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Abstract

Background: Chromosome 6pter-p24 deletion syndrome (OMIM #612582) is a recognized chromosomal disorder. Most
of the individuals with this syndrome carry a terminal deletion of the short arm of chromosome 6 (6p) with a breakpoint
within the 6p25.3p23 region. An approximately 2.1 Mb terminal region has been reported to be responsible for some
major features of the syndrome. The phenotypic contributions of other deleted regions are unknown. Interstitial deletions
of the region are uncommon, and reciprocal interstitial duplication in this region is extremely rare.

Case presentation: \We present a family carrying an interstitial deletion and its reciprocal duplication within the
6p25.1p24.3 region. The deletion is 5.6 Mb in size and was detected by array comparative genomic hybridization (@CGH)
in a 26-month-old female proband who presented speech delay and mild growth delay, bilateral conductive hearing loss
and dysmorphic features. Array CGH studies of her family members detected an apparently mosaic deletion of the same

abnormal cytogenomic array findings.

chromatid exchange, Mosaicism

region in the proband’s mildly affected mother, but a reciprocal interstitial duplication in her phenotypically
normal brother. Further chromosomal and fluorescence in situ hybridization (FISH) analyses revealed that instead of a
simple mosaic deletion of 6p25.1p24.3, the mother actually carries three cell populations in her peripheral blood,
including a deletion (~70 %), a duplication (~8 %) and a normal (~22 %) populations. Therefore, both the deletion and
duplication seen in the siblings were apparently inherited from the mother.

Conclusions: Interstitial deletion within the 6p25.1p24.3 region and its reciprocal duplication may co-exist in the same
individual and/or family due to mitotic unequal sister chromatid exchange. While the deletion causes
phenotypes reportedly associated with the chromosome 6pter-p24 deletion syndrome, the reciprocal duplication
may have no or minimal phenotypic effect, suggesting possible triploinsensitivity of the same region. In addition, the
cells with the duplication may compensate the phenotypic effect of the cells with the deletion in the same individual
as implied by the maternal karyotype and her mild phenotype. Chromosomal and FISH analyses are essential to verify
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Background

Deletion of the distal part of 6p is a clinically recognized
syndrome (chromosome 6pter-p24 deletion syndrome,
OMIM #612582) characterized by developmental delay/
mental retardation, language impairment, Dandy-Walker
malformation, conductive hearing loss, anomalies of the
anterior chamber of eyes, cardiac abnormalities, and cra-
niofacial dysmorphism [10]. More than 30 deletion cases
have been reported and the vast majority of them involve
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terminal deletions (0.3 - 14 Mb in size) with breakpoints
within the 6p25.3p23 region [11, 12, 17, 21, 24, 25]. Only
four interstitial deletions within this region have been
reported [7, 14, 21]. An approximately 2.1 Mb com-
monly deleted terminal region was identified, which is
possibly responsible for some of the major features of
the syndrome [1, 10]. However, the phenotypic contri-
butions of other deleted regions are unknown. On the
other hand, duplications of the 6p25.3p23 region are
extremely rare. There are only two cases with eye and
cerebellar abnormalities reported in literature [29, 34].
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We present here the phenotypic and genomic findings
in a family with an affected female proband who carries
an interstitial deletion within the 6p25.1p24.3 region, her
phenotypically unaffected brother with a reciprocal intersti-
tial duplication of the same region, and their mosaic
carrier mother who carries three cell populations with
the deletion, the duplication and normal cells, respect-
ively. This rare family provided an excellent opportunity
to investigate the genomic etiology and genotype-
phenotype correlation of the chromosome 6pter-p24
deletion syndrome.

Case presentation

Proband

The female proband was born to a 33-year-old G2P2
mother at 37-weeks gestation by spontaneous vaginal de-
livery without complications. Pregnancy was unremarkable
except for possible clubfoot noted on ultrasound scan. Birth
weight was 2,440 g (20th centile), length 45.5 cm (10th
centile), and head circumference 31 c¢cm (10th centile).
A hemangioma on the neck was diagnosed at one week
after birth. A small patent foramen ovale (PFO, 3 mm x
4 mm) was found at 12 months of age and has been
followed without surgical intervention. The proband
was referred for clinical genetic evaluation at the age of
26 months for dysmorphic features, speech delay and
mild growth delay. She walked at 15-16 months and
her fine motor skills were age appropriate. She had
four-five words at two years of age. When last reviewed
at three years nine months of age, she was able to pro-
nounce words with three syllables and had more than
one hundred words. She understood multistep com-
mands and exhibited age-appropriate behavior.

She had mild to slight conductive hearing loss at
500-4000 Hz with a notch or normal hearing at 2000 Hz
and she used bilateral hearing aids from age two years
11 months until three years two months, when her
10-15 dB loss had improved. Her teeth were late to
erupt and she was missing three primary teeth.

At thee years and nine months of age, height was
90 cm (4rd centile), weight was 13.34 kg (16th centile)
and occipitofrontal circumference was 48 cm (19th
centile). She showed mild dysmorphic features, including
sparse frontal hair with a high anterior hairline, hypertelor-
ism with an interpupillary distance (IPD) measuring 5.8 cm
(>97th centile), synophrys, a preauricular pit on the left
side, short philtrum with a short columella, down-
turned corners of the mouth, and small, widely spaced
teeth (Fig. 1). She had a resolving hemangioma on the
neck that measured five cm, pectus excavatum and a
small, reducible umbilical hernia. Her fingers were small
with mild fifth finger clinodactyly, but measurements did
not show brachydactyly. The second toe overlapped the
third toe on right foot.
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Fig. 1 Facial photograph of the proband at the age of thee years
and nine months. The picture shows high anterior hairline with
sparse frontal hair, synophrys, upslanting palpebral fissures with
hypertelorism and a broad nasal bridge and a short philtrum

Proband’s brother

The proband’s brother was delivered at 39-weeks gestation
to the same mother (30 years old, G1P1) without complica-
tions. His birth weight, length, and head circumference
were 3,650 g, 49.0 cm, and 35 cm, respectively, and all were
within the normal range. At age of 5 years, his growth and
development were appropriate for age. He had small
epicanthic folds and mild clinodactyly of the fifth fingers
and toes with mildly small fifth toes, but there were no
other findings.

Proband’s mother

The proband’s mother is a 35-year old and typically de-
veloped female. She had an embolic stroke at age of
26 years. Investigations with an echocardiogram showed
a PFO with an atrial septal aneurysm and the PFO was
closed using a transcatheter approach. Her hypercoagu-
lability workup was negative. She had dyslipidemia with
a slightly elevated lipoprotein level. Her family history
was unremarkable for cardiac disease.

The proband’s father is a normal healthy male.

Methods

Array CGH analysis

Genomic DNA was extracted from peripheral blood using
QIAGEN EZ1 kit (QIAGEN). Array CGH was performed
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using a custom 180 k oligonucleotide-based microarray
with an International Standards for Cytogenomic Arrays
Consortium V1 Clinical Design complying with the human
genome build GRCh37/hgl9 (lllumina). Array CGH was
set up according to manufacturer’s instruction and the data
were analyzed using BlueFuse Multi software (Illumina)
and the UCSC genome browser (http://genome.ucsc.edu).

Conventional cytogenetic analysis

Peripheral blood cells were cultured, harvested and
banded according to the standard cytogenetic methods
[3]. GTG-banded chromosomes were analyzed and im-
aged using the CytoVision system (Leica Microsystems).
Chromosomal abnormalities were described with an Inter-
national System for Human Cytogenetic Nomenclature
2013 (ISCN 2013) [28].

FISH

FISH was performed to further confirm the aCGH and
chromosomal findings. Two directly labeled bacteria
artificial chromosome (BAC) clones (Illumina), RP11-
339A7 (6p24.3, labeled with green fluorochrome) and
RP3-520B18 (6p25.1, labeled with red fluorochrome)
were used as FISH probes (Fig. 2c). The hybridization
was performed according to the manufacturer’s in-
struction and the cells were counterstained with DAPI
II (Abbott Molecular) after the hybridization. FISH re-
sults were analyzed and documented using CytoVision
system (Leica Microsystems).
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Results

Array CGH findings

Array CGH analysis of the proband revealed a 56 Mb
interstitial deletion within the 6p25.1p24.3 region: arr[hg19]
6p25.1p24.3(4,745,144-10,384,769)x1 (Fig. 2a). This deleted
region carries 17 annotated genes in the database of online
Mendelian inheritance in man (OMIM) (CDYL, RPP40,
LYRM4, FARS2, NRN1, F13A1, LY86, RREBI, SSR1, CAGEI,
DSP, BMP6, BLOCI1SS, EEFIEL, SLC35B3, HULC and
OFCCI1) and 10 other genes (PPPIR3G, LY86-ASI,
SNAPC5PI1, CNN3PI1, BTE3P7, RIOK1, SNRNP48, TXNDCS5,
BLOCIS5-TXNDCS and PIP5KIPI).

The mother showed an apparently mosaic loss of the
same region seen in the proband (Fig. 2a). The father was
normal, in particular without detectable copy changes in-
volving the 6p region (data not shown).

Due to the mother’s carrier status, the proband’s
brother was also tested per the family’s request. Sur-
prisingly, instead of the deletion, an interstitial du-
plication of the same region was detected: arr[hgl9]
6p25.1p24.3(4,745,144-10,384,769)x3 (Fig. 2a). This
result implied that the duplication might also be de-
rived from the maternal genomic changes that could
be more complicated than a simple mosaic deletion.

Chromosome and FISH findings

To further evaluate the unusual array findings, conven-
tional cytogenetic analyses of the siblings and their mother
were performed. Indeed, the mother actually has three
different cell populations. Of a total of 50 metaphase cells
examined, 36 (72.0 %) showed the 6p deletion, 3 (6.0 %)
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Fig. 2 Array CGH and FISH analyses of the family. a. Array CGH detected an interstitial deletion within 6p25.1p24.3 in the proband, a mosaic
deletion in her mother, and an interstitial duplication of the same region in her brother. b. Chromosomal analysis revealed normal, duplicated

and deleted chromosome 6 s in the mother. ¢. Metaphase FISH showed a duplication signal pattern in a metaphase cell from the mother using
two BAC FISH probes RP3-520B18 and RP11-339A7 (arrow indicates the duplication of 6p). d. Interphase FISH demonstrated normal, duplication,
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showed the 6p duplication, and the remaining 11 (22.0 %)
were normal. Her karyotype is: 46,XX,del(6) (p24p25.1)
[36]/46,XX,dup(6) (p24p25.1) [3]/46,XX [11] (Fig. 2b).
The chromosome results were confirmed by both meta-
phase and interphase FISH studies using two BAC probes
located at the proximal and distal ends of the deletion/
duplication region, respectively, including RP11-339A7
(6p24.3, labeled with green fluorochrome) and RP3-520B18
(6p25.1, labeled with red fluorochrome) (Fig. 2c). Consist-
ent with the chromosomal findings, all three cell popula-
tions were detected in the mother; deletion, duplication
and normal signal patterns were detected in approximately
70.0 % (350/500), 8.4 % (42/500) and 21.6 % (108/500) of
the interphase cells examined, respectively (Fig. 2d). The
metaphase FISH further confirmed the deletion/duplication
and provided no evidence of other rearrangements involv-
ing the 6p25.1p24.3 region (Fig. 2c). The deletion and du-
plication in the siblings were also confirmed by FISH (data
not shown). These findings demonstrated that the pro-
band and her brother apparently inherited the deletion
and duplication from their carrier mother, respectively.

Discussion

The vast majority of deletions seen in the chromosome
6pter-p24 deletion syndrome are terminal deletions. The
smallest reported terminal deletion was approximately
2.1 Mb (Fig. 3). This region was suggested to be respon-
sible for some major features of the syndrome [1, 10].
However, the phenotypic contributions of other deleted
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6p regions remain unknown. Isolated interstitial deletions
within 6p25p24 without involvement of the terminal
2.1 Mb region are uncommon. To our knowledge, only five
such deletions, including the one presented in this study,
have been reported (Fig. 3) [7, 14, 21]. Individuals with
these deletions share many common phenotypic features of
the 6pter-p24 deletion syndrome (Table 1, also see the re-
view of DeScipio [10]). Based on the breakpoints of the five
overlapping interstitial deletions, nine sub-regions (R1-R9)
can be defined along with annotated OMIM genes (Fig. 3
and Table 2). The region R5 (6,100,000-8,330,000 bp) that
carries nine OMIM genes appears to be the consensus re-
gion of the deletions. Three genes in this region, including
RREB1, DSP and BMP6, are of particular interest. The
RREBI gene encodes a zinc finger transcription factor
(RREB1 protein) that binds to RAS-responsive elements
(RREs). It has been suggested that RREB1 is possibly in-
volved in RAS/RAF-mediated cell differentiation and aug-
ments the RAS/RAF-mediated transcriptional response
[31]. The RAS/RAF/MEK/ERK-signal transduction path-
way is known to be associated with Noonan syndrome
(OMIM #163950), Costello syndrome (OMIM #218040)
and Cardio-Facial-Cutaneous syndrome (OMIM# 115150)
[27, 32]. These syndromes share some of the phenotypic
features of the 6p25.1p24.3 deletions, such as cardiac ab-
normalities, craniofacial dysmorphism and hemangioma
[14, 27, 32]. Therefore, we speculate that deletion of the
RREBI gene may underlie some, if not all, of these pheno-
types through the RAS/RAF signal pathway. The DSP gene
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Fig. 3 Reported deletions involving the 6pter-p23 region. Light gray bars represent the deletions involving the terminal 2.1 Mb region; dark gray
bars represent the interstitial deletions without the involvement of the terminal 2.1 Mb region; black bar represents the present case of this study.
The breakpoints of the five interstitial deletions divide the 6p25.2p24.3 into nine sub-regions, R1-R9. The breakpoint coordinates of Mirza et al.
case 5 and case 6 and Davies et al. are estimated based on FISH data [7, 21]
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Table 1 Phenotypes associated with reported interstitial deletions involving 6p25.1p24.3

Present case Mirza et al. case 5 Mirza et al. case 6 Davies et al. [7] Kuipers et al. case 2

[21] 1] [14]
Deleted region 4,745,144-10,384,769 2,090,000-8330,000" 4,050,000-9910,000" 6,100,000-10,450,000"  5,968,242-8,882,919
Size (Mb) 5.64 526 5.86 4.35 291
Age at first examination 2y2m 6m Tylm Tylim 4y
Sex Female Female Male Male Male
Growth delay Mild
Motor development delay Moderate Mild
Speech delay Mild
Hypotonia + +
Cardiac anomalies PFO PDA/ASD ASD/VSD
Conductive hearing loss +
Craniofacial dysmorphism
Prominent forehead
Low-set ears + +
Posteriorly rotated ears +
Synophrys +
Hypertelorism + + + +
Short palpebral fissures +
Blue sclera + +
Microphthalmia with corneal clouding +
Broad nasal bridge + + +
Flat nose + +
Nasal tip Bulbous Full
Short philtrum + +
Highly arched palate +
Bilateral cleft lip +
Downturned corners of the mouth +
Micrognathia/retrognathia + +

Widely spaced and late erupting teeth +

Extremities

Long fingers +

Clinodactyly + +
Overlapping toes + +

Mild joint hypermobility + +
Talipes valgus

Short neck +

Pectus excavatum + + + n

Hemangioma ++ + +
Umbilical hernia + + +

Hair abnormalities +

Note: + feature present, ‘the breakpoints are estimated based on FISH data [7, 21]; PFO patent foramen ovale, PDA patent ductus arteriosis, ASD atrial septal
defect, VSD ventricular septal defect

encodes desmoplakin protein that is an obligate component  was suggested to be associated with keratosis palmoplan-
of functional desmosomes (the intercellular junctions that taris striata II (PPKS2; OMIM #612908), and recessive
tightly link adjacent cells). Desmoplakin haploinsufficiency = mutations in the DSP gene have been associated with
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Table 2 Nine regions defined by the breakpoints of reported interstitial deletions with annotated OMIM genes and potential

phenotype map

Region Start (bop) End (bp) Cases ) Reported phenotypes™ OMIM genes
involved
R1 2090000 4050000 1 Highly arched palate, short neck, posteriorly rotated ears GMDS, WRNIP1, SERPINB1, SERPINBY,
SERPINB6, NQO2, RIPK1, BPHL, TUBB2A,
TUBB2B, SLC22A23, FAM50B, PRPF4B
R2 4050001 4745144 1.2 Blue sclera CDYL
R3 4745145 5968242 P12 Umbilical hernia CDYL, RPP40, LYRM4, FARS2
R4 5968243 6100000 P, 1,2 4 Motor development delay***, broad nasal bridge NRNT,
R5 6100001 8330000 P, 1,2,3,4 Pectusexcavatum her@gngioma***, cag*d*iac anomalies™,  FI13A1, LY86, RREB1, SSR1, CAGET, DSP. BMP6,
hypotonia, hyggrte\orism , low set ears , hair BLOC1S5, EEF1ET
abnormalities , long fingers, mild joint hypermobility,
R6 8330001 8882919 P, 23,4 Micrognathia/retrognathia SLC35B3, HULC
R7 8882920 9910000 P, 2,3 Cardiac anomalies, flat nose, bilateral cleft lip™”, OFCC1
overlapping toes
R8 9910001 10384769 P, 3
R9 10384770 10450000 3 Eye anomalies” TFAP2A

“P: the present case; 1 and 2: Mirza et al. case 5 and case 6; 3: Davies et al.,; 4: Kuipers et al. case 2 [7, 14, 21]; "phenotypes were mapped by co-existence with the
deletion region; mphenotypes were also mapped by association with the known functions of the gene(s) in the deletion region

skin fragility/woolly hair syndrome (OMIM #607655)
and dilated cardiomyopathy (OMIM #605676) [2, 23].
Deletion of DSP could be related to abnormal findings
of heart and hair. The BMP6 gene encodes a bone mor-
phogenetic protein 6. Kugimiya et al. and Meynard et
al. reported that Bmp6 knockout mice had a delay in
ossification, which was strictly confined to sternum [13,
19]. Thus, deletion of the BMP6 gene could be the poten-
tial cause of pectus excavatum that was observed in four
of the five individuals with the 6p25.1p24.3 deletions.

In addition, the region R4 contains the NRNI gene.
The gene’s homologue in mouse encodes neuritin 1 pro-
tein that is involved in synaptic plasticity during the
brain development possibly through controlling neur-
onal migration [22, 36]. This implies that deletion of
NRNI may contribute to motor developmental delay.
The region R7 contains the OFCCI gene that has been
associated with isolated cleft lip with or without cleft
palate (OFC1; OMIM %119530) [8]. One of the three
cases with deletion of the OFCCI gene showed bilateral
cleft lips (Table 1, Fig. 3), supporting the association.
The region R9 contains the TFAP2A gene, of which hap-
loinsufficiency may be associated with eye anomalies [7,
20]. Consistent with this, the case 3 showed micro-
phthalmia with corneal clouding and it was the only case
carried deletion of the region R9 including the TFAP2A
gene (Table 2).

Based on the co-existence of phenotype/deletion and
reported functions of the genes located in each deletion
sub-region, some deletion-related phenotypes could be
potentially mapped to the specific deletion sub-regions
(Table 2). Such a phenotypic map, although it needs to
be further verified, is important for understanding the

genomic pathogenesis of the deletions. The phenotypes
may not always manifest consistently together with the
expected deletion regions. This could be due to incom-
plete penetrance/expressivity. Also, some phenotypes
might not be examined or apparent at the time of
reporting. Some shared phenotypes between the individ-
uals with and without the 2.1 Mb terminal deletion
could be due to the overlapping deletion regions of the
two groups (Fig. 3). It is also possible that some of the
phenotypes could be caused by different genomic mech-
anisms or by multiple genomic alterations.

To our knowledge, only two duplications involving the
distal part of 6p have been reported with abnormal clin-
ical findings [29, 34]. However, one of them did not
overlap with, and the other was 4.5 Mb (80 %) larger in
size (with many additional genes involved) than the
present duplication. We also searched DGV (database of
genomic variants, http://dgv.tcag.ca/), ClinGen (database
of submitted clinical array testing results, http://clinical-
genome.org/) and DECIPHER (database of genomic vari-
ation and phenotype in humans using Ensembl resources,
https://decipher.sanger.ac.uk/) databases, but no similar
duplications were found. The DECIPHER database lists 10
much smaller duplications (0.09 — 2.4 MB) within the 6p
region. However, three of them involve multiple add-
itional genomic abnormalities and another three are
listed without phenotypes. The phenotypic features as-
sociated with the remaining four duplications are not
described in detail; in particular, no consistent specific
phenotypes are listed. Therefore, the phenotypic features
associated with those small duplications could not be deter-
mined. In contrast, the proband’s brother who carries a du-
plication within 6p25.1p24.3 in this study is phenotypically
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normal at the age of 5 years, suggesting that copy gain of
this particular region is likely benign or triploinsensitive. It
is noteworthy that approximately 70 % of the blood cells of
the proband’s mother carry the deletion, but she apparently
does not have most of the phenotypic features seen in the
proband except for a mild cardiac anomaly. This implies
that dosage compensation from the cells with the duplica-
tion might play a role in reducing the phenotypic effect
of the deletion, although this might also be due to
tissue-specific mosaicism that was not tested in this
study. Nevertheless, the findings suggest that the level
of phenotypic expression of the 6p25.1p24.3 deletion
seems to be related with the overall level of mosaicism
of the deletion.

The mosaic reciprocal deletion and duplication in the
mother were most likely derived from a mitotic unequal
sister chromatid exchange (Fig. 4). When this occurs be-
tween two non-allelic loci in a cell during mitosis, it
gives rise to two cell populations with a deletion and a
reciprocal duplication, respectively, along with an unin-
volved normal cell population in an individual. This mi-
totic non-allelic recombination most likely occurred at
an early stage during the maternal embryogenesis, since
the percentage of the deletion cell population appeared
to be high and the mosaicism was present in multiple
tissues, such as blood and gonadal tissues. The mechanism
for this unequal sister chromatid exchange is unknown.
No segmental duplications, except for a 277-bp Alu re-
peat, were found in the proximity of the breakpoints in
our search using the UCSC genome browser. However,
whether this repeat was involved in the unequal exchange
needs to be further determined, although Alu repeats have
been reported to participate in some homologous recom-
bination events [9, 26].
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Our study clearly demonstrated the necessity to verify
abnormal cytogenomic array findings with cytogenetic
methods, including chromosomal analysis when the
changes are >3 Mb and metaphase FISH when the
changes are <3 Mb. Cytogenetic methods do not only
confirm the array findings, but also allow identification
of causal structural rearrangements of the array findings
and multiple cell populations, as seen in this study, which
would otherwise be missed. Such additional information
is critical to understand the genomic pathogenesis, to
make appropriate decision for clinical management and
to provide appropriate counseling to the patient and
his/her family.

Conclusions

Our study demonstrated that an interstitial deletion
within 6p25.1p24.3 and its reciprocal duplication could
occur through mitotic unequal sister chromatid exchange.
Both deletion and duplication may be passed independently
to the offspring from a parental carrier if his/her gonadal
system is affected. Cytogenomic array may detect the
deletion or duplication in an individual, but may not
detect both in a mosaic carrier. Therefore, the array
findings could be misleading in such a mosaic situation.
Chromosome and FISH analyses are appropriate methods
to identify structural and copy number changes, as well
as different cell populations. So, it is essential to verify
abnormal cytogenomic array findings with chromosomal
and FISH analyses when they are available. In review of
other reported interstitial deletions within 6p25.1p24, nine
deletion sub-regions with annotated OMIM genes, includ-
ing a 2.3 Mb consensus region, are defined. Based on the
known functions of the annotated genes and the pheno-
type/deletion co-existence, some phenotypes associated
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Fig. 4 Unequal sister chromatid exchange involving the 6p25.1p24.3 region
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with the deletions can be potentially mapped to specific
deletion regions. While the deletion in the proband of
this study results in phenotypes reportedly associated
with the chromosome 6pter-p24 deletion syndrome
due to haploinsufficiency of the region, its reciprocal
duplication appears not to have significant phenotypic
effect, suggesting possible triploinsensitivity of the same
region. In addition, the cells with the duplication may
compensate the phenotypic effect of the cells with the
deletion in the same individual as implied by the maternal
karyotype and her mild phenotype.
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