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Abstract

Background: Genetic variation can alter transcriptional regulatory activity contributing to variation in complex traits
and risk of disease, but identifying individual variants that affect regulatory activity has been challenging.
Quantitative sequence-based experiments such as ChiP-seq and DNase-seq can detect sites of allelic imbalance
where alleles contribute disproportionately to the overall signal suggesting allelic differences in regulatory activity.

Methods: We created an allelic imbalance detection pipeline, AA-ALIGNER, to remove reference mapping biases
influencing allelic imbalance detection and evaluate accuracy of allelic imbalance predictions in the absence of
complete genotype data. Using the sequence aligner, GSNAP, and varying amounts of genotype information to
remove mapping biases we investigated the accuracy of allelic imbalance detection (binomial test) in CREB1 ChiP-seq
reads from the GM12878 cell line. Additionally we thoroughly evaluated the influence of experimental and analytical
parameters on imbalance detection.

Results: Compared to imbalances identified using complete genotypes, using imputed partial sample genotypes,
AA-ALIGNER detected >95 % of imbalances with >90 % accuracy. AA-ALIGNER performed nearly as well using
common variants when genotypes were unknown. In contrast, predicting additional heterozygous sites and imbalances
using the sequence data led to >50 % false positive rates. We evaluated effects of experimental data characteristics and
key analytical parameter settings on imbalance detection. Overall, total base coverage and signal dispersion across the
genome most affected our ability to detect imbalances, while parameters such as imbalance significance, imputation
quality thresholds, and alignment mismatches had little effect. To assess the biological relevance of imbalance
predictions, we used electrophoretic mobility shift assays to functionally test for predicted allelic differences in CREBT
binding in the GM12878 lymphoblast cell line. Six of nine tested variants exhibited allelic differences in binding. Two of
these variants, rs2382818 and rs713875, are located within inflammatory bowel disease-associated loci.

Conclusions: AA-ALIGNER accurately detects allelic imbalance in quantitative sequence data using partial genotypes or
common variants filling a critical methodological gap in these analyses, as full genotypes are rarely available. Importantly,
we demonstrate how experimental and analytical features impact imbalance detection providing guidance for similar
future studies.
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Background

Genetic studies of complex traits and diseases have been
increasing their focus on the contribution of gene transcrip-
tional regulation. The majority of complex trait-associated
variants are in non-coding regions [1], suggesting many
contribute by altering regulatory activity. Variants can alter
transcription factor binding affinity, subsequently affecting
transcription levels of target genes [1]. For example, the T
allele of rs12740374 increases C/EBPa binding and tran-
scription of SORT1, a gene influencing LDL cholesterol
level [2]. Identifying precisely which genetic variants are
responsible for changing regulatory activity can be difficult.

Quantitative short-read sequence data generated from
experiments such as ChIP-seq [3], DNase-seq [4], FAIRE-
seq [5], and ATAC-seq [6] broadly identify genomic
regions that regulate gene transcription. Sequence infor-
mation from these experiments can be used to detect
allele-specific activity in samples where heterozygous
variants are present in or near a regulatory element. For
example, an uneven distribution in the number of reads
containing each allele at a heterozygous site, referred to as
allelic imbalance, provides evidence for differential regula-
tory activity due to genetic variation. Previous studies have
also used quantitative short-read data to correlate genetic
variation in regulatory regions with nearby gene expres-
sion [7, 8] and to show the heritability of allelic regulatory
effects [8—12].

Quantitative sequence data have been generated in
hundreds of cell types and tissues by the ENCODE
(Encyclopedia of DNA elements) Consortium [13] and
Roadmap Epigenomics Project [14]. Offering a valuable
source of genetic regulatory information. Exploration of
allelic imbalance in this data is hindered by a lack of
complete genotype information for individuals from which
these data are derived, and the well-established alignment
bias that arises when both alleles at a heterozygous site
are not considered during alignment to a reference gen-
ome. Sequence reads containing the allele not repre-
sented in the reference genome are penalized as an
additional mismatch compared to reads containing the
reference allele [15], and are less likely to map to the
correct genomic location (Additional file 1: Figure S1).
This can result in false detection of allelic imbalance
favoring the reference allele, or failure to detect imbal-
ance favoring the non-reference allele. Several methods
for removing this alignment bias have been proposed,
including masking known variants in the reference gen-
ome [15], aligning reads to two haplotype reference ge-
nomes [16-21], using known variants with allele-aware
aligners [7, 8, 22] or creating an extended reference
genome that included alternate alleles [23]. For these
methods, full genotype information leads to the best re-
sults, but this data is rarely available. The performance
of these methods using limited or no sample genotype
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data, compared to full genotype information has not
been thoroughly investigated.

To evaluate detection of altered regulatory activity due
to genetic variation in quantitative sequence data using
full, limited or no genotype information, we created a
computational analysis pipeline, called AA-ALIGNER
(Allele-Aware ALignments for the Investigation of GeN-
etic Effects on Regulation). AA-ALIGNER strategically
incorporates existing, publicly available tools to accurately
annotate regions containing heterozygous variants given
varying levels of genotype information, including no geno-
types. To remove alignment biases at heterozygous vari-
ants, AA-ALIGNER uses the allele-aware aligner GSNAP
[24] which has been previously shown to remove mapping
biases using complete genotype information [22]. AA-
ALIGNER also attempts to correct other biases that
can influence imbalance detection, such as incorrect
heterozygous site annotations in reference genome
sequences and incorrectly detected imbalances due to
differences in mappability between reads containing
each of the alleles or due to PCR duplications intro-
duced during sequencing [25].

We demonstrate that GSNAP also removes mapping
biases using partial genotype data or common variants
allowing for accurate identification of allelic imbalances.
Using AA-ALIGNER, we determined the effect of experi-
mental and analytical variables such as sequence read
length, sequencing depth, number of mismatches allowed
during alignment, and imputation quality thresholds on
accurate allelic imbalance detection. Our analyses used
data from one DNase-seq and thirteen ChIP-seq experi-
ments generated in the GM12878 lymphoblastoid cell line,
for which both complete, sequencing-based genotype and
partial, array-based genotype information is available. We
experimentally detected differential protein binding at six
of nine tested imbalance predictions from AA-ALIGNER
for CREB1 (Cyclic-cAMP Responsive Element Binding
protein 1) binding in GM12878 ChIP-seq data, including
imbalances at two disease-associated loci. Overall, our re-
sults provide important empirical data that can be used to
guide the design of and interpretation of similar studies
using AA-ALIGNER to accurately annotate heterozygous
sites and detect genetically-driven changes in regulatory
element activity.

Methods

Genotype data

Genomic sequencing-based variants calls for GM12878
were generated by the Broad Institute. Illumina Human-
1MDuo BeadChip array genotype data generated by the
HusdonAlpha Institute of Biotechnology for GM12878
and 52 other ENCODE samples were obtained from the
UCSC genome browser [26]. Autosomal genotypes for
all 53 samples were imputed using MaCH-Admix [27]
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with default parameter settings and the reference panel
from the 1000 Genomes Project Phase I version 3 (2012-
03-14 release). Chromosome X genotype data in the 53
samples were pre-phased using MaCH [28] with options
—states 500 and —rounds 400 and then imputed using
minimac [29] with options —state 10 and —rounds 10.
Post-imputation filtering of variants according to Rsq
was performed as previously reported [30].

Common alleles (MAF > 0.05) used to derive the initial
custom reference genome were based on 1000 Genomes
Phase I version 3 EUR population [31].

Custom reference creation

The initial European-specific reference genome was cre-
ated by replacing alleles in the hgl9 reference sequence
with the major allele for all common variants (MAF > .05)
from the 1000 Genomes EUR population. The GM12878
custom reference was created by further modifying this
initial custom reference by replacing non-reference homo-
zygous variants with the new allele, based on information
from either the full genotype or partial genotype.

Quantitative sequence data processing

Sequence fastq files (Additional file 2: Table S4) were
downloaded from the UCSC Genome browser ENCODE
Project [26]. Sequences from each replicate were filtered
with fastx_trimmer using options -f 1 -1 50 —Q 33’ and
fastq_quality_filter using options ‘-Q 33 —p 90 —q 20 -I
N where N is the length of the reads in that dataset.

Standard GSNAP alignments were performed using the
following options: —-sampling = 1, —-terminal-threshold =
10, -n 1, —-query-unk-mismatch =1, —-genome-unk-
mismatch = 1, —-trim-mismatch-score =0, -t 7, and -A
sam. The k-mer size parameter was set based on read
length: k=15 (50 bp); -k =11 (35 bp); -k =10 (20 bp)
with —-basesize set to k-mer size. As we increased the
number of mismatches allowed during alignment to m,
we changed the option —m to m and —i to m + 1 to dis-
allow indels during alignment. The directory containing
the GSNAP reference genome was specified with —D
the genome name with —d. Alternate alleles at variant sites
based on partial genotype information or common vari-
ants were included in alignments with the —v option.
BWA alignments were performed using the bwa aln com-
mand with options —n 1, -0 0, and —e 0 and bwa samse
with option —n 4. When doing a second alignment, the
customized reference was updated, if necessary, to contain
one of the alleles at predicted heterozygous sites from the
first alignment, sequences were aligned, and the align-
ments were filtered as before.

Reads aligned to more than one genomic location or
overlapping the ENCODE blacklist regions [26] were
filtered. Potential PCR artifacts were removed using
MarkDuplicates (Picard suite) with options REMOVE_
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DUPLICATES = TRUE, VALIDATION_STRINGENCY
= LENIENT, USE_THREADING = TRUE.

To investigate the effects of reference mapping biases
on peak calling, peaks were called using SPP within an
Irreproducible Discovery Rate (IDR) analysis [32] as out-
lined by the ENCODE Consortium [33, 54]. Overlaps
were determined between the 10,000 peaks with the
strongest signal and heterozygous sites identified by
genomic sequencing (complete genotypes).

Identifying allelic imbalance

Only sequence bases with a Phred33 base quality score
greater than 30 were considered for predicting heterozy-
gous sites or allelic imbalances. To account for mappability
differences in alignments based on which of the two alleles
was present, the heterozygous base in each sequence read
was changed to the alternate allele and re-aligned to the
genome. Only reads aligning uniquely regardless of the
allele present were used to detect allelic imbalance. Signifi-
cance was assessed with a binomial probability, b(a;, , 0.5),
where a; represents the number of reads containing allelel
and # is the total number of reads at the heterozygous site
and an uncorrected p-value threshold of 0.01. To calculate
beta-binomial p-values, we first estimated parameter o of
the beta distribution using reference allele proportions
across all sites. A Z-statistic for each tested site was calcu-
lated the following equation:

P-0.5
20N
\/ IN(2a+1)

where D is the proportion of reads containing the refer-
ence allele and N is the total number of reads at the site.

Electrophoretic mobility shift assays

For each heterozygous variant examined, two sets of
complementary 21-mer, biotin-labeled oligonucleotides
centered on the CREB1 motif and containing one allele
were synthesized by Integrated DNA Technologies. Each
set was annealed to create two double-stranded probes
for each variant (Additional file 2: Table S5). EMSAs
were performed according to the protocol included with
the LightShift Chemiluminescent EMSA Kit (Thermo
Scientific). Briefly, each reaction containing 1x binding
buffer, 1 pg poly(dIdC), and 200 ng of purified CREB1
protein (CreativeBiomart CREB1-26H) was incubated
for 15 min before adding biotin-labeled probes in a total
reaction volume of 20 pl and incubating for another
25 min. Reactions were electrophoresed on 6 % DNA
retardation gels (Life Technologies) in 0.5X TBE buffer
(Lonza), transferred to nylon membranes (Thermo Scien-
tific), UV cross-linked and detected with chemillumines-
cence (Thermo Scientific).
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Availability of supporting data
The AA-ALIGNER pipeline package is available on-
line [34].

Results

Overview of AA-ALIGNER

The AA-ALIGNER pipeline is designed to maximize
short-read sequence alignment accuracy at sites of DNA
variation regardless of genotype availability. These align-
ments can be used to identify potential sites of regula-
tory activity, indicated by an enrichment of aligned reads
and referred to as peaks, and of allelic imbalance at
these sites (Fig. 1). We first construct a sample-specific
custom reference genome in a two-step process. To in-
crease the likelihood that the allele in our starting reference
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Fig. 1 Overview of AA-ALIGNER. Sample genotypes or common
variants are used to create a custom reference genome (1). Sequence
reads are filtered to remove low quality reads (2) and aligned to the
custom reference using GSNAP including alternate alleles (3).
Alignments are filtered further to increase alignment quality (4) and
used to detect sites of allelic imbalance (5, binomial test) and identify
peaks (6). Allelic imbalance is tested at heterozygous sites included in
the customized reference genome and at predicted heterozygous sites,
identified based on a minimum number of mapped reads containing
each of two alleles. If desired, predicted heterozygous sites can be used
to update the custom reference and be included in a second
alignment repeating steps 3-6

Page 4 of 15

genome matches the genotype of any sample, alleles of
common variants in the standard reference are modified as
needed to the most common allele from a particular popu-
lation, such as the 1000 Genomes European samples [35].
In a second step, all available genotype information from
the sequenced sample is used to further customize this ref-
erence sequence such that: (i) at homozygous variants, the
sample allele is present; and (ii) at heterozygous sites, one
of the two sample alleles is present. Alternate alleles at het-
erozygous sites are recorded in a separate file during this
process. When no genotype information is available, this
alternate allele file contains all common minor alleles
(MAF > 0.05) for the selected population.

Next, we filter sequence reads to remove low quality
sequences and align them to the custom reference gen-
ome using GSNAP [24], an allele-aware aligner. GSNAP
takes as input the file containing reference and non-
reference alternate alleles to equally consider alignments
to both alleles. After alignment, we filter (i) sequences
aligned to more than one genomic location; (ii) sequences
aligned to regions underrepresented in the reference se-
quence (ENCODE blacklisted regions); and (iii) duplicate
reads to correct for PCR artifacts. These final alignments
are used to identify peaks and sites of allelic imbalance.

When testing for imbalances, AA-ALIGNER includes
predicted heterozygous sites not included in the initial
custom reference during sequence alignment. New het-
erozygous sites are predicted based on having a minimum
number of reads containing each of two alleles. In
addition, a minimum read threshold per allele can be
applied to all heterozygous sites during imbalance detec-
tion to guard against incorrectly annotated heterozygous
sites. While predicted heterozygous sites are not included
in the initial reference genome customization (Fig. 1, Box
1) or sequence alignment steps (Fig. 1, Box 3), they can be
added in a second round of reference customization and
alignment if desired.

AA-ALIGNER is designed to correct for multiple
sources of bias in the data whenever possible. Increasing
the minimum read threshold required to test for an imbal-
ance can guard against incorrect heterozygous site identi-
fication. Mappability biases, where reads containing one
allele map uniquely while reads containing the other allele
map to multiple locations and are filtered, may result in
an artificial imbalance. AA-ALIGNER only considers
reads that map uniquely to the same position in the gen-
ome regardless of the allele present. Post alignment filter-
ing of duplicate reads corrects for biases that can arise
from PCR duplication during library preparation.

AA-ALIGNER allows key parameters to be specified
that influence sequence alignment and post-alignment
steps, such as imbalance detection. The minimum read
threshold for each allele is one of these parameters.
In addition, allowed mismatches can be restricted to
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predicted heterozygous sites to increase confidence in
evidence for multiple alleles. By default, significance of
allelic imbalances is determined using a standard bino-
mial test, but the AA-ALIGNER pipeline can be easily
modified to incorporate alternative statistical methods of
detecting imbalance. Peaks are determined here using
SPP [36]. Additional details for individual steps can be
found in the Methods. Unless otherwise indicated, the
following results are based on alignments allowing for
one mismatch, with a minimum of five reads required
for each allele, and a nominal binomial p-value threshold
of 0.01 for allelic imbalance detection. Each of these pa-
rameters is evaluated in detail in the following sections.

Using GSNAP removes alignment biases at heterozygous
sites

We first evaluated the ability of GSNAP to overcome
the reference alignment bias. We used 50 base pair (bp)
CREB1 ChIP-seq reads generated in the GM12878 lym-
phoblastoid cell line by the HudsonAlpha Institute of
Biotechnology as part of the ENCODE project. We cre-
ated a custom GM12878 reference sequence based on a
complete set of genotypes generated by the Broad Institute
[37], and we created a GSNAP input file with non-
reference alleles for each heterozygous site. To examine
whether both alleles at heterozygous sites were equally
considered during alignments, we also created a “comple-
ment” reference sequence by swapping the allele at each
heterozygous site in the initial custom reference with the
alternate allele from the input file. We compared sequence
alignments to these two reference sequences using three
metrics: reads mapped to heterozygous sites; sequence
enrichment peaks called at heterozygous sites; and sites of
allelic imbalance (Table 1). Only 120 of the 33.6 million
(0.0003 %) reads were aligned differently between the two
alignments. Manual inspection indicated that these dis-
crepancies were due to GSNAP failing to remove align-
ment bias when aligning sequences to regions containing
more than 5 and as many as 16 heterozygous sites. These
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120 differences did not affect the number of peaks or the
predicted sites of allelic imbalances identified (Table 1).
These data demonstrate that using GSNAP, AA-ALIGNER
overcomes the alignment bias.

To quantify the importance of removing the alignment
bias, we used the same metrics to compare allele-aware
and non-allele-aware alignments using the same refer-
ence sequences. We used BWA for non-allele-aware
alignments with the same alignment parameters as
GSNAP. By considering alternate alleles, GSNAP (1.3 M
reads) aligned 8 % more reads to heterozygous sites
than BWA (1.2 M reads; Table 1). As expected, GSNAP
aligned a larger percentage of reads containing the non-
reference allele compared to BWA (48 % to 43 %), more
closely reflecting the expectation that each allele should
be present in equal numbers of reads. Additionally, we
aligned sequence reads to the complement reference
using BWA. In contrast to GSNAP, we found that BWA
aligned 344 K (1.0 %) reads differently to the comple-
ment and reference genomes. Greater than 54 % of reads
mapped to the reference allele at heterozygous sites in
both BWA alignments (Table 1), demonstrating the ef-
fect of alignment bias on non-allele-aware alignments.

We examined, separately, the effect of biased alignments
at heterozygous sites on peak and allelic imbalance detec-
tion. Among the top 10,000 peaks with the greatest signal
enrichment for each alignment method, using GSNAP
identified 1.6 % more peaks overlapping a heterozygous
site than BWA and predicted 32 % more allelic imbal-
ances. Further, 54 % of GSNAP-identified imbalances were
enriched for the reference allele compared to 60 % of
BWA-identified imbalance sites (Table 1). Additionally,
the reference allele was enriched in 82 % (23/28) of imbal-
ances only detected when using BWA, compared to 49 %
(39/79) of imbalances unique to GSNAP alignments. The
majority of BWA imbalances favored the reference allele
in both the standard reference and the complement refer-
ence, demonstrating the presence of significant alignment
bias. Together, these results demonstrate that alignment

Table 1 Allele-aware alignments with complete genotypes (GSNAP) vs no genotype information (BWA)

GSNAP BWA

Standard Complement® Difference® Standard Complement? Difference®

Reads mapped uniquely 33,599,679 33,599,721 120 33,543,808 33,547,947 344,942
Reads at heterozygous sites 1,295,901 1,295,914 120 1,197,696 1,186,891 344,942
Reference allele 675,394 620,517 - 677,697 640,978 -
Non-reference allele 620,507 675,397 - 519,999 545913 -
Peaks at heterozygous sites® 1618 1618 0 1593 1614 87
Allelic imbalance sites identified® 200 200 0 151 147 56
Reference allele 108 92 - 91 82 -
Non-reference allele 92 108 - 60 65 -

2Alignment reference contained the non-reference allele of heterozygous sites used to create the standard reference PDiffers in mapping or detection between
alignments to standard and complement references “Out of 10,000 peaks with strongest signal “binomial p-value < .01
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biases negatively impact accurate sequence alignment,
peak calling and allelic imbalance identification.

AA-ALIGNER identifies sites of allelic imbalance using
partial genotypes or common variant information
Complete genotypes are not available for most samples.
Therefore, we evaluated how well AA-ALIGNER repro-
duced allelic imbalance annotations using incomplete
genotype information. We separately aligned the same
50 bp CREB1 ChIP-seq reads to custom GM12878 refer-
ence genomes derived using (i) partial genotypes deter-
mined using the HumanlM-Duo BeadChip array and
imputed using MachAdmix [27]; and (ii) 1000 Genomes
common variants (EUR, MAF > .05) to model the case of
no available genotype information. Using allelic imbal-
ances identified with complete genotype information to
define true positive (TP), false positive (FP), and false
negative (FN) sites, we calculated sensitivity (TP/TP + FN)
and precision (TP/FP + TP), or positive predictive value.

Similar numbers of imbalances were identified using all
three levels of genotype information (Table 2, Additional
file 2: Tables S6-S8). Interestingly, we found that when
simply including common variant alleles (no available
genotypes), we detected imbalances with similar sensitivity
(>73 %) and precision (>75 %) as with partial genotype
information (Table 2). Including alleles of common vari-
ants with GSNAP significantly improved alignment per-
formance compared to BWA with no variant information
(Additional file 2: Table S2), even though neither align-
ment includes any information about the sample’s geno-
type. This improvement results from sites where including
both alleles during alignment allowed for the imbalance to
be detected. Of the 200 sites of imbalance detected using
complete genotypes, 125 were present in the partial geno-
types and 141 were common variants. Considering only
these 125 and 141 sites, we find that sensitivity is 97 %
and 94 % with 90 % and 82.5 % precision, respectively. In
stark contrast, sensitivity of detection is 33 % (partial) and
34 % (common) with 45 % and 47 % precision at other
predicted heterozygous sites, defined as sites with 5 or
more reads containing each allele.

We considered whether poor performance at predicted
heterozygous sites was due to either (i) incorrect identi-
fication of homozygous sites as heterozygous using se-
quencing data [38]; or (ii) incorrect classification of
balanced heterozygous sites as imbalanced due to align-
ment biases. By comparing the complete genotypes from
genomic sequencing to imbalances at sites predicted to
be heterozygous in the sequence data, we found that of
the sites incorrectly predicted to be imbalanced, 58 %
(18 of 31) using partial genotypes and 83 % (19 of 23)
using common variants were not heterozygous. When
using complete genotype information, AA-ALIGNER
does not report imbalances at predicted heterozygous
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sites. Of the imbalanced sites, 61 % (11/18) using partial
genotypes and 42 % (8/19) using common variants were
also imbalanced when using complete genotypes, under-
scoring the difficulty in using short reads to detect im-
balances at predicted heterozygous sites. We incorrectly
detected imbalance at 13 sites using partial genotypes and
4 sites using common variants because an increase or de-
crease in aligned reads containing one allele now caused
the site to pass the significance threshold for imbalance.

We tested whether a more stringent binomial p-value
threshold than 0.01 would improve performance, by re-
ducing errors resulting from condition (ii). As expected,
a stricter threshold reduced the number of imbalances
detected, but it also decreased sensitivity and precision
(Additional file 2: Table S2), especially at predicted het-
erozygous sites. Additionally, we found at predicted het-
erozygous sites the p-values of false positive imbalance
sites were more significant than the p-values of true
positives sites when using partial genotypes (Mann—
Whitney U P=.003) and common variants (Mann—
Whitney U P =.03; Additional file 1: Figure S2). These
data suggest that errors in imbalance detection result
more commonly from incorrect prediction of hetero-
zygous sites than falsely calling imbalances at true
heterozygous sites.

In addition to a binomial test, other statistical methods
of detecting allelic imbalance have been used to measure
the significance of allelic imbalance [21, 22, 25]. For ex-
ample, a beta-binomial test is commonly used to correct
for inaccurate imbalance detection caused by over dis-
persion of the data. Using a beta-binomial test (P <.01)
for the 50 bp pair CREB1 ChIP-seq data reduced the
number of sites of allelic imbalance identified by 82-
83 % using complete, partial or no genotype information
(Additional file 2: Table S2). Overall sensitivity and preci-
sion of imbalance detection using partial or no genotypes
declined to ~50 %. Sensitivity and precision remained
higher at imputed heterozygous sites (partial genotype
alignment) and common variants (no genotype alignment)
than predicted and uncommon variants as before. This
reduction in the sensitivity and precision of imbalance
detection is similar to the reduction seen when using a
stricter binomial p-value threshold and is likely related
to the increased p-values of false positive sites reported
above.

We also considered whether common variants could
be annotated more accurately than rare variants due
simply to how sequences were aligned to these sites.
Using BWA alignments that did not include any variant
information, we predicted heterozygous sites and allelic
imbalances as above. If we separate these predictions
into those sites that are and are not common variants,
we find that the sensitivity and precision are significantly
higher for common variants (Additional file 2: Table S1),



Table 2 Allelic imbalance detection accuracy in alignments using partial or no genotypes compared to complete genotypes

Factor/Assay Complete® Partial Genotype® Imbalances No Genotype® Imbalances
(Condition) Total Partial  None  Total Known variants Predicted variants Total Known variants Predicted variants

\® Nimp Neom \® Sens  Prec N,  Sens Prec NeNimp  Sens  Prec N Sens  Prec  Nem — Sens Prec  N¢-Neom  Sens  Prec
CREB1 (50 bp) 200 125 141 190 730 76.8 134 96.8 90.3 56 333 446 203 760 74.9 160 936 825 43 339 46.5
CREB1 (35 bp) 106 70 81 104 736 750 74 97.1 919 30 27.8 333 107 774 76.6 87 926 86.2 20 280 350
CREB1 (20 bp) 26 16 16 24 69.2 750 17 1000 941 7 200 286 22 69.2 818 17 1000 941 5 20.0 40.0
CTCF (35 bp) 267 187 192 300 831 740 198 984 929 102 475 373 298 850 762 210 979 895 88 520 443
DNase (20 bp) 104 43 47 138 510 384 42 97.7 1000 96 180 115 144 519 375 55 979 836 89 140 90
CREB1 (2 alns)® 200 125 141 195 785 805 135 97.6 904 60 467 583 204 770 755 156 922 833 48 407 500
Mismatches alllowed
CREBT (0 mm) 199 122 138 137 588 854 137 95.9 854 0 - - 160 633 788 160 913 788 0 - -
CREB1 (1 m m)® 200 125 141 190 730 76.8 134 96.8 90.3 56 333 446 203 760 74.9 160 936 825 43 339 46.5
CREBT (2 mm) 199 124 137 245 804 65.3 133 97.6 91.0 112 520 34.8 251 814 64.5 159 96.4 83.0 92 484 326
CREB1 (3 mm) 213 123 143 301 792 532 132 984 90.9 169 500 237 313 817 527 161 964 839 152 476 197
Minimum reads/allele
CREB1 (2 reads) 301 178 199 486 734 455 187 97.2 92.5 299 39.0 16.1 515 754 441 228 95.0 829 287 373 13.2
CREB1 (3 reads) 261 156 173 267 701 68.8 162 94.9 914 105 333 333 289 728 65.7 191 925 838 98 34.1 30.6
CREB1 (4 reads) 230 142 159 218 714 76.0 148 95.1 912 70 337 426 235 748 732 175 925 84.0 60 352 417
CREB1 (5 reads)® 200 125 141 190 730 768 134 96.8 90.3 56 333 446 203 760 749 160 936 825 43 339 465
CREB1 (6 reads) 198 122 136 174 707 805 130 96.7 90.8 44 289 500 188 737 777 153 934 830 35 306 543
CREB1 (7 reads) 173 109 123 154 728 818 116 97.2 914 38 312 526 167 757 784 138 92.7 826 29 340 586
CREB1 (8 reads) 157 100 M 141 72.0 80.1 107 97.0 90.7 34 28.1 471 148 752 79.7 124 928 83.1 24 326 625
CREB1 (9 reads) 144 91 101 130 722 80.0 98 96.7 89.8 32 302 50.0 140 757 779 115 93.1 81.7 25 349 60.0
CREB1 (10 reads) 124 80 88 117 742 786 88 96.2 875 29 34.1 517 125 766 76.0 102 92.0 794 23 389 60.9
CREB1 (15 reads) 88 60 66 82 773 829 66 96.7 879 16 357 625 88 807 807 76 924 803 12 455 833
CREB1 (20 reads) 63 47 52 64 84.1 828 53 979 86.8 11 438 636 67 889 836 60 96.2 833 7 545 857
Imputation Rsqg threshold
CREB1 (Rsq >.3) © 200 125 - 190 730 76.8 134 96.8 90.3 56 333 46 - - - - - - - - -
CREB1 (Rsq > 4) 200 122 - 190 725 76.3 133 975 89.5 57 333 456 - - - - - - - - -
CREB1 (Rsq > .5) 200 121 - 187 725 77.5 129 983 92.2 58 329 448 - - - - - - - - -
CREB1 (Rsq > .6) 200 118 - 186 725 780 124 983 93.5 62 354 468 - - - - - - - - -
CREB1 (Rsq >.7) 200 117 - 185 720 778 123 983 935 62 349 468 - - - - - - - - -
CREB1 (Rsq > .8) 200 104 - 182 705 775 1 99.0 92.8 71 396 535 - - - - - - - - -
CREB1 (Rsq >.9) 200 96 - 176 69.5 79.0 99 99.0 96.0 77 42.3 57.1 - - - - - - - - -

2Complete genotype alignments use sequencing-based genotypes Partial genotype alignments use array-based genotypes and imputation “No genotypes
alignments use common variants (MAF > .05) from 1000 Genomes EUR “Imbalances called after a second alignment using refined genotypes; known variants are variants included in the first alignment Condition used
by default by AA-ALIGNER; N, total imbalance count, N;r, imbalances at heterozygous sites identified by imputation, Ncom imbalances at common variants, Sens, percent sensitivity, Prec, percent precision
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although still lower than when both alleles were included
in the alignment.

Second alignment provides only modest improvement in
sensitivity and precision for incomplete genotypes
Previously, Ni et al. [20] described a strategy for detecting
allelic imbalance that first identifies heterozygous sites
using an initial alignment without variant information, and
then performs a second, allele-aware alignment including
the predicted variants. We tested whether a similar second
alignhment would boost the sensitivity and precision of
allelic imbalance identification at predicted heterozygous
sites. Before the second alignment, the customized refer-
ence was updated to ensure that one allele was present at
each heterozygous site predicted in the initial alignment,
and non-reference alleles were added to the separate
variant file. Reads were then re-aligned using this updated
variant file and reference, and filtered as before.

Considering the CREB1 data with partial genotype in-
formation, this second alignment identified 11 additional
correct sites of allelic imbalance while eliminating 6 in-
correct sites, increasing the sensitivity to 47 % and preci-
sion to 58 % at predicted heterozygous sites (Table 2).
When using common alleles, two additional correct im-
balances were found and one incorrect site eliminated,
with little change in sensitivity and precision. While a
second, allele-aware alignment increases accuracy at pre-
dicted heterozygous sites, these modest gains, still ac-
companied by a high rate of false discovery, require an
additional alignment. For all other analyses, we report
imbalances detected after a single alignment.

Shorter read length and lower sequencing depth reduce
the number of imbalance predictions but not precision or
sensitivity
Most existing ChIP-seq datasets, such as from ENCODE,
contain sequence reads shorter than 50 bp. We investi-
gated how read length affects the ability of AA-ALIGNER
to identify sites of allelic imbalance by trimming the 3’
end of each 50 bp CREB1 ChIP-seq sequence to create
35 bp and 20 bp reads and then aligned these as before.
Trimming reduced the overall number of sequenced bases
considered by 30 % and 60 %, respectively. The total num-
ber of aligned reads decreased by 3.7 % in the 35 bp align-
ment and 16.7 % in the 20 bp alignment, further reducing
total base coverage. The number of reads overlapping
heterozygous sites decreased by 31.3 % and 61.9 %,
respectively (Additional file 1: Figure S3A), which led to
an even greater reduction in number of identified allelic
imbalances for 35 bp (106 imbalances; 47.0 % reduction)
and 20 bp (26 imbalances; 86.6 % reduction) reads
(Table 2, Additional file 1: Figure S3B).

To determine whether reduced allelic imbalance de-
tection was simply due to lower overall base coverage,
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we randomly sampled 70 % and 40 % of the 50 bp reads
to match total base coverage levels for the above experi-
ments using 35 bp and 20 bp reads. We found that the
number of reads aligned to heterozygous sites decreased,
as did imbalances identified, at the same rate as with the
shorter reads (Additional file 1: Figure S3C). Thus, redu-
cing base coverage had a proportionate effect on allelic
imbalance identification compared to reduction in map-
ping to heterozygous sites. In our original analysis using
all 50 bp reads, we noted 22.5 % of sites passed the
threshold for the minimum number of reads required
for each allele to be tested for imbalance by three reads
or less (Additional file 1: Figure S3D). As base coverage
is reduced, a disproportionate number of these sites then
fall below that threshold (N = 5).

As expected, the overall number of predicted imbal-
ance sites also decreased with base coverage when using
complete genotypes. Compared to the imbalances de-
tected with complete genotypes for each read length, the
sensitivity of imbalance calls using partial genotypes or
common variants remained greater than 69 % and the
precision greater than 75 %. These data demonstrate
that AA-ALIGNER maintains high detection accuracy
using partial genotypes or common variants compared
to complete genotypes with reduced base coverage.

Number of imbalances identified varies across factors and
assays
To ensure that the results from the CREB1 dataset were
representative of results from other experiments, we
used AA-ALIGNER to predict allelic imbalance in twelve
additional transcription factor ChIP-seq datasets and
one DNase-seq dataset generated in the same GM12878
cell line. ChIP-seq datasets contained between 14 and 48
million aligned reads, and most reads were 36 bp in
length. Overall, we found that for all alignments, imbal-
ance predictions were accurately replicated using incom-
plete genotypes at sites where both alleles were used in
the alignment. Imbalances at new heterozygous sites were
again very poorly predicted (Additional file 2: Table S3).
Although the precision of imbalance detection using
partial genotypes and common variants was high across
datasets, the number of imbalances detected varied greatly
(minimum = 0, maximum = 291, median 19). Read length
and sequencing depth influenced the ability of AA-
ALIGNER to identify sites of imbalance (Additional file 1:
Figure S3). We found, though, that measurements related
to these characteristics (Additional file 1: Figure S4A-C)
were not highly correlated with the number of imbal-
ances detected in these ChIP-seq datasets (0.43 > Pear-
son R*>0.51). These low correlations suggest that
other factors, such as the number of transcription factor
binding sites (TFBS) across the genome and their overall
genomic coverage also influenced imbalance detection.
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Alone, TFBS genomic coverage (Additional file 1: Figure
S4D) showed low correlation with the number of imbal-
ances detected (Pearson R? =.35), but measurements that
considered sequencing depth, read length and genomic
coverage together (Additional file 1: Figure S4E-G) were
highly correlated with the number of imbalances detected
(0.78 > Pearson R*>0.91). These correlations suggest that
the dispersion of sequence signal across the genome needs
to be considered in addition to read length and sequen-
cing depth when evaluating the potential of AA-
ALIGNER to identify allelic imbalances. While there was
a positive correlation between sequencing depth and sig-
nal dispersion in ChIP-seq data, the DNase-seq data, had
greater sequencing depth (aligned reads) and signal dis-
persion (genomic coverage), but fewer sites of allelic im-
balance identified than some of the ChIP-seq data. These
results suggest that sequencing depth and signal disper-
sion influence imbalance in DNase-seq data differently
and that the correlations observed in the ChIP-seq data
do not extend to DNase-seq (Additional file 2: Table S4).

Allowing additional alignment mismatches increases
sensitivity but decreases precision
Parameters for the different steps of allelic imbalance
identification vary across reported methods and can sig-
nificantly affect results. Increasing allowed alignment mis-
matches helps overcome missing genotypes, inaccuracies
in the reference genome, and errors in the sequence reads,
but also results in increased erroneous sequence align-
ment, particularly when aligning shorter reads. We exam-
ined how this parameter affected the performance of
AA-ALIGNER with limited genotype information. The
50 bp CREBI data was processed with complete geno-
types, partial genotypes, and common variant information
allowing 0, 1, 2 or 3 alignment mismatches. With complete
genotype information, the number of imbalances increased
only slightly with greater mismatches (<4 %; Table 2).
When using partial genotypes or common variants,
aligning with zero mismatches reduced the number of
incorrectly aligned reads compared with our default of
one mismatch, but at the cost of eliminating reads con-
taining the non-reference allele at heterozygous sites not
included during alignment. This led to increased overall
precision of imbalance identification, but with significant
loss of sensitivity as novel variants could not be pre-
dicted (Table 2). Of note, the precision of imbalance
detection at known variants using zero mismatches was
lower than when allowing one mismatch. Allowing two
or three mismatches increased the number of imbalance
sites identified using incomplete genotypes by more than
29 % (Table 2). The precision at variants included in the
alignment did not change, but was greatly reduced at
predicted variants, indicating less stringent mismatch
thresholds increase the number of misaligned reads
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resulting in spurious predictions of heterozygous sites
and allelic imbalance at these sites. We also tested
whether requiring one of the mismatches to be located
at the predicted heterozygous site increased sensitivity
and precision compared to allowing mismatches at any
site and found that results were similar in both cases
(data not shown).

Requiring a minimum number of reads containing each
allele increases precision at predicted heterozygous sites
To balance sensitivity and precision with incomplete
genotype information, we examined the impact of chan-
ging the minimum aligned read threshold for each allele
required to test for imbalanced sites. Using the 50 bp
CREBI data, we found that as the required number of
aligned reads increased from 2 to 10, the number of
detected imbalances decreased using any level of genotype
information, as expected, with small fluctuations in the
overall sensitivity of imbalance identification using incom-
plete genotypes (Table 2). At thresholds of 15 and 20 reads
per allele, the sensitivity of detection increased at pre-
dicted heterozygous sites, boosting the overall sensitivity
at these thresholds. When considering imbalances at vari-
ants with both alleles included in the alignment, precision
only varied slightly, but it increased at predicted sites
with higher thresholds. While for most analyses we
have required at least five reads per allele, these find-
ings suggests that for known heterozygous sites, using a
lower threshold will increase the number of identified
sites without compromising precision.

Requiring higher imputation quality does not significantly
improve imbalance identification

For each variant on the genotyping array, imputation
quality (Rsq) reflects confidence in imputation of that
variant within the population of genotyped individuals.
As the imputation quality of a variant site increases, our
confidence in the accuracy of the genotype assigned in
GM12878 also increases. Poorly-imputed variants incor-
rectly identified as heterozygous in GM12878 and in-
cluded during alignment can lower the precision of
imbalance detection using partial genotype information.
Using imputation quality thresholds from 0.3 to 0.9 as a
requirement of inclusion during alignment, we tested
the influence of stricter thresholds on imbalance preci-
sion and sensitivity using partial genotypes. When using
a higher threshold of 0.9, some variants with a quality
between 0.3 and 0.9 were still predicted to be heterozy-
gous, increasing the precision of imbalance detection at
predicted sites, but overall using a threshold of 0.9 re-
duced the number of false positive sites by 7 compared
to 0.3 while decreasing the number of true positive sites
by the same amount, resulting in a small increase in pre-
cision and decrease in sensitivity (Table 2).
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Allelic differences in CREB1 binding experimentally
supported at inflammatory bowel disease-associated loci
and other predicted sites

The above analyses assume that imbalances detected using
complete genotypes are the most accurate for comparing
the effects of reduced information and parameter settings,
but they do not address the functional accuracy of the im-
balance prediction. Of special interest are sites previously
shown to be associated with disease, especially a disease
for which the GM12878 lymphoblastoid cell line is rele-
vant. We identified 238 heterozygous sites in GM12878
that are in linkage disequilibrium (1000 Genomes EUR;
r* > .8) with one of 218 index SNPs reported for a genome
wide association study (GWAS, P< 1.0x107°) [39]. AA-
ALIGNER predicted allelic imbalances (P < 0.01) in CREB1
binding in GM12878 at five of these disease-associated
loci (Fig. 2a). Two of the sites, rs2382818 (Fig. 2b) and
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rs713875 (Fig. 2c), are at loci associated with inflamma-
tory bowel disease susceptibility [40-42]. CREB family
proteins have previously reported links to inflammation
[43], B-cell lymphocytes [44], and inflammatory bowel
disease [44].

At rs2382818, 27 reads containing the T allele and 6
reads containing the A allele were aligned using complete
genotype, partial genotype, and common variant informa-
tion (binomial P =3.2x10~% Fig. 2b, bottom panel). The T
allele of rs2382818 most often segregates with the disease
risk allele A of rs2382817 [44]. Electrophoretic mobility
shift assays (EMSAs) using purified CREB1, conducted in
the absence of chromatin and other nuclear proteins, can
experimentally test for differential binding of CREBI1 to
a specific DNA sequence. Multiple, independently per-
formed EMSAs supported allelic differences in binding at
rs2382818 (Fig. 2d). A second heterozygous site is located

Allele 1 Allele 2 Imbalance
Variant Position Allele Reads Allele Reads  P-value Associated Diseases/Traits
rs1197479 chr12:57030686 C 42 T 19 4x10° Mean platelet volume; age-related macular degeneration
rs13333528 chr16:68790502 T 60 C 34 1x102 Colorectal cancer
rs369184  chr17:5670908 T 37 C 1 2x10* Testicular germ cell tumor
rs2382818 chr2:219155907 T 27 A 6 3x10* Inflammatory bowel disease
rs713875 chr22:30592487 C 30 G 9 1x10® Inflammatory bowel disease; Crohn’s disease; Nephropathy
B 100 bases p——| C 200 bases p———]
rs2382818 |
|rs2382819 rs713875|
Peaks Peaks ]
< ¥ < Y-
% Signal % Signal
0 ;‘ - 0
Peaks I Peaks I
37 - 47 -
5
5| signal o | Signal
1o} o]
0_ 0_
chr2| 219,155,800] 219,155,900 | 219,156,000| chr22] 30,592,500| 30,593,000]
Reads shaded by allele: T A Undetermined Reads shaded by allele: C G Undetermined
D
A B C D _E Allele 1 Allele 2 Imbalance
T ,A A G A GG A C T Variant_rsID Allele Reads _Allele Reads Pvalue
- A rs2382818 T 27 A 6 3x10%
Purified - Yy i ; . ' s
; B rs28712309 A 182 G 9 5x10
CREB1 &
PN, el ik il ] C rs72694799 A 97 G 46 2x10°
D rs28711909 G 70 A 28 3x10°
F* _G _w r E rs1107479 c 4 T 19 4x10°
G C LI F rs73177939 G 53 c 6 2x1010
G rs12953558 A 70 C 40 5x10°
Purified - - . - 14
CREB1 o H rs12624512 G 81 c M 3x10
. | rs713875 C 30 G 9 1x10°
Fig. 2 Validation of allelic imbalance detected at GWAS loci and other predicted sites. a We detected significant allelic imbalance (binomial P < 0.01) in
CREB1 ChIP-seq sequence reads at variants at five disease- and trait-associated loci. b At rs2382818, sequence reads that failed to align when only
single alleles were considered (top) were correctly aligned in an allele-aware alignment (bottom). The increase in aligned reads allowed for the
detection of a CREB1 peak (black box) and allelic imbalance at the variant for which more reads were aligned containing the T allele than the A allele
were aligned. Total sequence signal is displayed and reads are shaded based which allele they contain. ¢ We detected a significantly greater proportion
of reads containing the C allele of rs713875 than the G allele. d EMSA using purified CREB1 and labeled probes containing each allele at nine sites of
allelic imbalance to test for allelic differences in binding. Alleles colored blue are predicted to bind CREBT more strongly than alleles colored red. Allelic
differences in protein binding consistent with these predictions were observed for starred (¥) variants. Only CREB1-bound probe is shown. Similar
results were observed in a replicate experiment
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2 bp downstream of rs2382818. Allowing only a single
mismatch during alignment prevents reads from aligning
if both alleles are not considered. At this site, a peak and
an allelic imbalance were only detected when using
GSNAP alignments, but not BWA (Fig. 2b), demonstrat-
ing the importance of using allele-aware alignments in
annotating disease-associated variants. This locus has been
annotated as an enhancer based on ENCODE histone
modification data [45] and linked with the expression of
nearby genes (SLC11A1, USP37, PNKD, and ZNF142) [46].
We used MEME-ChIP [47] to identify a CREB1 binding
motif from the 10,000 strongest ChIP-seq peaks and
searched for the presence of this motif at rs2382818 using
FIMO (e < 1.0x107°) [48], but we were unable to detect the
CREBI motif at this site.

At rs713875 (MTMR3 locus), 30 reads containing the
Crohn’s disease risk C allele [42] and 9 reads containing
the G allele were aligned using any level of genotype in-
formation (binomial P =1.1x10"; Fig. 2c). Allelic differ-
ences in CREB1 binding were again supported by EMSA
(Fig. 2d). In this example, the imbalance was detected
even when only one allele was used in the alignment.
Rs713875 is contained within a DNasel hypersensitive site
and is predicted to function as an enhancer [45]. Correl-
ation between DNasel hypersensitivity and gene expres-
sion levels suggests that this locus may regulate nearby
genes LIF and TBCIDI0A, pseudogene CTA-85ES.7, and
non-coding RNA RP3-43804.4 [49]. Of these, leukemia
inhibitory factor (LIF) is an IL-6 cytokine believed to have
both inflammatory and anti-inflammatory roles [50]. As
with rs2382818, we were unable to detect a CREB1 bind-
ing motif at this site. For both rs713875 and rs2382818,
further study would be required to show whether allelic
differences in CREB1 binding alter transcription and affect
inflammatory bowel disease.

We tested for allelic differences in CREB1 binding at
seven additional sites that contain a CREB1 binding
motif and were predicted to be imbalanced by AA-
ALIGNER. These seven included rs1107479, which has
been associated with mean platelet volume [51] and age-
related macular degeneration [52]. Using EMSA, we de-
tected evidence of allelic differences in protein binding
in the same direction as our predicted imbalance at 4 of
the 7 sites (Fig. 2d), for a total of 6 of 9 supported imbal-
ances. Surprisingly, at rs1695359, we consistently de-
tected increased protein binding for the allele predicted
by our imbalance analysis to have decreased binding. Of
the 6 EMSA-supported sites, only 3 were predicted to
have allelic differences based on the FIMO-calculated
motif score (difference > 5). Of the 3 imbalance sites that
were not supported by EMSA, only one (rs1695359) had
a significant difference in motif binding score, and the
allele with the stronger motif score demonstrated in-
creased binding in the EMSA result, rather than the
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allele predicted to be enriched by imbalance detection.
For comparison, we used EMSA to test 5 additional
CREB1 binding locations with a heterozygous variant
that fell within a CREB1 binding motif, but were not
predicted as sites of allelic imbalance (P >.3). We found
evidence of allelic differences in protein binding at two
of these sites (Additional file 1: Figure S5). For these two
sites, a CREB1 motif was only predicted when the allele
with stronger protein binding was present.

These data provide strong supporting evidence of allelic
differences in protein binding at 6 of the 9 predicted im-
balanced sites and suggest that the sequence-specific
binding preferences of CREB1 influence binding at these
sites. It is unclear whether the remaining three sites not
supported by EMSA indicate errors in AA-ALIGNER
imbalance detection, or whether these show limitations of
EMSA in detecting in vivo allelic differences in protein
binding that are dependent on chromatin context or
the presence of other nuclear proteins. Likewise, it is
unclear whether AA-ALIGNER failed to detect allelic
imbalance at two sites with allelic differences in protein
binding based on EMSA, or whether chromatin and/or
other proteins compensate for reduced sequence spe-
cificity in vivo resulting in similar binding regardless
of allele present. Overall, these EMSA results provide
evidence supporting allelic differences in protein bind-
ing at individual imbalance sites detected by AA-
ALIGNER.

Discussion

In this study, we have demonstrated the ability of AA-
ALIGNER to remove mapping biases and to identify al-
lelic imbalance with high sensitivity and precision when
using partial or no prior genotype information compared
to using complete genotype information. Thoroughly
testing allelic imbalance detection using three levels of
genotype information provides a clear picture of the ac-
curacy of AA-ALIGNER when using limited genotypes
compared to complete genotypes.

This is the first in-depth study of allelic imbalance de-
tection in ChIP-seq and DNase-seq data that empirically
tested the effects of key aspects of these analyses including
genotype availability, read length, alignment parameters,
imputation parameters, and requirements for predicting
heterozygous sites. Our results indicate that including any
amount of genotype information, or both alleles at com-
mon variants, significantly increases accuracy of imbal-
ance detection compared to predictions when complete
genotypes are known. We clearly show that predicting
heterozygous variants with these short read data is highly
inaccurate, leading to false positive rates of imbalance
detection greater than 50 %. We used a simple metric to
predict heterozygous sites, and so one could argue that
more sophisticated prediction methods could improve
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performance. A recent study examining the accuracy of
genotyping with short reads from genomic sequencing
found that removing sites with strong allelic imbalance,
the very sites we are trying to identify, increased genotype
accuracy [30]. That study highlighted the difficulty of
identifying heterozygous sites from ChIP-seq and DNase-
seq data, especially at imbalanced sites. Taken together
with our data we strongly suggest that predicted geno-
types should be further validated before embarking on
functional analyses.

Predicting heterozygous sites in genome sequencing data
is an active area of research, and many studies have demon-
strated the difficulty of calling variants in sequencing data
[25, 30, 53]. In addition to the GM12878 genotype annota-
tion used in this study, other generally more conservative
annotations exist. We found that most predicted imbal-
ances were at common variants, and even when all com-
mon variants were included in alignments in the case of no
genotypes, the true heterozygous variants and imbalances
could be predicted well at these common variant sites. In
contrast, the accuracy of imbalance detection at predicted
heterozygous sites corresponding to rare variants is poor,
even when these predicted heterozygous sites were in-
cluded in a second alignment. Inaccurate imbalance detec-
tion can be caused by either i) incorrectly predicted
heterozygous sites in the sequencing data (false positives)
or ii) correctly predicted heterozygous sites in the sequen-
cing data that were incorrectly annotated in the complete
genotype (false negatives). Requiring more evidence to
predict heterozygous sites increased the accuracy of
imbalance detection, suggesting that false positives in
heterozygous site predictions contributed to inaccurate
imbalance detection. These incorrect predictions may be
partly due to sequencing errors, but as some are still
present at high minimum read thresholds, errors in se-
quence mapping likely contribute to false positives. The
inclusion of incorrectly annotated heterozygous sites or
absence of true heterozygous sites during sequence
alignment can cause erroneous read mappings to highly
similar genomic regions leading to incorrect heterozy-
gous site identification.

Interestingly, many imbalances at sites not annotated
as heterozygous in the complete genotype would have
been considered imbalanced in the complete genotype
alignment using our criteria. This suggests that errors
may exist in the complete genotype data leading to false
negative imbalance predictions. Further study is needed,
but these data suggest that both false positives and false
negatives contribute to decreased detection accuracy at
predicted variants. Thus, AA-ALIGNER outputs three
sets of detected imbalance sites: i) a complete set of all
imbalances identified; ii) imbalances at known or com-
mon heterozygous variants (higher confidence); and iii)
imbalances at predicted rare variants (lower confidence).
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We showed that simply including both alleles for com-
mon variants resulted in annotations nearly as accurate as
those generated from imputed genotypes. Including infor-
mation about rare variants may further increase sensitivity
of imbalance detection. We only considered imputed geno-
types and common variants separately, but carefully com-
bining information from these sources may perform better
than either individually and is an area of future research.

Other tested parameters demonstrated the trade-off
between sensitivity and precision based on their settings,
but in most cases these parameters had little effect other
than to change the number of predicted imbalanced
sites. Nevertheless, these results can be used to guide
the analysis of new data, and AA-ALIGNER allows for
the easy specification of these parameters. For example,
it may be prudent to apply different criteria when evalu-
ating variant sites with known genotypes or that are
common variants compared to those predicted to be
heterozygous based solely on the short read data. For
most of our results, we required a minimum of five
reads per allele when testing for imbalances to prevent
erroneous testing of homozygous variants. When strong
evidence exists for heterozygosity, though, this require-
ment may be loosened or eliminated, allowing for
greater sensitivity in identifying more extreme imbal-
ances. While it is prudent to require a minimum read
threshold of reads to detect imbalances at predicted het-
erozygous sites, this threshold precludes the identifica-
tion of complete imbalance at known heterozygous sites
where only one allele is present, such as imprinted loci.
When using known heterozygous sites, AA-ALIGNER
users have the option to detect complete imbalance at
these sites.

The lack of a comprehensive catalog of experimentally
validated sites with functional allelic differences limits
our ability to evaluate allelic imbalance predictions. Our
study used results obtained from complete genotypes,
the best-case scenario for imbalance detection, as the
standard for evaluating analyses with partial genotypes
and common variants. We experimentally tested for
allelic differences in CREB1 binding using EMSA at nine
sites with predicted allelic imbalance and five sites with
no predicted imbalance. In general, EMSA results
matched predicted differences in FIMO-calculated motif
scores based on the presence of each of the two alleles,
though we note that we were able to detect allelic imbal-
ance and observe differential protein binding at three
sites without predicted allelic differences in motif scores.
EMSAs were performed in the absence of chromatin
context and other nuclear proteins, and so are limited to
detecting differences in the sequence binding specificity
of a protein. Despite this limitation, we detected allelic
differences in CREB1 binding at 6 of 9 predicted imbal-
anced sites providing strong supporting evidence of allelic
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differences in protein binding. Further testing is required
to understand the cases when EMSA results do not sup-
port predicted allelic imbalances. For example, it is un-
known whether any of the 3 sites not supported by
EMSA were falsely detected as imbalanced by AA-
ALIGNER, or whether they failed to validate because of
the limitations inherent to EMSA. Likewise, further study
is needed to determine whether the two sites that AA-
ALIGNER did not predict as imbalanced but that EMSA
showed allelic differences in protein binding are due to
limitations in AA-ALIGNER or EMSA. These results
highlight the need for better experimental assays to valid-
ate allelic imbalances, and underscore the difficulty of
creating comprehensive catalogs of sites with experimen-
tal evidence of differences in protein binding.

The most appropriate statistical test and significance
threshold for determining imbalanced sites is not known.
While the binomial test is commonly used, other statistical
methods such as a beta-binomial [21, 54], and Bayesian
frameworks [25, 54] have been shown to accurately detect
allelic imbalance. For our analyses, we used the more opti-
mistic binomial test and determined significance using an
uncorrected p-value threshold of 0.01. Our data indicate
that stricter p-value thresholds do not significantly affect
the sensitivity and precision of predictions using incomplete
genotypes when compared to complete genotype annota-
tions. Incorrectly predicted heterozygous sites often had
very small p-values (25 % at P < 1077), thus stricter p-values
will not eliminate these false positives. Likewise, using beta-
binomial p-values to correct for over dispersion and setting
the same uncorrected p-value cut-off greatly reduced our
power to detect allelic imbalance. Using the beta-binomial
p-value, imbalance detection accuracy and precision re-
main significantly higher for imputed and common vari-
ants than for predicted rare variants. Our experimental
EMSA results were strongest overall for sites with lower
p-values, although we did show evidence for altered
binding at rs713875 (binomial P = 1.0x10"°) and rs2382818
(P =3.2x107* but not rs72694799 (P =2.6x10"°) (Fig. 2d).
Sites with less statistically significant changes in allelic data
may be biologically inconsequential, or the functional ef-
fects may simply be weaker but still biologically significant.
Until a larger set of experimentally supported sites exists,
we cannot determine which statistical test and p-value
threshold best identifies biologically relevant imbalance
sites. AA-ALIGNER was designed to be modular allowing
for allowing for the incorporation of alternative methods
for variant identification and tests for significance of
imbalances.

Copy number variants (CNVs), which can have signifi-
cant impacts on disease [55], can cause one allele to
overrepresented in the genomic DNA leading to bio-
logically inconsequential imbalances in read data. Prior
CNV information for the sequenced sample can be used
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to preclude imbalance detection within CNVs. Alterna-
tively, sequence data from non-ChIP genomic input or
other control experiments, when sequenced with suffi-
cient read depth in the same sample, could be used to
estimate an expected proportion of aligned reads per
allele and to adjust for copy number variation within the
binomial test. These control sequences could also cor-
rect for other biases that cause incorrect allelic imbal-
ance detection in both the control and ChIP-seq data.
Like genotype information, CNV data is not available for
most samples. At this time, AA-ALIGNER does not
specifically incorporate known CNV data, although
known CNVs can easily be included as “blacklisted” re-
gions and filtered post-alignment. Alternatively, presence
of CNVs could be experimentally tested for at AA-
ALIGNER predicted imbalance sites.

Conclusions

Allelic imbalance analyses in quantitative sequence
data from functional genomic experiments such as
ChIP-seq and DNase-seq data is a powerful way to
identify effects of genetic variation on gene regulation
and uncover molecular mechanisms responsible for
GWAS loci in non-coding genomic regions. Reference
mapping biases at heterozygous sites and a lack of
genotype information for sequenced samples greatly
hinder allelic imbalance detection in most public *-seq
data. Our analyses demonstrate that the AA-ALIGNER
pipeline overcomes mapping biases and accurately
identifies a majority of imbalance sites using only par-
tial or no genotype information compared to complete
genotype information. Additionally, we provide valu-
able insight into how experimental and methodological
design factors effect imbalance detection.

With AA-ALIGNER, we were able to detect allelic im-
balance in ChIP-seq data for a single transcription factor
from a single cell line and provide supporting experimen-
tal evidence of differential protein binding at a small sub-
set of imbalanced sites. These sites with experimental
evidence included variants at two inflammatory bowel
disease-associated loci. We demonstrated that mapping
biases at one of these two sites prevented detection of
both signal enrichment and allelic imbalance using
standard analytical techniques. Existing knowledge of
B-lymphocytes, regulatory regions and nearby genes
suggest a plausible role for these imbalanced sites in in-
flammatory bowel disease pathogenesis, highlighting the
utility of imbalance detection in annotating disease-
associated loci. Replicating this analysis in additional
cell lines and for additional factors should continue to
uncover allelic imbalance at numerous other GWAS
loci, providing powerful insight into likely genetic effects
on regulation.
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