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Abstract

disorder cases and six controls, respectively.

Background: DNA methylation is thought to be extensively involved in the pathogenesis of many diseases,
including major psychosis. However, most studies focus on DNA methylation alteration at promoters of protein-
coding genes, despite the poor correlation between DNA methylation and gene expression.

Methods: We analyzed differentially methylated regions and differentially expressed genes in patients with
schizophrenia and bipolar disorder and normal subjects. Gene expression and DNA methylation were analyzed with
RNA-seq and MeDIP-seq of post-mortem brain tissue (brain region BA9) cohort in five schizophrenia, seven bipolar

Results: Here, we performed a large-scale integrative analysis using MeDIP-seq, coupled with RNA-seq, on brain
samples from major psychotic and normal subjects and observed obvious discrepancy between DNA methylation
and gene expression. We found that differentially methylated regions (DMRs) were distributed across different types
of genomic elements, especially introns. These intronic DMRs were significantly enriched for diverse regulatory
elements, such as enhancers and binding sites of certain transcriptional factors (e.g., Pol3). Notably, we found that
parts of intronic DMRs overlapped with some intragenic miRNAs, such as hsa-mir-7-3. These intronic DMR-related
miRNAs were found to target many differentially expressed genes. Moreover, functional analysis demonstrated that
differential target genes of intronic DMR-related miRNAs were sufficient to capture many important biological
processes in major psychosis, such as neurogenesis, suggesting that miRNAs may function as important linkers
mediating the relationships between DNA methylation alteration and gene expression changes.

Conclusions: Collectively, our study indicated that DNA methylation alteration could induce expression changes
indirectly by affecting miRNAs and the exploration of DMR-related miRNAs and their targets enhanced
understanding of the molecular mechanisms underlying major psychosis.
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Background

Schizophrenia (SZ) and bipolar disorder (BD), together
termed “major psychosis”, could be etiologically correlated
psychiatric conditions [1], characterized by long-lasting
behavioral abnormalities. Previous studies of major psych-
osis mainly focused on the genetic susceptibility [2].
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However, several epidemiological and clinical peculiar-
ities, such as noncomplete concordance between
monozygotic twins and a fluctuating disease course,
are still difficult to explain with a small number of
risk genes/locis and extremely rare structural variants.
Accumulating evidence shows that alterations of DNA
methylation, which accounts for most of the silencing
events in the genome (such as, X-chromosome inacti-
vation and genomic imprinting [3]), can contribute to
the pathogenesis of human diseases. Such aberrant
DNA methylation has been recently implicated in the
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pathogenesis of major psychosis with a growing body
of evidence [4—6]. Preliminary investigations of DNA
methylation mainly focused on disease-related genes,
such as RELN [7], SOX10 (8], MB-COMT [9] and
GADI [10], which exhibited methylation alterations
between major psychosis and normal controls. Subse-
quently, Mill et al. comprehensively scanned DNA
methylation level using microarray technology to
systematically identify DNA-methylation changes in
the frontal cortex of major psychosis patients [11].
Recently, based on high-throughput sequencing tech-
nology, genome-wide DNA methylation analysis com-
bined with transcription changes provides a more
effective approach to delineate the molecular mecha-
nisms underlying major psychosis [12].

Nevertheless, the association between DNA methyla-
tion and gene expression is still ambiguous and contro-
versial. A number of studies demonstrated that high
DNA methylation levels at CpG-rich promoters are in-
compatible with gene activation [13]. The relationship
between DNA methylation and transcription is more
nuanced than ever expected, depending on different
genomic contexts [14]. Moreover, comparative analysis
in cancers [15] uncovered that differences in DNA
methylation only resulted in expression changes of a
very low percentage of genes. Such inconsistency be-
tween DNA methylation and gene expression may imply
the existence of other factors bridging them.

At present, most DNA methylation studies focus on
identification of aberrant methylation-induced protein-
coding genes with differential expression [16]. Indeed,
protein-coding genes only constitute a small proportion
of the genome, and various regulators were required for
precise control of their expressions, such as micro-
RNAs (miRNAs) [17-19] and transcription factors
(TFs) [20, 21]. A mountain of evidence has suggested
that multiple miRNAs were also involved in the patho-
genesis of major psychosis [22]. For instance, Kim et al.
[23] investigated the expression of 667 miRNAs in the
prefrontal cortex of individuals with schizophrenia and
bipolar disorder and then identified 22 differentially
expressed miRNAs. These differentially expressed
miRNAs were found to target brain specific genes
enriched for SZ and BD disease development. There-
fore, integration of DNA methylome and transcriptome,
and consideration of DNA methylation-induced global
effects are necessary to explore how aberrant DNA
methylation contributes to the mechanisms underlying
major psychosis.

In this study, the DNA methylome and transcriptome
maps of brain samples generated from 5 SZ, 7 BD and 6
normal subjects were determined using methylated DNA
immunoprecipitation and sequencing (MeDIP-seq) and
high-throughput RNA sequencing (RNA-seq). We then
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identified a large number of differentially methylated re-
gions (DMRs) in the comparison of major psychosis and
normal subjects. These DMRs are widely distributed in
different functional elements, such as promoters, CpG
islands (CGIs), non-coding RNAs (e.g, miRNAs and
IncRNAs) and repetitive elements, especially in introns.
We found that about fifty percent of intronic DMRs
seemed to affect transcription elongation. Further, we
observed enhancer-related DMRs (such as p300 binding
in hypermethylated DMRs) that could impact TF binding,
therefore affecting gene expression. In particular, hypo-
methylated DMRs were found to be significantly enriched
for Pol3 binding. In addition, by functional enrichment
analysis for differential targets of hypermethylated or
hypomethylated intronic miRNAs, we found that DNA
methylation aberrations of intronic miRNAs could better
account for functional alterations in major psychosis. Col-
lectively, we demonstrated that DNA methylation alter-
ations might influence gene expression in an indirect
manner through intronic miRNAs.

Methods

Ethics statement

We obtained ethics approval for our study from
Southwest Brain Bank with consent from the next-of-
kin (NOK) (see Supplemental Methods for details in
Additional file 1). The NOKs agreed to provide the
donation and they read a State approved form. The
NOKs provided verbal consent prior to their tele-
phone interview. We called the NOKs and recorded
their agreement. All NOKs provided informed consent
and explicitly agreed.

Patient samples

Five SZ, seven BD and six normal samples were in-
cluded in this study, which were collected from the
Southwest Brain Bank with consent from the next-of-
kin (NOK). The NOK interview (psychological autopsy)
about the donor was performed by trained clinicians.
All of the patients in this study have met best estimate
consensus diagnoses of SZ or BD as defined by the
DSM-IV-TR criteria, as previously reported [24]. These
studies have been approved by the Institutional Review
Board of the University of Texas Health Science Center
at San Antonio. The quality of the postmortem brain
tissue (BA9) was determined by a neuro-pathologist
through both gross and microscopic neuropathological
examinations. All subjects in this study were free of
confounding neuropathology. For tissue identification
of the brain region BA9 taken from the same hemi-
sphere, we used the criteria described by Rajkowska
and Goldman-Rakic [25]. Detailed sample descriptions
are shown in Additional file 1: Table S1.
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MeDIP-seq

We sonicated genomic DNA to produce random frag-
ments with an average size of approximately 250 bp.
Sonicated DNA was then end-repaired, A-tailed and li-
gated with sequencing adapters following the standard
[lumina library preparation protocol. Double-stranded
DNA was denatured and immunoprecipitated with 5-
methylcytidine antibody. The immunoprecipitated DNA
was amplified by PCR and the efficiency of immunopre-
cipitation was validated by real-time PCR. Genome-wide
massively parallel paired-end sequencing was subse-
quently performed on the Illumina HiSeq 2000 platform
according to the manufacturer’s instructions. The
MeDIP-seq data from this study have been submitted to
NCBI Sequence Read Archive under accession no.
SRP035524.

RNA-seq

Beads with oligo(dT) were used to isolate poly(A)
mRNA after total RNA was collected from all samples
(RNeasy Lipid Tissue Mini Kit (Qiagen # 74804) and
QIAzol Lysis Reagent (Qiagen # 79306)). In the study,
only high-quality RNA samples that yielded RNA integ-
rity numbers (RIN) scores > = 6.0 by Agilent Bioanalyzer
were used for subsequent analysis. The average RIN
scores for SZ, BD and control samples were 7.6, 7.3 and
74, respectively. And there were no significant differ-
ences of RIN scores between disease (SZ or BD) and
control samples (P value =0.81 and 0.67, respectively,
two-tailed Student ¢ test). mRNA was fragmented in
fragmentation buffer as previously described [26]. Using
these short fragments as templates, the first-strand
c¢DNA was synthesized with random hexamer-primer
(TagMan Gene Expression Assays). The buffer, dNTPs,
RNase H and DNA polymerase I were used to synthesize
the second-strand ¢cDNA. QiaQuick PCR extraction kit
was used to purify short fragments. These short frag-
ments were subsequently resolved with EB buffer for
end reparation and adding poly(A) and then connected
with sequencing adaptors. Based on the results of agar-
ose gel electrophoresis, PCR amplification was done by
selecting suitable fragments as templates. The library
was then sequenced with 90 bp paired-end reads on
[lumina HiSeq 2000. The RNA-seq data from this study
have been submitted to NCBI Sequence Read Archive
under accession no. SRP035524.

Genomic elements

The genomic coordinates of CpG islands (CGlIs), exons,
introns, 5'UTR and 3'UTR were obtained from UCSC
genome browser [27]. Promoters were defined as 2500 bp
upstream and 500 bp downstream of the transcriptional
start sites (T'SSs). CGI shores were defined as 2 kb from
CGI edge. Noncoding RNAs were downloaded from
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GENCODE v.10 [28]. We obtained genome-wide func-
tional elements which were characterized by multiple epi-
genetic marks using a Hidden Markov Model [29] from
UCSC genome browser, such as strong or weak enhancers
and transcriptional elongation.

miRNAs and their targets

The genomic coordinates of human miRNAs were re-
trieved from miRBase (release 20) [30]. Human miRNA
TSSs were downloaded from miRStart (http://mirst-
art.mbc.nctu.edu.tw/) [31] and their promoter regions
were defined as 2500 bp upstream and 500 bp down-
stream of TSS. Then we downloaded miRNA-target rela-
tions from TargetScan (http://www.targetscan.org/) [32]
with a context score < —0.3.

Identification of differentially methylated regions
High-quality MeDIP-seq reads were aligned against the
human genome (hgl9) using SOAP2 (version 2.20) [33].
Only the uniquely mapped reads were used for further
analysis. These reads were analyzed using the MEDIPS
software (version 1.10.0) [34] to quantify relative DNA
methylation levels in sliding window of 50 bp. Differen-
tial methylation analysis was carried out using MEDIPS
(FDR < 0.05). Differentially methylated windows with a
distance less than 1000 bp were then merged. Regions
longer than 500 bp with at least 50 % of 50 bp windows
showing significant methylation difference were regarded
as differentially methylated regions (DMRs).

Identification of differentially expressed genes

After removing low-quality reads (reads containing
Ns > 5), the remaining reads were mapped to human
reference genome (hgl9) using SOAP2. Mismatches of
no more than 2 bases were allowed in the alignment.
Transcripts were assembled using Cufflinks 2.1.1 with
default parameters as proposed by Trapnell et al. [35].
Gene expression values were estimated as FPKM values
using Cufflinks. Cuffdiff [35] was used for discovery of
the differentially expressed genes (FDR < 0.05).

Permutation test

Permutation tests were performed to assess statistical
significance of the enrichment of DMRs in specific type
of genomic elements (such as promoters and introns).
As for each type of genomic element, the same amount
of genomic regions were randomly selected from
genomes, maintaining the same distribution of chromo-
some and length as real DMRs. This process was then
repeated 1000 times to generate 1000 random DMR sets.
The observed value was defined as the real number of
DMRs overlapping with these regions. And the average
number of DMRs in random sets showing overlap with
these regions was regarded as the expected value. Then
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the observed-expected (O/E) ratio of DMRs was calcu-
lated. The P value was computed as the percentage of
random DMR sets that showed more overlap with these
regions than the real DMR set.

Functional enrichment analysis

We calculated GO term enrichments (biological pro-
cesses) using the hypergeometric test with FDR < 0.05
(GOstats package in Bioconductor).

Results

Identification of differentially methylated regions (DMRs)
To characterize the global DNA methylation alterations
of major psychosis, we determined high-resolution
methylation maps of brain samples from 5 SZ, 7 BD
and 6 normal subjects using MeDIP-seq. Paired-end
reads were aligned to the human reference genome
(NCBI Build 37) and the saturation analysis indicated
that the sequencing depth is sufficient to analyze
genome-wide DNA methylation patterns (Additional
file 1: Figure S1). Then, compared with normal sub-
jects, we identified 10,961 DMRs (7880 hypermethy-
lated and 3081 hypomethylated) in SZ patients and
16,599 DMRs (6836 hypermethylated and 9763 hypo-
methylated) in BD patients.

Considering that pathology of many diseases are
closely related to aberrant DNA methylation, especially
at gene promoters. We therefore focused on the effect of
aberrant DNA methylation at gene promoters on gene
expression. We found that many DMRs tended to over-
lap with the promoters of known SZ- and BD-related
genes (Table 1). For example, NR4A1, whose promoter
overlaps with DMRs, has been implicated in several dis-
eases, such as SZ, Alzheimer’s disease as well as cancer
[36]. Significantly lower mRNA expression levels and
protein abundance of NR4A1l were observed in SZ pa-
tients when compared with controls [37]. In line with
these findings, we observed a hypermethylated DMR at
the promoter of NR4A1 (Fig. 1a), which might interpret
the lower expression to some extent. Another one,
NR1D1, has been repeatedly demonstrated to be linked
with BD [38]. In agreement with previous studies, our

Table 1 Disease-related gene list with aberrant methylation
supported by literature in SZ and BD, separately

Phenotype Known genes with aberrant methylation

SZ PLP1, NR4AT1, IL1B, GFAP, APC, TAART, MYTIL, GRIP1, ASTN2,
EGFR, CD28 and SLC6A2
BD DNMTT, NR1D1, PDLIMS5, GABRR1, GABRA4, CACNA1C,

GCLM, NDEL1, NTRK1, ABCA13, IGF1, BCR, PPP3CC, KIF17,
OPRM1, ACSL6, SREBF1, RUNX2, SOD2, PRDX6, PLXNA2,
RAIT, MYT1L and ATM
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results showed that the upstream region of its promoter
exhibited an obvious hypomethylation pattern (Fig. 1b).

Characterization of genome-wide distributions of DMRs
and their associations with expression changes

In order to analyze the distribution of DMRs across
whole genome, we retrieved different genomic
elements, such as CGlIs, promoters, exons and introns
(see Methods). Then we found that a high percent of
DMRs fell into introns and repeat elements (such as,
SINE and LINE), in both SZ and BD (Fig. 2). By ran-
domly generating the same number of DMRs, our
results demonstrated that hypermethylated DMRs sig-
nificantly overlapped with long intergenic non-coding
RNAs (lincRNAs) and LTR in SZ (P < 0.05, permutation
test; Fig. 2a, right panel). This is supported by recent
discoveries that aberrantly epigenetic- modified lincR-
NAs contributing to their expression changes function
in important cellular processes [39]. In contrast, hypo-
methylated DMRs significantly overlapped with introns,
SINE and LINE. Similar enrichment patterns across
different genomic elements were also observed for
hypermethylated and hypomethylated DMRs in BD
(Fig. 2b, right panel). These results suggested an inher-
ent property of DNA methylation alterations across
different genomic elements in major psychosis.

To further examine the effect of DMRs on gene
expression, we analyzed the transcriptomes of major
psychosis using RNA-seq. There are 1077 and 2085 dif-
ferentially expressed genes in SZ and BD, respectively
(see Methods). In addition, we extracted DMR-related
genes and grouped them into different element-
associated sets. By comparing these genes with differen-
tially expressed genes, we found that there are 288 genes
for SZ and 557 genes for BD with aberrant promoter
methylation, of which 14 (4.9 %) and 73 (13.1 %) showed
expression changes (Fig. 2c and Additional file 1: Table
S2 for SZ; Fig. 2d and Additional file 1: Table S3 for
BD). It may lead us to consider that DNA methylation
had a limited role in directly regulating gene expression.
Interestingly, there were 3232 genes for SZ and 5107
genes for BD with intronic DMRs, of which 236 (7.3 %)
and 499 (9.8 %) showed expression changes (Additional
file 1: Table S2 for SZ; Additional file 1: Table S3 for
BD). These findings suggested that beside the impact of
promoter DNA methylation on gene expression, DNA
methylation alterations in introns might represent
another mechanism by which DNA methylation influ-
ences expression.

Enrichment of DMRs in introns affecting diverse
functional elements

Next, we sought to examine how different genomic
elements are distributed around DMRs. We analyzed the
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Fig. 1 The screenshots of aberrant DNA methylation for NR4A1 in SZ (a) and NR1D1 in BD (b), respectively. The curves represent the average
DNA methylation levels (red for disease and green for normal samples). CpG islands are shown by green rectangle

distribution patterns of different genomic elements (such
as CGI, promoter and intron) around hypermethylated or
hypomethylated DMRs in SZ and BD. Figure 3 shows di-
verse distribution patterns. Some DMRs directly overlap
with promoters and some are located on their flanks.
However, many DMRs (2434 hypermethylated and 1268
hypomethylated DMRs in SZ; 1951 hypermethylated and
3931 hypomethylated DMRs in BD) completely fell into
introns, although a few were mapped to promoters (Fig. 3).
Therefore, we investigated whether these intronic DMRs
affected different types of functional elements defined by
epigenetic marks, which in turn contributed to gene
expression changes.

We used a multivariate hidden Markov model [29] to
determine 15 different functional chromatin states,
which represented different functional elements (such
as, insulators and enhancers), based on combinations of
different epigenetic marks in human embryonic stem
cells. Subsequently, we analyzed the distribution of
different functional elements across the 10 kb regions

surrounding intronic DMRs in SZ and BD. Although a
part of intronic DMRs are marked by polycomb re-
pressed, heterochromatic and repetitive states, more
than 50 % of the intronic hyper- and hypomethylated
regions in SZ and BD are associated with either strongly
or weakly transcribed regions (Fig. 4a and b). Such asso-
ciation between intronic DMRs and transcriptional
activity supported an important role of intronic DNA
methylation in altering chromatin structure and elong-
ation efficiency [40]. Note that it is not necessarily true
that hypermethylation and hypomethylation are correlated
with regression and activation of transcription, respect-
ively. In addition, we also found that a few intronic DMRs
were associated with active and weak promoters (Fig. 4,
red) and more with strong and weak enhancers (Fig. 4,
yellow), implying that intronic DMRs were involved in
gene regulation likely by interfering the long-range loop-
ing interactions between promoters and enhancers.

DNA methylation can also contribute to gene transcrip-
tion through changing chromatin structure and, in turn,
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influence the affinity and accessibility of transcription-
factor binding sites (TFBS) [41]. Thus, we wanted to know
whether intronic DMRs were associated with transcription-
factor binding. To address this issue, we detected genome-
wide binding sites for each transcription factor by MACS
(version 1.4.2, P<107°) using ChIP-seq data for 55 human
transcription factors from ENCODE project. For each TF,
we calculated the number of intronic DMRs overlapping
with TFBSs, and then performed permutation tests to as-
sess statistical significance (Fig. 4¢, d).

We found that aberrant DNA methylation disrupts
a lot of TFBSs in introns. For example, intronic
DMRs were significantly enriched in the binding sites
of the transcription complex c-Jun and c-Fos in both
SZ and BD (Fig. 4c, d). c-Fos has been implicated in
the control of genetic events in neurons, which can
dimerize with proteins of the JUN family, thereby

forming the transcription factor complex AP-1. AP-1
can engage in neurodegeneration and neuroregenera-
tion by regulating brain gene expression, such as
TNF-alpha, Bcl-3 and MCP-1 [42]. Intronic hyper-
methylated DMRs in BD disrupts binding sites for
enhancer-associated protein p300 [43], highlighting
the tight associations of intronic DMRs with en-
hancers. In BD, we observed a significant enrichment
of intronic hypomethylation on binding sites of Bcl3.
This gene encodes a protein functioning as a tran-
scriptional co-activator, through interacting with NF-
kappa B (NF-kB) homodimers. As proposed by
Kaltschmidt et al. [44], NF-xB was abundant in neu-
rons and played a role in neurological disorders.

It should be noted that even though the majority of
intronic DMRs can interfere with transcriptional initi-
ation, elongation or enhancer-meditated long-range
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looping interactions, the discrepancy between DNA
methylation and gene expression is still difficult to
explain.

DMR-mediated dysfunction of intronic miRNAs
contributing to expression changes
Interestingly, we found that intronic DMRs showed
significant overlap with the binding sites of RNA Polymer-
ase III (Pol3) in both SZ and BD (Fig. 4c, d). As we know,
Pol3 can transcribe different types of noncoding RNAs
[45], such as miRNAs [46]. Given the fact that the major-
ity of human miRNAs are located within the intronic
regions of transcription units [47], we therefore suspected
that intronic DMRs may influence miRNA transcription.

In order to investigate whether aberrant DNA
methylation-associated intronic miRNAs account for
gene differential expression, we obtained intronic
miRNAs whose promoters are covered by DMRs and
retrieved their targets from TargetScan. The results
showed that targets of intronic DMR-related miRNAs
captured numerous differentially expressed genes in
SZ and BD (Fig. 5a, b). It suggested that a part of
dysregulated genes might be mediated by aberrant
DNA methylation of intronic miRNAs.

For example, in SZ, hsa-mir-7-3 was identified as a
hypomethylated intronic miRNA, and its increased
expression has been validated in previous studies [48].
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Other hypomethylated intronic miRNAs, such as hsa-
mir-128-1 [49], hsa-mir-590 [50] and hsa-mir-455 [51],
have also been reported to be involved in brain-related
diseases. Together, these results demonstrated that aber-
rant DNA methylation could induce dysfunction of
intronic miRNAs, and in turn change expressions of
their targets, suggesting an indirect effect of methylation
on expression changes in major psychosis.

Functional characterization of intronic DMR-related
miRNAs

To investigate whether these intronic DMR-related miR-
NAs are responsible for important functions in major
psychosis, we first performed functional enrichment ana-
lysis based on all differentially expressed genes, up-
regulated and down-regulated genes separately (Fig. 5c-[I]
for SC, Fig. 5d-[I] for BD). These differentially expressed
genes were involved in many important biological pro-
cesses, such as neurogenesis, consistent with previous
studies. To our surprise, up-regulated genes are not
significantly enriched for any biological functions. In con-
trast, down-regulated genes can capture many important
functions associated with major psychosis, such as neuro-
genesis and nervous system development. These findings
might suggest that down-regulated genes may play more
important roles in major psychosis relative to up-
regulated genes.
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Subsequently, we sought to use DMR-related genes to
capture biological functions characterized by differentially
expressed genes. We found that only the intronic DMR-
related genes can accurately cover the majority of these
functions in both SZ and BD (Fig. 5¢-[III-V] and Fig. 5d-
[II1-V]), while DMRs falling into other elements (including
promoter, 5'UTR, exon and 3'UTR) almost cannot cap-
ture any functions. Unexpectedly, when combining DNA
methylation alterations with gene expression changes,
only down-regulated genes with hypermethylated intronic
DMRs can capture limited functions enriched by differen-
tially expressed genes in both SZ and BD (Fig. 5¢-[VI] and
Fig. 5d-[VI]). It thus inspires us to wonder whether in-
tronic DMR-related miRNAs could contribute to these ab-
normal functions in major psychosis. To address this
issue, we examined the functions of up- or down-
regulated targets of intronic DMR-related miRNAs. In
both SZ and BD, we observed that the down-regulated
targets of hypomethylated intronic miRNAs could effect-
ively account for the functions enriched by differentially
expressed genes (Fig. 5¢-[VII] and Fig. 5d-[VII]). For ex-
ample, in SZ, 74 down-regulated genes, targeted by 11
hypomethylated intronic miRNAs, were found to be sig-
nificantly enriched in neurogenesis. These findings
strongly indicated that intronic DMR-related miRNAs
play important functions by disturbing their targets in
major psychosis.

Discussion

In this study, we described an integrative DNA
methylome and transcriptome analysis of major
psychosis concerning SZ and BD by using MeDIP-seq
and RNA-seq, and explored how the epigenetic di-
mensions influenced expression and in turn contrib-
uted to the abnormal functions. Firstly, we identified
a large number of DMRs that were distributed across
different genomic elements and epigenetic-modified
functional elements. By comparing DMR-related genes
with differentially expressed genes, we found that
DNA methylation alterations can only account for
limited gene expression changes. Such discrepancy be-
tween DNA methylation and gene expression prob-
ably suggests their indirect effects. We further
observed that many intronic DMRs overlapped with
miRNAs. Functional analysis results showed a possible
role of miRNAs involved in DMR-induced gene ex-
pression changes.

Consistent with previous studies, DNA methylation al-
ternations at gene promoters could regulate a part of gene
expression (Additional file 1: Table S4 for SZ and S5 for
BD). For SZ, we found that 4 of the 168 genes with pro-
moter hypermethylation showed decreased expression
and 6 of 120 genes with promoter hypomethylation
showed increased expression (Additional file 1: Table S4).
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For BD, 11 of the 146 genes with promoter hyperme-
thylation showed decreased expression and 4 of 411
genes with promoter hypomethylation showed in-
creased expression (Additional file 1: Table S5). As an
example, gene PLP] gained increased promoter methy-
lation levels and showed down-regulated expression in
SZ patients compared with control subjects (Additional
file 1: Figure S2). Decreased expression of PLPI has
been frequently observed in BA9 of patients with both
SZ and BD [52]. Interestingly, we found that many
DMRs were located in introns, probably affecting pro-
moters, transcriptional elongation and enhancer-
mediated looping, in line with a recent report that
intragenic methylation could play a major role in the
regulation of tissue- and cell-specific alternative pro-
moters [53]. Interestingly, we found that a high percent
of intronic DMR overlapped with miRNAs. Also, we
found that many target genes of the aberrant DNA
methylation-related miRNAs were differentially
expressed, suggesting that DNA methylation alteration
might indirectly affect global gene expression by miR-
NAs. To further determine whether differential targets
of DMR-related miRNAs are responsible for psychosis-
related biological processes, we performed functional
comparison analysis. Our results showed that intronic
DMR-related miRNAs were involved in many import-
ant biological processes in major psychosis. These
DMR-related miRNAs could more extensively explain
the abnormal functions than protein-coding genes dir-
ectly affected by DMRs. Indeed, previous studies have
reported that dysregulation of miRNAs was frequently
observed in major psychosis [16, 54]. Beveridge et al.
[51] demonstrated a significant expression increase of
global miRNAs in SZ. The global expression increase
probably resulted from aberrant DNA methylation,
which is supported by a recent report that widespread
hypomethylation was observed in frontal cortex of both
SZ and BD subjects [12]. Hence, dysregulated gene ex-
pression might not be directly caused by aberrant
methylation, but indirectly mediated by dysregulated
miRNAs.

Given that promoter methylation could account for a
part of expression changes of protein coding genes
(PCGs), it remains to be determined whether these
finding is applicable to miRNAs. To address this, we
downloaded an additional set of RNA-seq, smRNA-
seq and MeDIP-seq data of H1 cell line from the
NIH Roadmap Epigenomics Program [55] and calcu-
lated the expression levels of miRNAs and PCGs as
well as their promoter methylation levels. As a re-
sult, both miRNAs and PCGs showed negative corre-
lations between promoter methylation and their
expression (Pearson’s correlation coefficient=-0.08,
P value < 2.2¢ ' for PCGs and Pearson’s correlation
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coefficient=-0.08, P value=0.1 for miRNAs;
Additional file 1: Figure S3). These results suggested
that there were no significant differences in the ef-
fects of DNA methylation on expression of PCGs
and miRNAs.

Long intergenic noncoding RNAs are key regulators
of chromatin states for important biological processes,
contributing to the development and progression of
diverse diseases [56]. They can silence or activate
genes by guiding chromatin remodeling complexes to
specific target genes, such as recruiting repressive
complexes such as PRC2 or the DNA demethylation
machinery to promoters. Interestingly, in our results,
we observed that hypermethylated DMRs were signifi-
cantly enriched for lincRNAs in both SZ and BD
(Fig. 2a, b). The enrichment of hypermethylated
DMRs in lincRNAs indicated that DNA methylation
alteration might influence expression of lincRNAs.
Like miRNAs, these DMR-related lincRNAs could
further regulate expression of downstream genes,
which may represent another indirect mechanism for
explaining the relationship between DNA methylation
and gene expression. Thus, exploring how aberrant
DNA methylation affects the specific functions of
IncRNAs in major psychosis may provide novel in-
sights into the underlying molecular mechanisms.

Conclusions

In conclusion, we detected an interesting link between
DNA methylation and gene expression in major psychosis
by integrating epigenome and transcriptome. Our results
showed that DNA methylation would influence gene
transcription not only by aberrant promoter methylation
directly but also by miRNA-related intronic methylation
changes indirectly. Characterization of dysfunctional miR-
NAs mediated by aberrant DNA methylation will facilitate
understanding of the pathogenesis of major psychosis.

Availability of supporting data

All supporting data are included as additional files or
kept in publicly available repositories. The MeDIP-seq
and RNA-seq data from this study have been submit-
ted to NCBI Sequence Read Archive under accession
no. SRP035524 (http://trace.ncbi.nlm.nih.gov/Traces/
sra/?study=SRP035524). The genomic coordinates of
CpG islands (CGIs), exons, introns, 5'UTR and 3’
UTR were obtained from UCSC genome browser
(http://genome.ucsc.edu/). Human miRNA TSSs are
freely available at http://mirstart.mbc.nctu.edu.tw/.
The miRNA-target relations used in this article are
freely available in the TargetScan database (http://
www.targetscan.org/).
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Additional file

Additional file 1: Supplemental Methods. Subjects. Postmortem
tissue. DNA and RNA preparation. Figure S1. Saturation analysis. Analysis
was performed for each sample, with the number of reads plotted on
the x-axis and correlation coefficient on the y-axis. Figure S2. The UCSC
Browser screenshot showing raw RNA-seq and MeDIP-seq reads
distributions around gene PLPT in SZ patients and controls. Yellow
shadows represent the regions with differential expression (up) and
methylation (bottom), respectively. Figure S3. Scatter diagrams showing
the correlations between promoter methylation levels (x axis) and
log-transformed expression (y axis) of protein coding genes (left)
and miRNAs (right). Table S1. Demographic characteristics for 18
subjects. Table S2. The number (percentage) of genes with hyper
vs hypomethylated elements and gene expression (up or down) for
SZ. Table S3. The number (percentage) of genes with hyper vs
hypomethylated elements and gene expression (up or down) for
BD. Table S4. The number of genes with hyper vs hypomethylated
promoters and gene expression (up or down) for SZ. Table S5. The
number of genes with hyper vs hypomethylated promoters and
gene expression (up or down) for BD. (DOC 21 kb)
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