
functions. Genes in the classifier were divided into those that contributed
positively to the score (supporting prediction of anti-TNF non-response) and
those that contributed negatively to the score (supporting prediction of
anti-TNF response). ToppGene was used to detect enrichment within each
gene list based on functional ontologies (GO Biological Process, pathways)
and phenotype [30]. Results were filtered to provide the lowest 25 by false
discovery rate adjusted p-value (FDR B&H). WikiPathways were excluded
from the analysis due to the non-canonical or speculative nature of several
pathways with significant enrichment scores.
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