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Abstract

Background: While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity
of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS
will not be realized until robust and routine whole genome sequencing data can be accurately rendered to
medically actionable reports within a time window of hours and at scales of economy in the 10’s of dollars.

Results: We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow
management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements
complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon
Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis
of both public benchmarking and large-scale heterogeneous clinical NGS datasets.

Conclusions: Our systematic benchmarking reveals important new insights and considerations to produce clinical
turn-around of whole genome analysis optimization and workflow management including strategic batching of
individual genomes and efficient cluster resource configuration.

Keywords: Next-generation sequencing, Clinical sequencing, Cloud computing, Medical genomics, Software,
Bioinformatics, Parallel computing

Background
Next-generation sequencing costs have plummeted in
recent years, rapidly outpacing the traditional bench-
mark for the decreasing cost of technology known as
Moore’s law. Routine clinical whole genome sequencing
and analysis now fall within the range of costs of med-
ical testing. Modern sequencing platforms are capable of
sequencing approximately 5000 megabases a day [1] at
the cost of pennies per megabase. Sequencing centers
such as the New York Genome Center, Broad Institute
and the Beijing Genomics Institute are now capable of
generating petabytes of sequencing data on a routine
basis [2]. As a result of the increased efficiency and

diminished cost of NGS, the demand for clinical applica-
tions is rapidly increasing. Such demand will soon result
in large-scale clinical sequence datasets requiring
massive data analysis and interpretation at reimbursable
cost points thereby producing a technological barrier
and price-limiting step of clinical genome usage [3, 4].
Furthermore, achieving practical use of a “clinical” whole
genome in routine health care requires a “clinical turn-
around” of the sequenced genome rendered to action-
able healthcare information at a scale of hours and cost
in the $10’s of dollars [4].
With the recent US Food and Drug Administration

clearance of Sanger sequencing as a clinical diagnosis
tool in January 2013 [5], its subsequent authorization of
Illumina deep sequencing technology for similar purposes
[6], and the recent announcement by US President Barack
Obama of an investment of $200 million in Precision
Medicine, cost efficient whole genome sequencing analysis
tools and platforms become more critical to the ex-
pected implementation across hospitals and clinics. As
a result of these recent regulatory developments,
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delivering a robust software solution that analyzes and
renders whole genome NGS into clinically actionable
information within hours and under $100 will be a
breakthrough in the application of bioinformatics to
precision medicine, biomedical science, translational
medicine, and healthcare as a whole. In a major step to
achieving this goal, we have developed a scalable, par-
allelizable cloud-enabled workflow management sys-
tem, COSMOS [7]. COSMOS can optimize whole
genome analysis workflows and analysis in two ways:
1) Efficient implementation of highly parallelizable
workflows on real or virtual compute clusters, and 2)
Options for significant reduction of virtual cluster
costs such as use of transient instances invoked and
dismissed on-the-fly.
Many NGS processing systems involve the successive

implementation of analysis applications into complex
environments such as Tavaxy [8], STORMseq [9] and
Galaxy [10]. These software packages are generally
user-friendly workflow management systems designed
for biomedical researchers with relatively little compu-
tational experience. More recently, efforts have lever-
aged the power and speed of highly parallel computing
in NGS workflows [11]. As yet, few of these software
packages have the speed and throughput necessary for
use in large biomedical genomics projects or upcoming
projected routine clinical applications, which necessar-
ily involve the cost-effective processing of hundreds of
genomes or exomes.
Our past efforts have resulted in significant insight

into the technical requirements to leverage the power of
cloud computing for NGS [12], and we have extended
that approach to developing an NGS analysis workflow,
GenomeKey, implemented in COSMOS. GenomeKey
performs a thorough sequence analysis, including align-
ment, quality score recalibration, variant calling and an-
notation, and can be implemented on either cloud or
local high-performance compute clusters. Our selection
of tools takes advantage of the runtime performance,
cost, and scalability of the GATK best practices stan-
dards established by the Broad Institute [13]. Genome-
Key’s implementation in COSMOS provides a platform,
scalable process and reproducible analyzer of genomic
data that can be optimized for speed and cost perform-
ance across any cloud or local computing cluster.
Herein, we present the results of a comprehensive
benchmark study of the COSMOS implementation of
GenomeKey on AWS’s cloud services using a heteroge-
neous combination of public and clinical NGS data to
explore speed-to-cost tradeoffs and demonstrate compu-
tational barriers requiring further optimization. We
show that COSMOS’ execution of GenomeKey reduces
the time and cost of whole genome and exome analysis
over 10-fold, from published cost estimates of ~ $1000

[4] to under $100 and thus arguably achieves “clinical”
turnaround time and reimbursable healthcare costs.

Methods
Our approach consisted of four methods: (1) COSMOS
implementation of GenomeKey workflow to identify
genomic variants (Fig. 1a); (2) deployment on Amazon
Web Services (AWS) Elastic Compute Cloud (EC2) plat-
form (Fig. 1b); (3) collection of short-read sequencing
data for both exomes and genomes; and (4) validation of
GenomeKey’s variant calls against published results.

Workflow
GenomeKey is a Python-based NGS-analysis workflow
that implements Genome Analysis Toolkit’s [14] version
3 best practice protocol [13, 15] including alignment,
base quality scoring recalibration and joint variant call-
ing for increased statistical power and calibration [14].
GenomeKey is implemented in COSMOS, a Python
workflow management system that allows formal de-
scription of workflows and partitioning of jobs [7]. Gen-
omeKey’s analysis steps are implemented in COSMOS’s
language and tagging system that takes advantage of
COSMOS’s parallelization capabilities that supports the
map-reduce paradigm [16]. After loading genomic data,
GenomeKey “instructs” COSMOS to deconstruct each
analysis stage and optimally deploy multiple tasks there-
after managed by COSMOS to run in parallel on avail-
able cluster nodes. Although this work was conducted
on AWS, the COSMOS/GenomeKey runs equally well
on traditional High-Performance Computing clusters.
GenomeKey’s workflow consists of seven stages with

an optional annotation stage:

1. Re-alignment and mapping (BAM to BWA). To
parallelize realignment: previously aligned BAMs are
split into chromosomes, and optionally by read
group (RG) using Burrows-Wheeler Aligner [17].

2. Indel realignment (IndelRealign): parallelized by
chromosome.

3. Mark read duplicates (MarkDuplicates): parallelized
by chromosome.

4. Base quality score recalibration (BQSR): parallelized
by sample and chromosome.

5. Generate genomic VCFs (HaplotypeCaller): variants
are called per sample and chromosome, generating
“gVCF” files: parallelized by sample and
chromosome.

6. Genotype samples (GenotypeGVCFs): gVCFs used
to call variants jointly across all samples, exomes, or
genomes: a serial stage.

7. Variant quality score recalibration (VQSR):
parallelized by chromosome for SNPs and Indels
separately.
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8. Annotation: optional annotation with ANNOVAR
databases [18]: parallelized by database chosen for
the annotation.

Deployment on AWS platform
Cluster configurations
All runs were performed on a cc2.8xlarge (60 GB of
memory, 32 virtual CPUs and 3.3 TB of ephemeral disk)
single master node and 20 worker nodes cluster to com-
pare performance and scalability. The master node is an
“on-demand” AWS node and has installations of COS-
MOS and GenomeKey, all tools required for the
complete analysis and all input files. Worker nodes can
either be “spot-instances”, subject to elimination due to
price fluctuation, or fixed price “on-demand” nodes. For
“spot-instances”, we placed $0.5/h (~$0.27/h) bids on
the us-east AWS region. The ratio of on-demand to
spot-instances nodes varied depending on overall size of
the datasets. This approach allowed, incorporation of
the on demand worker node’s hard drive space into a

common pool using GlusterFS (Table 1) in three differ-
ent configurations:

Cluster management system
The cluster launching and management was performed
by the open source software StarCluster (v 0.95.4 on
public github repository; http://web.mit.edu/stardev/
cluster/). Instances were launched with StarCluster using
the Ubuntu 12.04LTS based AMI (Amazon Machine
Image) ami-5bd1c832 and by default loaded with
COSMOS, GenomeKey as well as the tools needed by
GenomeKey: GATK, SAMtools [19].

Fig. 1 GenomeKey workflow and overall benchmarking study design. a GenomeKey workflow implements the GATK 3 best practices for genomic
variant calling. Each arrow represents a stage of the workflow, and the level of parallelization for each stage is described in the Methods section
under “Workflow”. b Deployment of the workflow on the Amazon Web Services Elastic Compute Cloud (EC2) infrastructure using the COSMOS
workflow management engine

Table 1 GlusterFS configurations used to increase shared disk
space

GlusterFS bricks Shared Disk Size (TB)

Config 1 (1;0;20) 1 3.3

Config 2 (1;1;19) 2 6.6

Config 3 (1;3;16) 4 13.2

(L; M; N): L on-demand master nodes, M on-demand worker nodes, N spot-instance
worker nodes
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Job management and shared file system
Jobs created by COSMOS are submitted and managed
across nodes in the cluster using Sun Grid Engine
6.2u5-4. The compute nodes of the cluster share a
common scratch space provided by one or more
node(s). This shared filesystem is created and managed
by GlusterFS 3.4 (https://www.gluster.org), a cluster
shared file system.

Computing AWS cost
We used the AWS cli tools (http://aws.amazon.com/
cli/) to compute the cost of “spot” instances using the
start and stop timestamps of the workflow recorded by
GenomeKey and our study driver automation script
(Additional file 1: Figure S2), specifically using the fol-
lowing command script:
aws ec2 describe-spot-price-history –start-time [start

timestamp] –end-time [end timestamp] –instance-types
cc2.8xlarge –availability-zone
The command returns the history of the spot price

during the specified period and the mean of the returned
values is used to compute spot instance cost. On-
demand prices are fixed by AWS (https://aws.amazon.-
com/ec2/pricing). Total cluster cost was computed by
adding on-demand and spot node costs.

Benchmark data
Benchmark run times and costs were computed for an in-
creasing number of NGS datasets run on the fixed 21
node cluster by defining a range of groups of exomes and
genomes of size, n. For exomes, n = {1, 3, 5, 10, 25, 50}.
For genomes n = {1, 5, 10, 25}.

Exomes
We used high coverage (~150x) whole exomes of the
CEU trio (NA12878, NA12891 and NA12892; Additional
file 2: Table S1) from the Coriell CEPH/UTAH 1463
pedigree, sequenced at Broad Institute and recommended
by GATK for review or benchmark purposes (http://gatk
forums.broadinstitute.org/discussion/1292/which-datasets-
should-i-use-for-reviewing-or-benchmarking-purposes.).
These individuals also have high coverage whole gen-
ome datasets and have extensive published results. We
included this trio in each exome run, in order to com-
pare and crosscheck the quality of output variants (of
the same input data) over different runs (Additional
file 2: Table S1).
To round out the full exome dataset panel, we in-

cluded biomedically disease relevant exomes originally
generated by Christopher Walsh’s group [20]. These
samples were chosen because (i) the data is curated Na-
tional Database for Autism Research (NDAR); ii) mean
read depth for proband data (~158x) matches up with
that of CEU trio; iii) extended family data are available

including affected siblings; iv) VCF files are provided
for a subset of probands; and v) phenotype information
is available via NDAR or AGRE. The BAM files are
renamed to group by families. This dataset was also se-
quenced at Broad Institute, so we used the exome tar-
get regions (Agilent Sure-Select Human All Exon v2.0,
44 Mb baited target) provided in the GATK bundle,
with 100 bp padded at both ends, to extract targets for
both control/case exome data.

Genomes
BGI genomes We selected 31 unique autism-associated
genomes with coverage ranging from 31.5x to 42x with a
mean coverage of 37x originally sequenced by BGI on Illu-
mina platform. The genomes were selected to have trios
in each run to take advantage of the joint variants calling
feature of GenomeKey. Pedigree information for these ge-
nomes is also available (Additional file 2: Table S1).

Platinum genomes We selected a single high coverage
genome (~50x), sample NA12878 (one of the Exome
trio described in 2.3.1). The Platinum genomes also
have “gold standard” variant calls in VCF format with
variants called using different software and technology.
Those VCFs enable quality control (see below), as well
as reference timings from Blue Collar Bioinformatics
group bcbio-nextgen. (http://www.illumina.com/plati
numgenomes/).

Variant validation
To validate GenomeKey, we downloaded previously
generated BAM files available for the trio of exomes
from Phase I of the 1000 Genomes Project. For the
1000 Genomes trio, we were then able to compare
our BAMs with these downloaded BAMs and quality
control included:

(1)Variant quality score recalibration (VQSR)
Compared the percentage of unmapped reads
between our original mapped BAM and our
re-mapped BAM. Although the number of mapped
reads may be different to the Phase I output because
of BWA and reference genome version differences,
we anticipate very similar mapped reads.

(2)Compared the distribution of phred base quality
scores for each paired BAM files using FastQC.

We compared the results of GenomeKey variant calls
against available benchmark data [15]. The analysis was
performed on NA12878 whose corresponding exome
BAM file was originally aligned with MAQ on hg18. In
order to compare variant calls we ran the same method
(GATK v3 HaplotypeCaller) over the benchmark’s BAM
and our re-mapped BAM. The procedure was set with
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identical parameters though different reference genome.
An additional analysis was performed on sequencing
data publicly available at www.platinumgenomes.org.
The platinum genomes are whole genome sequence and
variant call data for 17 members of the Coriell CEPH/
UTAH, including NA12878, in order to create a “plat-
inum” comprehensive set of variant calls. We extracted
raw sequence data from NA12878’s BAM files and re-
mapped them against hg19 with GenomeKey. Resulting
VCFs were tested for concordance against benchmark
whole-genome VCFs from the Genome in a Bottle Con-
sortium [21].

Results
GenomeKey implemented in COSMOS was deployed on
AWS cloud cluster (Table 1) to process successively lar-
ger sets of whole exome (1,3,10, 25, 50) and whole gen-
ome (1, 3, 10, 25) datasets. Exomes and Genomes were
split and parallelized by chromosome and read-groups.
Both overall wall time and timepoints for each analysis
stage were benchmarked. Costs were calculated using
standard AWS costs.

Scalability and robust handling of heterogeneous
datasets
A heterogeneous collection of exomes and genomes were
selected to test the robustness and scalability of the sys-
tem. The data included genomes from the 1000 Genomes
Project, autism exomes, autism genomes, and Illumina’s
“Platinum” genomes (Additional file 2: Table S1) (http://
www.illumina.com/platinumgenomes/.) This diverse col-
lection enabled assessment of the performance parameters
of the workflow with relatively homogeneous versus het-
erogeneous data, as expected in both biomedical and clin-
ical scenarios. Exomes and genomes were batched (1, 3, 5,
10, 25 and 50 for exomes and 1,3,5,10,25 for genomes) to
test scalability. COSMOS managed the processing of both
heterogeneous genomic data inputs as well as increasing
numbers of genomic data across the entire panel of testing
with only two disrupted runs (n = 25 genomes.) Each dis-
ruption was the result of the loss of a single “spot” AWS
worker node that COSMOS rescued with its recovery and
resume function capabilities, enabling a clean restart at
the check-point just before the disruption to ensure suc-
cessful completion of the run with little additional cost.

Accuracy
GenomeKey alignment accuracy was tested by a trio of
exomes from Phase I of the 1000 Genomes Project [22],
which were remapped and tested against the original
mapping. Various differences between original mapping
and that performed in this study can cause differences in
the mapped reads (e.g. different versions of analysis tools
such as BWA). Our analysis demonstrated a ~0.25 %

increase in total mapped reads over the original pub-
lished results. FastQC was used to compare the phred
base quality scores over the reads. The original BAMs
were re-calibrated with GATK and overall quality of se-
quence length was higher for the BAM files generated
by GenomeKey (Additional file 3: Table S2).
GenomeKey variant call accuracy was tested against

available benchmark data [15]. In particular, one gen-
ome (NA12878) was used to generate a collection of
quality variant metrics (see Methods and Additional
file 4: Table S3 for details). Genotype concordance as
reported by the GATK Genotype Concordance module
was 0.97 (Table 2).
Genotype concordance was also compared against the

Genome in the Bottle Consortium (www.genomeinabot-
tle.org) benchmark whole-genome genotype calls dataset
designed to minimizes bias from any one method by in-
tegrating 14 datasets from five sequencing technologies,
seven read mappers and three variant callers [21]. Geno-
meKey’s analysis of the genome resulted in an overall
genotype concordance (3,055,906 matching alleles and
7368 non-matching alleles) and 0.997 sensitivity with the
Zook et al. results.

Baseline runtimes for collections of exomes and genomes
COSMOS’s execution of GenomeKey on small collec-
tions of high-coverage genomes provided baseline run-
time speeds and costs (Fig. 2). A high-coverage (~150×)
exome from alignment to variant calling runtime was
136 min for a total cost of $23 (download and backup to
AWS S3 storage cost $5). Four replicate runs of 1, 3, 5
and 10 exome batched analysis (using similarly charac-
terized genomes), established robust runtime and cost
estimates with low variance. (e.g. 1 exome analysis run-
time had a mean of 123 +/− 2.3 min) (Fig. 2c and Add-
itional file 5: Figure S1). A single genome (42× coverage)
analysis was 13 h 52 mins for a total cost of ~ $109
(Fig. 2a and b). The cost compares favorably with other
tools (see Discussion). COSMOS’ ability to use AWS
Spot Instances reduces the overall costs from $588 to
$109 in the single whole genome case.
Similarly, to the 1 exome run, a 3 exomes runtime

had a mean of 158 min +/− 366 s and an average cost of
$14.19, the 5 exomes runtime had a mean of 206 +/−
719 s and a cost of $11.35, the 10 exomes runtime had a
mean of 255 min +/− 1673 s, the 25 exomes and 50
exomes run were not systematically replicated and the

Table 2 Comparison of variant calls results

Variant calls Ti/Tv All SNPs High quality SNPs Genotype concordance

GenomeKey 2.25 202290 0.97

DePristo 2.26 141618 -
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total runtimes are respectively 11 h 32 min and 18 h
19 min, and costs are respectively $170 and $270. The 1
genome run was 13 h 53 min and cost under $110, 3 ge-
nomes run in 35 h 10 min and cost $280, 5 genomes
run in 31 h and 31 min and cost $377, 10 genomes run
in 37 h and 48 min and cost $533 and the 25 genomes
run in 121 h and cost $1213 (Additional file 6: Table S4,
Fig. 2a and b).

COSMOS parallelization
Strategically batched exome and genome datasets using
COSMOS’ parallelization features result in significant
savings in runtime and costs especially when testing
large runs (50 and above). In particular, GenomeKey’s
alignment steps (consistent with most whole genome
analysis workflow alignment steps) demonstrate a sub-
linear scaling for both genomes (Fig. 2a) and exomes
(Fig. 2c). These efficiencies are tied to the ability of
COSMOS to optimize the recruitment and use of avail-
able CPU cycles and worker nodes thus using the cluster
resource closer to maximum capacity across the entire
GenomeKey workflow and corresponding analysis steps
(Fig. 3). The design of this Baseline study matching scal-
ability with fixed 21-node cluster was created to test the
limits of scalability of a fixed cluster resource. In this
case, the 21-node cluster reached computational capacity
and, therefore, displayed relatively increased runtimes
and costs at 50 exomes. Batching multiple samples re-
duces the per-sample analysis cost and average runtime.
However the batching strategy results in a longer time-

to-completion per sample. This is due to the fact that
while alignment itself can be parallelized, all alignments
for a given chromosome must be completed before joint
variant-calling can be performed, effectively making the
final step a single serial step resulting in each NGS sam-
ple completed and ready at the total wall time of the en-
tire workflow. As an example, a single exome processing
time is ~2 h compared to ~12 h for 25 batched exomes
(a 10 h ‘delay’ compared to a single exome run). How-
ever, this modest delay results in a dramatic four-fold re-
duction in the cost per exome, $5.81 compared to
$25.37 (Fig. 2b, d and Additional file 6: Table S4).

COSMOS storage management
Several modes of storage management were tested to
improve COSMOS’ GenomeKey stage-to-stage data
sharing across multiple worker nodes. We increased the
number of nodes participating in the GlusterFS shared
volume from 2 to 4 instances, and the performance was
measured using the same input data. This reduced the
runtime two fold in the 25 exome run from ~20 h
to ~11.5 h (Fig. 3a). The per-stage runtime gain was
measured, and the data transfer for the alignment
stage (BWA) was found 2.5 times faster using the 4-node
GlusterFS configuration compared with the 2-node
configuration (Fig. 3).

COSMOS next-generation parallelization
We measured the impact of two parallelization strategies
of the alignment stage of GenomeKey (“BAM to BWA”).

Fig. 2 GenomeKey scalability. GenomeKey workflow efficiently scales with increasing number of genomes. a Wall time and (b) cost as a function
of number of genomes compared to a linear extrapolation single genome. GenomeKey workflow scales efficiently with increasing number of
exomes compared on different GlusterFS configurations. The blue curve represents the 1, 3, 5 and 10 exomes runs performed on a cluster with
one GlusterFS brick; the yellow curve represents the scalability on a cluster with four GlusterFS bricks. c Wall time and (d) cost as a function of
exome and size for as compared to a linear extrapolation of a single exome
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The first is splitting the input bam BAM files by chro-
mosomes as well as read-group (corresponding to an in-
dividual “lane” for Illumina data), and the second is to
split with chromosome only (an option of GenomeKey).
The impact of the extra parallelization in the first strat-
egy offers a modest reduction in runtime compared to
the second strategy for a single exome. However, for a
larger batch size (25 'omes and higher), the number of
generated tasks overwhelms the queuing system.

Discussion
Our results demonstrate that the COSMOS implementa-
tion of GenomeKey provides a scalable, robust and effi-
cient solution to address the ever-increasing demand for
efficient, cost-effective genomic sequence analysis. COS-
MOS’ workflow management features offer parallelization
and storage options that dramatically improve overall per-
formance and reduce costs of whole genome and exome
analysis pipelines with the greatest improvements in the
computationally intensive alignment stage. In addition,
other analysis stages (i.e. variant calling), runtime and cost
improvements reflect strategically batched NGS datasets
(e.g. by chromosome). Our runtime and cost benchmark-
ing verified robustness and scalability of COSMOS’ imple-
mentation of GenomeKey for large collections of exomes
and genomes when run on fixed-resourced cloud clusters.
These results also for the first time establish standardized
runtimes, resource use and demonstrate scalability param-
eters and per-exome and genome costs and provides valu-
able qualitative comparisons with existing approaches and
methods. Our systematic approach also yielded actionable
guidance for researchers using COSMOS, GenomeKey (or
potentially other GATK-based workflows) by quantifying

configuration choices in two key areas: speed-cost trade-
offs in the number of exomes or genomes processed and
choice and configuration of cloud cluster and filesystem.
We discuss each of these below.

Run-time and cost comparisons with other cloud-based
genome analysis workflows
User-friendly sequence analysis systems (e.g. Galaxy)
have demonstrated flexibility, user-friendly interface and
robust workflow design especially for users without deep
bioinformatics experience. COSMOS and GenomeKey,
with less user-friendly features, provide important new
options and configurations that provide efficient, low-
cost, and robustly accurate sequence analysis. Commu-
nity standards for performance benchmarking of exomic
and genomic analysis workflows are not established, so
few results are published and comparisons (either quali-
tative or quantitative) between software packages are
generally unavailable. Rather, feature chart comparisons
as seen in SIMPLEX [23], or general qualitative compar-
isons, as seen in Mercury [24] are available. Runtime
characteristics for individual systems are available, how-
ever, those analyses are not easily comparable across
systems, cluster configurations or by grouped ‘platinum’
datasets thus few options exist to identify specific barriers
and computational inefficiencies between workflows.
Individual publications of each workflow typically report
runtime statistics on a variety of different datasets, hard-
ware configuration, and storage options (Additional file 6:
Table S4 and Additional file 7: Table S5).
COSMOS’s implementation of GenomeKey offers a

fast, cost-efficient, accurate solution for alignment,
cleaning, and variant-calling of genomes and exomes

Fig 3 Cluster Resources Usage. Cluster resources are utilized more efficiently as batch size increases. When the number of exomes increases
from (a) 5 exomes to (b) 10 exomes, overall cluster CPU usage (shown as the brown “Total” line) is higher across the entire runtime. Percent
CPU usage for each job across the entire 20-node was summed within 5-min “wall time” windows and then scaled by the total number of cores
(20 nodes × 32 cores/node = 1920 cores) to quantify the overall system utilization. CPU usage for jobs not fully contained within each 5 min’
window was pro-rated according to how much they overlapped. The contribution of each stage to the entire total (brown line) as a function of
time further illustrates the parallelization
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with better performance compared to other software.
STORMseq [9], uses BWA for alignment and GATK lite
for quality control and variant calling, processed an ex-
ome in 10 h and a genome in 176 h, compared to Geno-
meKey which completed an exome and a genome run in
2 h and 14 h, respectively. Other software packages have
been found to perform at similar levels to STORMseq,
with exomes being processed in 10–25 h (see 7: Table S5
for more details). However, these results are not direct
comparisons since different datasets and different
computational resources were used for each software
package. Additionally, many of these systems prioritize
ease of use on small-scale datasets [10] rather than fo-
cusing on processing large-scale datasets typical of bio-
medical research and projected clinical needs. One
large-scale benchmarking effort has been published
using the cloud-based, genomics workflow, Rainbow
[25] which processed 44 genomes in two weeks for
$5800, ~$120 per genome. COSMOS’s GenomeKey
compares favorably at $50 per genome for up to 25 ge-
nomes. If two 21-node clusters were deployed, and the
Rainbow dataset broken into 2 sets of 22 genomes
each, we extrapolate that the use of GenomeKey would
result in a $53.36 per genome cost, processed 1088
low-coverage genomes (around 62 million reads) in
under 7 days (168 h) using 400 AWS CC2.8xlarge
nodes. These low-coverage genomes have on average
62 million reads this is equivalent to 8 whole genomes
at 36× coverage (500 million reads). Using our optimal
batching strategy, with 14 21-node clusters were to be
deployed, and the 1088 data broken into 13 sets of 80
genomes and one set of 48 genomes, we extrapolate
that GenomeKey would accomplish the analysis in 32 h
with and estimated cost of $7500 compared to an esti-
mated $16,600 for Churchill [26] (assuming all the 400
spot instances).

A road-map to routine, cost effective, clinical-turnaround,
whole genome analyses
The systematic benchmarking of COSMOS’ GenomeKey
allowed us to build and investigate a “complexity road-
map” of NGS variant calling workflows in the cloud. Par-
ticularly, the results provide guidance in two keys areas:
(1) choosing the optimum batch size and (2) choosing
optimum shared storage configurations.
In a clinical setup, the price point for genomic analysis

per-sample is fixed. Using the collected metrics of cost
and runtime per exome and genome, we can provide
batch size estimates to achieve a time-to-sample analysis
completion under a day and for a minimal cost. This
also depends on the nature of the generated sequencing
data. In the case of the autism exomes, there were up-
wards of 10 read-groups per sample, but it clearly illus-
trates that there is an upper limit to parallelization of

the workflow (alignment stage). We thus provide a
command-line option to the GenomeKey workflow to
split by chromosome only instead of the default
chromosome and read-group.
Using GlusterFS file-system (see Methods) to pool

hard-drive storage across multiple nodes dramatically
improved overall runtime. Even the fact that Genome-
Key is setup to limit the transfer from and to the shared
file system within running stages, this limits network la-
tency. However, the output of each stage needs to be
saved on shared storage for dependent tasks to proceed
to the next stage and backup in the case of spot instance
or other node failures. Our benchmarking reveals that
shared storage use requires significant time and proves
the value of a multiple shared storage node configur-
ation. Shared storage optimization becomes particularly
important for large batch sizes, with many jobs performing
parallelized intensive reads and writes. The shared nodes
in the GlusterFS configuration must be persistent (on-de-
mand) AWS instances and thus are more expensive than
transient (spot) instances. However, this tradeoff was more
than offset by overall processing speed improvement. In
our particular case, a batch of 10 to 15 exomes offers an
excellent time and cost balance. This heuristic might vary
depending on the sequencing analysis and computational
insight of a given COSMOS-GenomeKey user.

Availability and implementation
COSMOS code is available for academic non-commercial
research purposes; GenomeKey is available under an MIT
open source license. The source code of COSMOS and
GenomeKey as well as the documentation and sup-
port information are available on the project website
at http://cosmos.hms.harvard.edu and via GitHub
repository at https://github.com/LPM-HMS/COSMOS and
https://github.com/LPM-HMS/GenomeKey, respectively.
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Additional file 1: Figure S2. Automation script. Organogram of the
automation script that downloads the data, run the pipeline, save all the
steps timestamps and backup the data. (PNG 64 kb)

Additional file 2: Table S1. Input datasets per run. (PDF 215 kb)

Additional file 3: Table S2. FastQC quality control table. (PDF 302 kb)

Additional file 4: Table S3. Comparison with existing implementations
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Additional file 5: Figure S1. Exomes total runtime scaling. Replicated
exomes runs, shows highly reproducible runtimes. Error bars represent
variance. (PNG 43 kb)

Additional file 6: Table S4. Runs summary with detailed cluster
configuration, mean size, coverage, splitting strategy (chr: chromosome,
RG: read-group), total runtime, total cost, average runtime and average
cost. (PDF 61 kb)

Additional file 7: Table S5 Comparison with previous benchmarks for
specific 1000 g exomes/genomes. (PDF 26 kb)
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