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Abstract

indicative of fetal maturation.

Background: Amniotic fluid (AF) is a proximal fluid to the fetus containing higher amounts of cell-free fetal
RNA/DNA than maternal serum, thereby making it a promising source for identifying novel biomarkers that
predict fetal development and organ maturation. Our aim was to compare AF transcriptomic profiles at different
time points in pregnancy to demonstrate unique genetic signatures that would serve as potential biomarkers

Methods: We isolated AF RNA from 16 women at different time points in pregnancy: 4 from 18 to 24 weeks, 6 from
34 to 36 weeks, and 6 from 39 to 40 weeks. RNA-sequencing was performed on cell-free RNA. Gene expression and
splicing analyses were performed in conjunction with cell-type and pathway predictions.

Results: Sample-level analysis at different time points in pregnancy demonstrated a strong correlation with cell types
found in the intrauterine environment and fetal respiratory, digestive and external barrier tissues of the fetus, using
high-confidence cellular molecular markers. While some RNAs and splice variants were present throughout pregnancy,
many transcripts were uniquely expressed at different time points in pregnancy and associated with distinct neonatal
co-morbidities (respiratory distress and gavage feeding), indicating fetal immaturity.

Conclusion: The AF transcriptome exhibits unique cell/organ-selective expression patterns at different time points in
pregnancy that can potentially identify fetal organ maturity and predict neonatal morbidity. Developing novel
biomarkers indicative of the maturation of multiple organ systems can improve upon our current methods of fetal
maturity testing which focus solely on the lung, and will better inform obstetrical decisions regarding delivery timing.
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Background

Amniotic fluid (AF) is a dynamic mixture that both con-
tributes to and reflects the status of the fetus [1-3], and
has been shown to provide a screenshot into the matur-
ational processes of fetal development [2—5]. At present,
AF from different time points in pregnancy is used to
provide obstetricians and pregnant women with important
information for decision-making about pregnancy man-
agement and delivery planning, such as mid-trimester
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screening for aneuploidy, diagnostic testing for intra-
amniotic infection, or fetal lung maturity testing [6-8].
However, with debate on the usefulness of fetal lung ma-
turity testing [9], and the advent of non-invasive methods
of prenatal diagnosis, practice patterns are changing to
make amniocentesis, and thereby, analysis of AF, a much
rarer occurrence [10, 11].

Ultimately, development of non-invasive methods for
fetal testing, for example, by sampling maternal serum
or urine, would minimize the use of invasive procedures
such as amniocentesis. However, for discovery purposes,
AF has important advantages over other maternal
sourced specimens. AF contains larger amounts of fetal
and pregnancy-related DNA, RNA, and proteins than
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maternal serum, particularly in the first and second tri-
mesters of gestation, when most prenatal screening is
performed [2, 12-14]. Most circulating fetal DNA frag-
ments in maternal serum are short. Therefore, highly
sensitive methods of detection are needed to distinguish
the small size and quantity of fetal DNA from maternal
DNA in maternal serum samples.

While cell-free fetal RNA and DNA in maternal serum
can be used for prenatal screening, these analyses have
not been extensively studied for the purpose of under-
standing the heterogeneous process of overall fetal
maturation of multiple organ systems, with the goal of
improving current methods of fetal maturity testing,
which have focused primarily on the lung. We hypothe-
sized that an unbiased study of AF cell-free RNA would
enable identification of new biomarkers to assess mul-
tiple organ maturation in both term and preterm fetuses,
and would include transcripts and alternative RNA iso-
forms that are uniquely expressed by the fetus. In the
present study, we performed a small scale analysis, com-
paring RNA sequencing output from cell-free RNA from
human AF obtained from three time points in pregnancy
(prenatal 18—24 weeks, late preterm 34-36 weeks, and
term 39-40 weeks) to determine if unique organ selective
gene expression signatures are present that would be
useful to assess fetal maturation (Fig. 1a).

Methods
Patient recruitment
The study was approved by the Institutional Review
Boards at Cincinnati Children’s Hospital Medical Center,
University of Cincinnati Medical Center, Good Samaritan
Hospital, and The Christ Hospital in Cincinnati, Ohio.
Written consent was obtained from study participants.
Patients undergoing amniocentesis for prenatal diag-
nosis purposes consented to the acquisition of 10 mL
of additional fluid to be banked and analyzed for our
study. In addition, patients at any gestational age who
were delivering by Cesarean section consented to the
collection of 10 mL of AF after the uterine incision,
and prior to rupture of the amniotic sac. Pregnant
women who were delivering by Cesarean section also
consented to data collection on their pregnancy, de-
livery, and clinical outcomes of their newborn infants.
For this small scale study, we selected 4 second trimes-
ter prenatal (PN) diagnosis samples (18-24 weeks), 6
late preterm (PT) samples (34—36 weeks), and 6 full term
(FT) samples (39-40 weeks) from our AF biorepository,
after excluding multiple gestation pregnancies, and preg-
nancies diagnosed with major congenital or chromosomal
abnormalities. The prenatal diagnosis samples were ob-
tained via amniocentesis. All the late preterm and term
samples were obtained at the time of Cesarean section, ex-
cept one late preterm sample and one term sample which
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were obtained via amniocentesis the day prior to delivery.
All samples were pre-existing in an amniotic fluid biorepo-
sitory. In selecting samples, we also attempted to ensure
there would be samples from both male and female fe-
tuses, and samples that had the neonatal morbidities
of interest. Additional file 1: Table S1 indicates clinical data
surrounding the pregnancy and newborn, including gesta-
tional age at which the samples were obtained, sex of the
fetus, pregnancy complications (including pre-eclampsia,
chorioamnionitis, and indication for Cesarean section),
and the neonatal morbidities of respiratory insufficiency
and gavage feeding. Four samples collected from term
fetuses for pilot RNA isolation and sequencing purposes
were de-identified, and not associated with clinical data.

RNA isolation

All AF was immediately placed in AssayAssure tubes
with standardized buffer. Samples were centrifuged, ali-
quotted and then stored at —80 °C until they were ready
to be processed for RNA isolation. Approximately 6 mL
of AF was used from each patient, and cell-free RNA
was isolated from the supernatant of the fluid using the
QIAamp Circulating Nucleic Acid Kit (QIAGEN), as has
been previously described [15].

RNA-sequencing analysis

RNA-sequencing was performed by the Cincinnati Chil-
dren’s Hospital Sequencing Core, with a read-depth of
25-54 million reads per sample for 50 nt single-end
reads (Additional file 1: Table S1). Two parallel analyses
were performed to ensure validity and reproducibility of
the results. The raw sequenced reads were aligned from
FASTQ files to the human genome build GRCh37/hgl9
and the UCSC reference transcriptome (https://ccb.jhu.
edu/software/tophat/igenomes.shtml) using TopHat 2.0.9
and Bowtie2 with default parameters to identify both
known and novel exons and junctions. Samples were fur-
ther processed via Trimmed Mean normalization [16].
Adapters were retained in the reads as these improved
overall the percentage of aligned reads (data not shown).
All samples passed quality control assessment was per-
formed using FASTQC and AltAnalyze. For differential
expression analyses, an analysis of variance (ANOVA) was
performed on AF RNA samples from each of the gesta-
tional stages, for genes with a reads per kilobase per mil-
lion (RPKM) >1 in at least one sample. Differentially
expressed genes were identified using one-way ANOVA
followed by three paired comparison (i.e., PN vs. FT, PN
vs. PT, and PT vs. FT). A gene is considered to be differen-
tially expressed when a probability P value <0.05 (with
FDR correction) and expression fold change >1.5 in at
least one paired comparison. Comparison of specific pre-
term morbidities was performed using an moderated
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empirical Bayes t-test and fold >2 in AltAnalyze, due to
the small number of samples in this cohort [17].

Differentially expressed genes were subject to Self-
Organizing Maps clustering to identify gene clusters
induced and suppressed with advanced gestational
ages respectively. Gene-set enrichment analysis and
comparison was performed using the software Toppgene
(https://toppgene.cchmc.org/) and GO-Elite in AltAnalyze,
where only terms with an FDR adjusted enrichment
p <0.05 was considered for further evaluation. Raw
and processed sequencing data have been deposited in
GEO and SRA (http://www.ncbinlm.nih.gov/geo/query/
acc.cgi?token=sjqpwsskhbchnsv&acc=GSE68180).

For alternative splicing analyses, junction.bed files
were input in AltAnalyze to calculate percent spliced in
(PSI) values for reciprocally expressed junctions from
junction read counts, using annotations derived from
Ensembl 72 and UCSC annotated mRNAs. This same
analysis was performed on RNA-Seq junction reads from
the Illumina Body Map project (http://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-513/). Read coverage

plots were produced from Broad’s IGV Sashimi-Plot
function (https://www.broadinstitute.org/igv/).

AF tissue markers prediction

Two parallel tissue/cell-type prediction approaches were
employed in these studies for independent verification. To
evaluate time-point specific differences in cell and tissue
markers, we used the LineageProfiler gene marker database
(https://sourceforge.net/p/altanalyze/wiki/LineageProfiler/),
derived from hundreds of distinct normal mouse and hu-
man cell and tissue sources in the software GO-Elite [18].
For these cell and tissue-prediction analyses, GO-Elite
Fischer-Exact enrichment test p <0.05 was required for
downstream analyses. To identify tissue/cell markers
in independent AF samples at different pregnancy stages,
we first filtered genes with expression level >90 percentile
of all samples, and then we compared the abundantly
expressed genes in AF from preterm, late preterm and full
term samples to identify common vs unique expressed
genes. We mapped the top 10 % highly expressed
genes to tissues/cells using the gene expression atlas
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data downloaded from Genomics Institute of the Novartis
Research Foundation (GNF) [19]. We defined a gene as
enriched in tissue A if the average expression of the gene
in tissue A was 3 times greater than its average expression
in all other 66 tissues. We defined a tissue specific gene
marker as the gene not only enriched in tissue A, but also
expressed highest in tissue A and its expression in tissue A
was at least 1.5 times higher than its expression in any
other tissues.

Results

Transcriptomic profiles of amniotic fluid from different
gestational stages

After passing quality control, samples were clearly sepa-
rated by gestational age group of prenatal, preterm or
term, as previously defined (Fig. 1b). Hierarchical clus-
tering of differentially expressed genes segregated by
gestational age revealed two major expression patterns:
genes induced with time and genes suppressed with time
(Fig. 1c). The changes between late preterm and full
term fetuses are modest at a global level (PCA), but the
two groups were readily separable when requiring False
Discovery Tests p <0.05 as shown.

Gene set functional enrichment analyses revealed dis-
tinctive biological processes, pathways and mouse phe-
notypes associated with the two major clusters (i.e., gene
expression varying in a gestational time manner) (Fig. 2).
Genes induced with advancing gestation included those
that were functionally enriched in various signaling trans-
duction pathways (NGF, RAS, MAPK, VEGF, EGFR1
signaling), lipid and surfactant homeostasis, mediated
cell immune response and response to growth factors
(Figs. 2b and 3a). Mutations or deletions of genes in this
group are known to influence lipid homeostasis, surfactant
physiology, and adipose and liver morphology. Genes
whose mRNA abundance was inversely correlated with in-
creased gestational ages were functionally enriched in cell
cycle, protein targeting to ER, cell proliferation, embryo-
genesis and development (Fig. 2c, d). Mutations or dele-
tions of genes in this group are associated with embryonic
lethality in mouse models, abnormal embryogenesis/devel-
opment, abnormal prenatal growth/body size, and embry-
onic growth arrest (Fig. 2d).

Genes related to surfactant physiology and VEGF signal-
ing pathway were significantly increased in full term AF
samples (Fig. 3). Genes regulating pulmonary surfactant
function are important for lung function at birth; surfac-
tant deficiency results in Respiratory Distress Syndrome
(RDS) in premature infants. mRNAs encoding surfactant
proteins (SFTPA1, SFTPB, SFTPC, and SFTPD) and those
involved in lipid synthesis and processing (LPCATI,
ABCA3, CTSH and LYZ), and regulation (FOXA2, NKX2-
1, HOXAS) were increased with advancing gestational age
in AF (Fig. 3a). VEGF signaling was previously identified
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as a critical factor in perinatal lung function [20]; mice
with defective VEGF die of respiratory failure at birth.
Intra-amniotic or intra-tracheal delivery of VEGF im-
proved surfactant production and protected preterm
newborn mice from respiratory failure [20]. In the
present study, key components in the VEGF signaling
pathway including VEGFA, AKT1, HSPBI, MAPKI13,
MAPK3, PIK3R3, PTGS2 and SPHK2 were increased
in full term AF (Fig. 3b).

In contrast to the induction of RNAs essential for lung
development and differentiation, genes involved in the
Wnt and Hippo signaling pathway were more highly
expressed in prenatal AF samples. We observed expres-
sion of genes in the Wnt (FZDI1, FZD6, FZD7, JUN,
PPP2RSE WNT2 and WNTS5A) and Hippo signaling
pathways (AMOT, BIRCS, CCND2, CTNNB1, FZD1/6/7,
PPP2R2B, PPP2R2D, SNAI2, TEAD3, TGFBR2, YAPI,
YWHAQ, Fig. 3¢, d) decreased with advancing gestation.
Both the Wnt and Hippo pathways are known to play
important roles in morphogenesis, tissue growth and organ
size [21]. The Hippo pathway regulates Wnt/beta-catenin
signaling in coordinating morphogenetic signals with
organ growth [22].

Genes differentially expressed in full term versus late
preterm AF

AF samples from late preterm (34—36 weeks, N =6) and
full term (39-40 weeks, N = 6) fetuses were compared to
identify genes differentially expressed in the later stages
of pregnancy because this is the period when fetal ma-
turity testing would be most helpful for delivery plan-
ning. Two hundred fifty-seven genes were differentially
expressed in late preterm versus full term fetuses; among
these, 146 had higher expression in the late preterm
period, where 111 were more highly expressed in term
fetuses compared to late preterm fetuses. Processes such
as “immune response”, “protein transport”, “response to
stress/growth factor/lipid” and “apoptosis” were increased
as assessed by Gene Ontology biological pathways in full
term AF [23]. Processes including “cilium morphogenesis”,
“mRNA processing”, “cell cycle”, and “protein catabolism”,
were upregulated in late preterm fetuses in comparison
with full term infants (Fig. 4b—c). Mutations or deletions of
genes in these classes are known to associate with “small
lung”, “decreased lean body mass” and “prenatal growth re-
tardation”. Figure 4d lists the top 60 significantly induced
(upper panel) or suppressed (bottom panel) genes in term
versus late preterm fetuses, respectively.

Identification of tissue/cell markers in AF collected at
different stages of pregnancy

To identify the tissue-specific gene expression patterns
in AF, RNAs abundantly expressed in AF collected from
each stage of pregnancy (>90 % in distribution analysis)
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were mapped to the GNF Gene Expression Atlas to esti-
mate their relative expression across 66 different tissues
(Fig. 5). The 16 AF samples expressed RNAs that can be
directly traced to the fetal oropharynx and upper airway
(trachea, tongue, salivary gland, tonsil), respiratory tract
(lungs, bronchial epithelial cells), external barrier (skin,
eye) and in utero environment (placenta, uterus), in
addition to other major organ systems (brain, heart,
liver, fat, kidney, pancreas, thyroid, thymus, intestine,
bone marrow). Comparison of term infant AF and late
preterm infant AF RNA-Seq profiles revealed hundreds
of highly distinct transcripts that can be correlated with
fetal organ maturity. These genes appear to largely
reflect fetal as opposed to maternal RNAs, based on
expression of the X-chromosome inactivation marker

XIST and Y-chromosome specific markers (Additional
file 2). As a cell-type prediction approach, we performed
cell and tissue marker enrichment analysis in the soft-
ware GO-Elite, which utilizes restricted tissue and cell-
type (n=300) specific markers (Fig. 5b). These results
suggest that RNAs associated with neutrophils, lung,
tongue, salivary gland, oral mucosa, adipocytes, oligo-
dendrocyte progenitors and CD14+ cells, among others,
are less highly expressed in late preterm compared to
term fetuses. Highly specific cell/tissue markers, for ex-
ample, for lung (SCGB3AI, DMBTI1, AQPS5), trachea
(BPIFBI), salivary gland (FURNIN, KLKI, LPO), brain
(MIDN, METRN) and neutrophil (SECTMI1, CD177)
were identified and associated with maturation. Our
in silico cellular predictions system appears to identify
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cell selective markers that segregate fetuses based on
organ maturity.

Evaluation of late preterm co-morbidities

Multiple morbidities are frequently associated with preterm
birth and result in clinically significant postnatal outcomes.
Compared with term infants, late preterm infants have
higher rates of premature neonatal morbidities, including
need for respiratory support, gavage feeding, apnea/brady-
cardia of prematurity, problems with thermoregulation,
and delays in neurodevelopment. Among the 6 late pre-
term infant samples analyzed, two infants required respira-
tory support, two required gavage feeding and one required
both. As a proof of concept, we examined global changes
in cell specific gene expression markers from these two
small sample sets. Relative to term infants, late preterm
infants requiring gavage feeding (n = 3) expressed fewer
markers of salivary gland, oral mucosa, pharyngeal mu-
cosa and tongue (Fig. 6a). On the other hand, infants
that had respiratory insufficiency requiring respiratory
support (n = 3) expressed similar percent of markers for
salivary gland, oral mucosa, pharyngeal mucosa, and
tongue, but did show a significant decrease in markers
for adipose tissue and fetal lungs. This adipose tissue
observation fits with prior observation that fat stores
primarily increase in the third trimester of pregnancy.
While cautious interpretation is needed due the small
sample size of this cohort, these results are suggestive
that AF biomarkers serve as indicators of organ system

maturity. Analysis of splice variants expressed from late
preterm infants requiring gavage feeding or respiratory
support relative to term, found 78 and 66 regulated
genes respectively, with only 18 shared between the two
(Fig. 6b, Additional file 3). Among these splicing events,
only half (74 out of 155), were found in a deeply se-
quenced panel of adult and placental tissues (Illumina
Body Map2 dataset); thus, the remainder are likely to
be fetal-specific (Additional file 4).

Discussion

In 2008, the American College of Obstetricians and Gy-
necologists (ACOG) recommended fetal lung maturity
testing for all patients born scheduled for elective deliv-
ery prior to 39 weeks gestation in order to avoid the
consequences of respiratory distress from iatrogenic pre-
maturity [24]. During that time, fetal lung maturity was
often used as the sole criterion to establish that the
infant was ready for postnatal life, while ignoring the po-
tential immaturity of other organ systems. A growing
body of evidence indicates that mature lung indices
ascertained from AF do not spare a premature infant
from other neonatal morbidities [6, 7, 25, 26], support-
ing the concept that fetal lung maturity testing is insuffi-
cient to determine readiness for postnatal life. As a
result, ACOG recently published an updated practice
guideline that fetal lung maturity testing was not useful
to guide delivery timing in medically indicated preterm
delivery [27]. However, some obstetricians still feel that
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genes differentially expressed in Late Preterm versus Term (b = enriched in full term infants, ¢ = enriched in late preterm infants). d The top 60 significantly
changed genes in Term versus Late Preterm. P-value is calculated by student T-test with Benjamini-Hochberg FDR correction (Benjamini Yoav, Hochberg
Yosef. Controlling the false discovery rate: A practical and powerful approach to multiple testing. JRSS-B. 1995;57(1):289-300). Gene set functional
enrichment analysis was performed using Toppgene suite (https://toppgene.cchmc.org/). The transcription factor notations reflect the type of
position-specific scoring matrix used (e.g., V$ for vertebrate matrix library)

such testing can be useful to weigh maternal and infant
risks and benefits of early delivery [9, 28]. With the
current debate, and the availability of improved genome-
wide expression profiling methods, development of im-
proved methods for determining fetal maturity are needed
for delivery planning purposes, to better assess maternal/
neonatal risks when planning for a preterm delivery.

The amniotic fluid transcriptome is a useful tool for
providing insight into fetal development at different time
points in pregnancy [5]. Previous studies have indicated
that amniotic fluid supernatant provides a snapshot of
developmental processes occurring in the fetus, and have
unique gene expression patterns that are more fetal-
specific compared to amniocytes [3]. Most of these studies
have focused on the analysis of amniotic fluid supernatant
from second trimester fetuses using microarray [2, 3]

which have indicated a pattern of enrichment in brain-
specific genes, also seen in our study (Fig. 5a). In addition,
further studies have demonstrated a difference in gene
expression patterns between AF obtained in the second
trimester compared to that obtained at term [4].

Our present data build upon the existing literature
and identifies unique gene expression patterns at differ-
ent time points in pregnancy that could be utilized as
biomarkers for a better understanding of overall fetal
maturity. Our study is unique in the addition of samples
from the late preterm period, which have not previously
been examined in other studies, but provide a wealth of
information about fetal development at times when ob-
stetricians and patients are making decisions regarding
delivery. The present work demonstrates the feasibility
of AF transcriptomic profiles to study bioprocesses and
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tissues. Relative amount of tissue selective gene markers expressed in

pathways underlying fetal development. While the present
sample size is small, the data identify biologically plausible
candidate genes relevant to the maturation of multiple
organ systems. The data are reassuring in that they
demonstrate fetal lung maturation via surfactant-specific
and lung morphogenesis-specific pathways with advancing
gestational age, while also demonstrating maturation of
other biological processes that indicate maturation of
other organs. A comparison of late preterm infants with
certain neonatal morbidities to term infants demonstrates
that differences in gene expression could be ascertained to
possibly assess neonatal risk for diverse morbidities. Such
work aligns with the emphasis that multiple research
agencies addressing the complex public health problem of
preterm birth have placed on conducting research to iden-
tify biomarkers that could improve clinical risk assessment
for preterm birth [29-31].

We recognize some limitations of this small study.
Our study differs from previously published work be-
cause of the use of RNA-sequencing methodologies as
opposed to microarrays, which has been shown to result

in overlap in the most highly expressed genes compared
to microarray, but may be more affected by technical
variation [32]. Furthermore, our study does have a small
sample size, and a lack of clinical data on four of our six
term amniotic fluid samples. In addition, the circum-
stances under which the amniotic fluid was collected
could potentially be attributed to certain pregnancy
characteristics that could bias the results. In this present
study, the majority of the late preterm deliveries were
medically indicated due to pre-eclampsia, while the term
deliveries were elective repeat Cesarean deliveries. Previ-
ous work by Edlow, et al. has demonstrated different
gene expression patterns in pregnant obese women
compared to those with normal body mass index [33],
indicating that maternal clinical characteristics should
be accounted for in future analyses. It is unclear whether
amniotic fluid obtained from pregnancies where delivery
was medically indicated would exhibit different patterns
of fetal maturity from pregnancies in which amniotic
fluid was sampled in the preterm period but the mother
delivered at term. Our analysis remains pertinent for the
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situation where premature delivery of the infant is un-
avoidable or indicated, the more clinically relevant group
to be studying in the first place. To continue on the path
towards translating novel biomarkers into useful clinical
tests, further validation and replication studies are needed,
with larger sample sizes and multi-center confirmatory
studies. These larger studies will need to account for
possible confounding clinical variables that may affect
how the amniotic fluid is obtained.

While it would be ideal to obtain amniotic fluid from
the same pregnancy at different time points for compari-
son, this study design is neither practical nor feasible
in real-life clinical settings. The ultimate goal is the

development of less invasive prenatal testing that can
be performed utilizing maternal serum or urine; with
non-invasive prenatal diagnosis and changing patterns of
amniocentesis for fetal lung maturity testing, amniocen-
tesis is now a less common procedure in obstetrics. Given
the advantages of amniotic fluid being less complex than
serum and containing higher amounts of cell-free RNA
and DNA that more directly reflect fetal status, analysis of
the amniotic fluid transcriptome is a practical first step to-
wards the biomarker discovery that can later be translated
to less invasive methods. Such studies should ultimately
include the analysis of fetal specific isoforms detected
through deeper sequencing that might readily distinguish
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fetal from adult isoforms in peripheral maternal fluids,
along with additional significant and difficult to diagnose
prenatal and preterm conditions, for example, maternal-
fetal infections, congenital malformations, or metabolic
disorders. Such work will likely provide important insights
into the simultaneous yet heterogeneous processes that
contribute to fetal maturation, providing a broader view of
maturation than our currently used fetal maturity tests,
which focus solely on the lung.

Conclusions

The present study represents a novel approach of dy-
namic RNA-seq profiling analysis of AF collected from
three different gestational ages. Using both gene-based
and tissue/cell-based approaches, we identified unique
cell/organ-selective expression patterns and associated
biomarkers (i.e., gene signatures) corresponding to dif-
ferent stages in pregnancy that can potentially identify
fetal organ maturity and predict neonatal morbidity. Given
the current debate about the usefulness of fetal lung ma-
turity testing, this small study demonstrates the feasibility
of using the amniotic fluid transcriptome to identify bio-
markers for fetal organ maturation, and supports efforts
to do a larger scale study in the future. Taking a broader
overview of fetal maturity than just focusing on the lung
will better enable obstetricians to make delivery planning
decisions for preterm births, and prepare pediatricians
and neonatologists for the various neonatal morbidities
that these preterm infants may face.
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