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Background: Various approaches are being used to predict individual risk to polygenic diseases from data provided
by genome-wide association studies. As there are substantial differences between the diseases investigated, the data
sets used and the way they are tested, it is difficult to assess which models are more suitable for this task.

Results: We compared different approaches for seven complex diseases provided by the Wellcome Trust Case
Control Consortium (WTCCC) under a within-study validation approach. Risk models were inferred using a variety of
learning machines and assumptions about the underlying genetic model, including a haplotype-based approach with
different haplotype lengths and different thresholds in association levels to choose loci as part of the predictive
model. In accordance with previous work, our results generally showed low accuracy considering disease heritability
and population prevalence. However, the boosting algorithm returned a predictive area under the ROC curve (AUC)
of 0.8805 for Type 1 diabetes (T1D) and 0.8087 for rheumatoid arthritis, both clearly over the AUC obtained by other
approaches and over 0.75, which is the minimum required for a disease to be successfully tested on a sample at risk,
which means that boosting is a promising approach. Its good performance seems to be related to its robustness to
redundant data, as in the case of genome-wide data sets due to linkage disequilibrium.

Conclusions: In view of our results, the boosting approach may be suitable for modeling individual predisposition to
Type 1 diabetes and rheumatoid arthritis based on genome-wide data and should be considered for more in-depth

research.

Background

Genome-wide association studies are being used to build
multimarker predictive models of individual susceptibil-
ity to complex diseases, referred to as genomic profiling
or genomic predictors of genetic risk. The most common
approach is to use simple logistic regression on a genome-
wide genetic risk score (GRS) counting down the number
of risk variants an individual has [1-5] or on a weighted
GRS (WGRS) [1-8] that uses the log odds ratio (OR) for
the disease associated with each position to weigh the
effect of each genetic variant on the disease outcome.
Logistic regression with wGRS is equivalent to the sim-
pler Bayesian network defined for classification, the naive
Bayes classifier, which has also been used for this purpose
[9, 10]. Multiple logistic regression is also an option in
genome-wide data [11, 12] if some strong restriction to the
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number of input variables considered is imposed for them
to be computationally feasible.

The most common statistic used to measure the quality
of a risk predictor is the C-statistic or the area under the
receiver operating characteristic (ROC) curve (AUCROC
or AUC), which measures how well it can distinguish
prediction rates between the two diagnostic groups (in
genomic profiling, disease risk prediction between dis-
eased and normal individuals).

In polygenic diseases, successful assessment of risk pre-
diction is not only a matter of the accuracy of method
used but a question of genetic epidemiology (i.e. disease
prevalence and heritability). Disease prevalence, K, is the
proportion of diseased individuals in a population [13].
Heritability may be measured by A, the sibling risk ratio
or ratio of the prevalence of disease in siblings of affected
individuals compared to the prevalence in the population
K [13]. A highly polygenic disease has a mild genetic com-
ponent (i.e. modest heritability and high prevalence). The
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more polygenic a disease, the greater the number of asso-
ciated variants and the smaller their effect on the disease.
Given a value reported by a statistic of fitness, there is no
way of knowing which part represents model fitness to the
true genetic risk of individuals and which part represents
disease epidemiology (i.e. how well the true genetic risk
predicts disease status) [13]. In order to help differentiate
these two components of the AUC statistic, the AUC,4x
measure should also be used. The AUC,,,,, measures the
genetic component (i.e. the maximum AUC possible for
there to be the perfect predictor of disease risk) ([13]) so
that it will be lower in highly polygenic diseases.

At times, statistics of fitness such as the AUC are not
even reported for genomic predictors possibly because
they are much lower than risk predictors built on pheno-
type and environmental data collected from medical tests
or questionnaires. This is the case of studies on depres-
sion and anxiety [6]. In other cases, there is no or only a
modest AUC improvement (of no more than 0.01) when
a GRS is added to traditional risk factors, such as in the
case of coronary artery disease (CAD) [5, 14], myocardial
infarction in Hispanics [15] or atherosclerosis [16]. Even
if there were an improvement of more than 0.01, this is
much lower than it should be considering the genetic epi-
demiology of the disease. This is the case of predictors
for rheumatoid arthritis (RA) [17] and lung cancer [4]. By
way of example, in the predictor of lung cancer, the pre-
dictive AUC in a within-study validation approach using
bootstrapping was 0.639 [4] while the AUC,,,, is 0.98,
AUC,r (the AUC when only half the genomic variants
are included) is 0.89 and AUCy,,, (only a quarter of the
variants are included) is 0.80 for lung cancer [13].

Most of these studies showed negative results as their
predictive values were too low for them to be considered
clinically useful when applied to a sample at risk [18].
Moreover, for highly polygenic diseases, their AUC scores
were much lower than they should have been according to
disease heritability and prevalence [13].

Additional file 1: Table S1 shows 6 of the 7 diseases
from the WTCCC used in this study ordered according
to their genetic component or polygenic level in terms of
the AUC,y,4x (column four). Prevalence and heritability are
also shown (columns 3 and 4, respectively). These results
were taken from Wray et al. 2010 [13]. The results shown
for irritable bowel disease (IBD) were actually reported
very similar disease, Crohn’s disease. There is no infor-
mation about prevalence and heritability in hypertension
(HT).

One interesting exception for a highly polygenic disease
(AUCyax = 0.92) is a predictor of age-related macular
degeneration built as a wGRS from only 13 risk variants,
reporting an AUC of 0.84:[19], while the AUC,;4x, AUCyr
and AUC g4y [13] are 0.92,0.81 and 0.72, respectively. An
independent validation data set was not used to confirm
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this result in order to detect possible AUC over-estimation
because of a biased data set, possibly due to cases sharing
other traits such as a higher average body mass index than
the controls. However, even if the data set were not biased
and the AUC had been correctly estimated, it should be
noted that only individuals with both eyes affected and
at least one having a severe form of age-related macular
degeneration were selected. The reference max, half and
quart AUCs do not therefore hold but much higher val-
ues may be obtained since the authors are considering a
very aggressive type of age-related macular degeneration
which may have a much higher heritability [20].

The opposite of a highly polygenic disease is one that
is not very polygenic (shown in the last rows of Table 1),
i.e. those with high heritability and low prevalence and
therefore a high AUC,,,, [13]. Extreme examples of not
very polygenic diseases are Type 1 diabetes, Crohn’s dis-
ease and systemic lupus erythematosus, which all have
AUC4 = 1[13]. Two issues in highly polygenic diseases,
which have been identified as responsible either for the
negative results or for over-estimating classifier perfor-
mance (2, 3,7, 15, 21-23], have been successfully handled
in not very polygenic diseases.

The first issue relates to the use of prior information
from GWAS with low power. Low accuracy was there-
fore due to the limited number of susceptibility variants
detected in previous studies [18], which were used as the
only input variables to build the predictor. In order to
solve this, many of them selected markers on the basis
of predefined thresholds for the p-values associated with
the disease in the training data set [2, 18]. This approach
was expected to perform better and in fact it did for the
unpolygenic disease Type 1 diabetes when the algorithms
used to model the classifier were robust to redundant or
noisy variables, since variables associated with the disease
in a real yet low-level way might well be detected through
this approach [18].

The second issue, which relates to the testing procedure,
consists in using a discovery data set and a validation data
set with various individuals in common [3, 7, 21-23], and
has been identified as a cause of over-estimated accuracy
and considered “cheating” [11]. A similar problem was
specifically noticed under the wGRS approach, for which
log ORs used as weights were learned from a GWAS with
certain samples also included in the validation data set
[2, 15] or under any other approach in which the external
GWAS used to select single nucleotide polymorphisms
(SNPs) shared some samples with the validation data set
[1, 24]. Three alternatives to wGRS with weights estimated
from other GWAS have been considered: the first is to
learn the OR for each marker from the discovery data set,
which is equivalent to using the naive Bayes classifier [25];
the second is to use multimarker logistic regression, which
may result in negative results due to overfitting when the
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Table 1 Model learned from the T1D data set. Model learned from the T1D data set using 1-e5 as the p-value threshold, the holdout
approach, AdaBoostM1 as the learning algorithm with default configuration (decision stump as the weak learning algorithm and 10

iterations)

Chr Chr SNP Allele Allele Weight Genotypes Weight Genotypes
# Pos 1 2 rule 1 rule 1 rule 2 rule 2

1 77051324 SNP_A — 1827111 A C 0.0801 {0, missing}

6 32444658 SNP_A — 1934589 A G 0.2326 {0}

6 30135583 SNP_A — 2111335 A G 02171 {0} 0.0543 {1}

6 31395153 SNP_A — 2079423 C T 0.1525 0,1}

6 30390814 SNP_A — 2222387 A G 0.0672 0,1}

6 31112694 SNP_A — 4293786 C T 0.0517 0,1}

19 39266932 SNP_A — 4281637 A G 0.0904 {0,1}

Weights and genotypes values are referred to class 1, i.e. absence of disease. Chromosome positions correspond to assembly NCBI dbSNP GRCh38.p2

power of the study is low [24, 26]; and the third is to use
other approaches which are more robust to redundant or
noisy variables. The third alternative was somehow suc-
cessful in a study conducted on Type 1 diabetes [18], as
the AUC score in a within-study 5-fold cross-validation
approach was 0.89. It should be noted that the AUC,;;4,
is 1, AUCyyy is 0.93 and AUC 4y is 0.84 for Type 1 dia-
betes [13]. However, looking in depth at the way the work
was conducted, it seems that they added a set of 45 known
susceptibility markers for Type 1 diabetes to the predic-
tion model and some of these markers were obtained by
a pooling study using, among other things, the analyzed
data set [27].

As previously mentioned, however, the current chal-
lenge is to handle these issues in highly polygenic diseases.
To the best of our knowledge, no sound genetic predic-
tor with a predictive AUC near its expected value [13] in
terms of the genetic disease epidemiology has yet been
built for any highly polygenic disease.

One possible reason for these negative results relates to
the use of too simplistic models that assume marker inde-
pendence and which may be unable to control redundant
or noisy variables. However, there has been no success
when predictive models capable of handling marker inter-
actions and variable redundancy have been built under
different approaches as a way to improve the predictive
capacity, such as support vector machines [18], decision
trees, random forests and boosting algorithms [28]. By
way of example, in multiple sclerosis (MS), the AUC did
not increase when other algorithms building more com-
plex models (e.g. the Tree Augmented naive Bayes classi-
fier or a random forest) were used instead of a naive Bayes
classifier [28].

To the best of our knowledge, no systematic study with
the purpose of building predictors for complex diseases of
different epidemiological patterns, under different statis-
tical approaches which is able to represent marker inter-
actions and/or handle redundant or noisy variables, has

yet been conducted. We are therefore unable to conclude
whether more complex models are the key to turning the
current discouraging results into positive ones.

Perhaps, the lack of positive results may be due to a bias
in most of the models used so far to represent marker
dependencies and the implicit assumptions they rely on
should be explored. Consequently, most of the attempts
tried so far ignored chromosomal information. One result
supporting this hypothesis was undertaken for Crohn’s
disease [24] by a haplotype-based predictor. Although the
predictive AUC was still too low (0.72) to be considered a
positive result (AUCyax, AUChqy and AUC,y;y, are 1,0.95
and 0.86 [13], respectively), it was much higher than when
haplotype information was ignored (0.655). The authors
only used haplotypes of 2-SNP length. There is still the
question of whether the AUC would have improved if
longer haplotypes had been used. As previously men-
tioned [24], long haplotypes in case/control data sets may
not be a solution as they are inferred with an important
lack of accuracy. However, small haplotypes such as those
of 3, 4 or 5 SNP length were not tried either. The authors
also noted that signal dilution is less severe in shorter hap-
lotypes. However, certain procedures for avoiding signal
dilution could be used [29].

Additional file 1: Table S2 shows a summary of the most
important studies mentioned. In light of these discourag-
ing results, our objective in this work was to answer the
question of whether it is possible to build genomic risk
predictors from case/control GWAS. They must there-
fore be capable of reaching the expected AUC at least in
a within-study validation approach, considering disease
heritability and population prevalence. Disease heritabil-
ity can be defined as the proportion of phenotypic vari-
ance that is genetic whereas population prevalence can
be defined as the marker density of the array used for
genotyping and sample size [13, 30]. These last two fea-
tures affect the efficacy of the genetic profiles, i.e. the
proportion of genetic variance that they can explain.
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With this purpose, we performed a comparative study
of the predictive capacity of disease predictors built with
learning algorithms under different statistical approaches
for 7 different diseases with different levels of the genetic
component (Table 1). We also used a haplotype-based
approach with haplotypes of different lengths from 1 to 5
in order to understand the importance of using chromo-
somal information.

Results

Genotype-based predictors

We applied the common genotype-based model on a
wide variety of approaches ranging from the most sim-
ple (e.g. simple logistic regressions built on weighted or
unweighted genetic risk scores and naive Bayes classifiers)
to the more complex (e.g. support vector machines or
random forests which are capable of modeling variable
interaction and handling redundant or noisy variables).
Although multiple logistic regression may also deal with
redundant or noisy variables, given their highly time-
consuming processes of model building, they are not time-
feasible without imposing some limit on the number of
input variables used in genome-wide datasets. As the next
subsection outlines, this limitation may lead to worse pre-
dictive models than machine-learning approaches which
are able to handle hundreds of thousands of variables
more efficiently.

Figure 1(a)—(g) show the AUC values for each of the 7
diseases used in this work. Each figure compares results
using logistic regression on a GRS (LR GRS), logistic
regression on a wGRS (LR wGRS), a naive Bayes clas-
sifier (NBC), an allelic naive Bayes classifier assuming
the two allelic variables for each position are identically
distributed and conditionally independent given the trait
(aNBC) [31], a sigmoid-based support vector machine
(sSVM), a boosting algorithm (AdaBoostM1), a decision
tree learning algorithm (c4.5) and 20 a random for-
est learning algorithm (20RF) (see Methods for a short
description of sSSVM, AdaBoostM1, C4.5 and 20RF).

With the exception of the hypertension plot for which
we do not have the necessary data, all the plots show three
horizontal lines with the expected AUC when all, half and
a quarter, respectively, of the known genetic variance is
explained by the variants included in the model, as pub-
lished in [13]. It can be observed how the predictive AUC
reached at least AUC,,r for only two diseases (Type 1
diabetes and rheumatoid arthritis). The genetic compo-
nent of these two diseases is high (AUC,,, is 1 and 0.98,
respectively). However, the predictive AUC for irritable
bowel disease, an extremely unpolygenic disease, which
every algorithm obtained, is far lower than AUC;4;.

Focusing on the algorithm used, the winning algorithm
for these two diseases is AdaBoostM1. AdaBoostM1 is
actually the only algorithm that outperforms AUC,,, in
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two diseases: rheumatoid arthritis (the mean predictive
AUC is 0.8087, far higher than 0.7248, the second highest
predictive AUC, obtained by allelic NBC) and Type 1 dia-
betes (the mean predictive AUC is 0.8805, far higher than
0.7849, the second highest predictive AUC, obtained by
sSVM, another complex algorithm).

Therefore, for Type 1 diabetes, two algorithms
(AdaBoostM1 and sSVM) obtained a predictive AUC of
over 0.75, the threshold required for a risk classifier to
be clinically useful when applied to a sample at increased
risk [32]. However, AUC superiority of AdaBoostM1 was
statistically significant (« level 0.01, p-value was 0.00256
in a Wilcoxon Signed-Rank computed on the 10 folds).
For rheumatoid arthritis only AdaBoostM1 managed to
build a clinically useful disease predictor. For every other
disease, no algorithm would be clinically useful for a sam-
ple at risk, even less so for application as a diagnostic test
in the general population. It should be noted that in order
for it to be useful for the general population, the predictive
AUC has been estimated at over 0.99 [32]. The negative
results obtained by LR GRS and LR wGRS concur with
previously published ones using the same data sets [2].

Freund and Schapire (1996) [33] present a brief exam-
ple of the models that AdaBoostM1 can learn using the
default configuration of decision stumps (i.e. one-level
decision trees or 1-rules) as the weak learning algorithm
to explain what iterations and weak learning algorithms
mean in the AdaBoostM1 algorithm. We subsequently
used a holdout approach whereby the original data set was
divided into two independent data subsets of equal size:
the training data subset used to learn the model and the
test data subset used to compute the predictive AUC. We
also only chose 10 iterations, which will build models with
10 SNPs at most. The predictive AUC was 0.822, which
as expected was lower than the one obtained under the
cross-validation approach with 2500 iterations, but still
higher than 0.75. The model actually contains 7 different
SNPs and is shown in Table 1. Let us try to understand
what the model means and how it can be applied to infer
the risk of a certain individual having Type 1 diabetes.
Class 1 means not having the disease. Table 1 shows the
genotype values that increase the probability p of being
healthy or equally decrease the risk of having the disease.
In order to compute p for a given individual, the model
simply adds the increase in p (weights) conferred by each
SNP associated with the disease. For each SNP, Table 1
shows the chromosome number (column 1), the chromo-
some position (column 2) under assembly GRCh38, SNP
ID (column 3), allele 1 (column 4), allele 2 (column 5),
the increase in p (weight) added by the SNP for the geno-
type in column 6 and in the case of a second genotype
configuration increasing p in a different way, columns 7
and 8 show the weight for the second configuration and
the genotype itself, respectively. By way of example, an
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Fig. 1 Boxplots for predictive AUC of genotype models. Boxplots for the predictive AUC obtained for each fold in the 10-fold cross-validation (cv)
approach used to learn genotype models from data under different algorithms: a Results for bipolar disorder (BD), b coronary artery disease (CAD),

¢ hypertension (HT), d irritable bowel disease (IBD), e rheumatoid arthritis (RA), f Type 1 diabetes (T1D) and g Type 2 diabetes (T2D). For each plot
(with the exception of hypertension where data was unknown), three horizontal lines are also plotted corresponding to AUCquq (red line), AUChqie
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individual with the following genotypes 120?021 (where
? means a missing genotype), 0 no copies of allele 1 (i.e.
homozygous for allele 2), 1 heterozygous and 2 homozy-
gous for allele 1, will have p = 0+ 0+ 0.2170542636 + 0 +
0 + 0 + 0.0904392765 = 0.3074935401 of being healthy
or 1 — p = 0.6925064599 probability of having Type
1 diabetes, as the individual only has two genotypes for
protection against the disease: SNP4 — 2111335 at chro-
mosome 6 and SNP4 — 428163 at chromosome 19 (see
columns 6 and 8 for genotype values associated with class
1), thereby increasing the probability of being healthy.

What is interesting from this approach is that this
reduced model, which is learned from a training data set of
only 1722 individuals, obtained a predictive AUC of 0.822
with only 7 SNPs, still higher than the second best result of
0.8112 obtained by 20RF (see Additional file 1: Table S2)
under the same holdout approach. It should be noted that
the classic models LR GRS and LR wGRS achieved much
lower values: 0.7126 and 0.7294, respectively.

As mentioned previously, however, the more sophis-
ticated model learning approaches (e.g. boosting algo-
rithms, SVM or random forest classifiers) were only
clinically useful when applied to a sample at risk in Type 1
diabetes and rheumatoid arthritis.

In order to study model reproducibility, we switched
training and test data sets and ran AdaBoostM1 again
under the same default configuration. The new model
contains 9 different SNPs and is shown in Table 2.

In the two models, all SNPs at chromosome 6 belong to
the MHC region (chromosome positions from 28510120
to 33480577 under assembly GRCh38.p2).

Table 3 shows the AUC results under the genotype-
based approach with 10-fold cross validation (more
detailed results are displayed in the Additional file 1:
Tables S2 and S5 and other measures of fitness in the
Additional file 1: Table S6-S8).

For comparative purposes with the haplotype-based
approach that will be explained below, we have repeated
the genotype-based model by using the same sampling
approach used by the haplotype-based one: the holdout
sampling. Otherwise, the AUC results for the haplotype-
based models compared with the genotype-based mod-
els could be underestimated since only half the samples
(holdout testing approach) were used as the training test
while the original genotype-based models used 9/10 of the
samples (10-fold cross validation testing approach).

The first four columns of Table 5 show the AUC
results under the genotype-based approach with holdout
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Table 2 Study of model reproducibility: model learned from the T1D data set by switching training and test data subsets. Model
learned from the T1D data set, with the same configuration as the model in Table 5 but switching training and test data subsets

Chr Chr SNP Allele Allele Weight Genotypes Weight Genotypes
# Pos 1 2 rule 1 rule 1 rule 2 rule 2
6 32444658 SNP_A — 1934589 A G 1.09 {0} 0.22 {1}

6 30135583 SNP_A — 2111335 A G 0.74 {0}

6 32444815 SNP_A — 4303523 A G 0.62 0,1}

6 30726039 SNP_A — 2240847 A G 03 {0, 1, missing}

19 39266932 SNP_A — 4281637 A G 041 0,13

6 31112694 SNP_A — 4293786 C T 0.29 {0,1}

6 31277959 SNP_A — 1863445 A G 0.31 {0,1}

6 31278044 SNP_A — 1949560 A G 0.29 {0,1}

1 113630788 SNP_A — 2235405 A G 0.2 {0}

Weights and genotypes values are referred to as class 1, i.e. absence of disease

validation. Detailed results can be found in Additional
file 1: Tables S3 and S10 and other measures of fitness in
Additional file 1: Tables S11-S13.

Variable selection and multiple logistic regression

We wanted to compare these AUC results with some
state-of-the-art regression models, taking into account the
fact that for them to be applied in genome-wide data
sets we would need to impose some limit to the max-
imum number of input variables so that they became
computationally affordable.

Table 4 shows the AUC under the holdout approach
obtained by the different algorithms using only the top 100
SNPs (lowest p-value) selected from the training dataset
to avoid cheating [11]. We used 100 variables because this
was the number of SNPs that achieved the best results
in Type 1 diabetes and Crohn’s disease in a similar study
[11]. Several multiple logistic regression methods such as
penalized regression methods (ridge regression —RR— [34]
and the lasso [35]) and stepwise fitting of GLM with AIC
to select variables (GLM AIC were used.

Column 5 of Table 5 shows the best AUC under the
holdout approach when only the top 100 SNPs are used.
The method that achieved this highest AUC is shown

in column 6. It can be seen how the AUC was always
below that obtained when the number of variables was not
limited (column 2).

A haplotype-based approach

In light of the discouraging results when using genotype-
based risk predictors in most of the diseases analyzed,
even when more sophisticated algorithms were tested, we
tried to enhance the information provided to a learning
machine to build the risk predictor by keeping as much
chromosomal (allelic) association as possible. With this
goal, in a second step we built several haplotype-based
models as explained in Methods.

Figure 2(a)—(g) show bar plots with the AUC values cor-
responding to the test data set for the 7 diseases and all of
the different haplotype lengths used from 1 to 5 and all the
learning machines built (i.e. naive Bayes classifier (NBC),
sSVM, AdaBoostM1, C4.5 and 20RF) under an additive
genetic model.

The same results but for a dominant and recessive
genetic model are shown in Figs. 3(a)—(g) and 4(a)—(g),
respectively.

Regarding the haplotype length, it is interesting to note
that the approach based on haplotypes comprising only

Table 3 Highest AUC obtained by the genotype-based approach under the 10-fold cross validation sampling model

Disease Median AUC Min AUC Max AUC Learning machine p-val threshold
BD 0.6619 0.635 0.7 LR wGRS le-2
CAD 0.6293 0.583 0.668 NBC le-4
HT 0.6039 0.572 0.627 LR wGRS le-2
IBD 0.6732 0.635 0.707 AdaBoostM1 1e-5
RA 0.8087 0.768 0.844 AdaBoostM1 Te-5
T1D 0.8806 0.853 0914 AdaBoostM1 Te-5
T2D 0.6257 0.569 0.666 AdaBoostM1 Te-5
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Table 4 AUC under the holdout approach and different genotype-based predictors learned using only the 100 top SNPs

Disease NBC sSVM AdaBoostM1 C45 20RF lasso RR LR GRS LR wGRS GLM AIC
BD 0.53 0.551 0.552 0.524 0.535 0.552 0.553 0.523 0.534 0.551
CAD 0573 0.582 0.56 0532 0.574 0.566 0.569 0.556 0.568 0.567
HT 0.541 0.543 0.545 0.538 0.539 0.559 0.548 0.527 0.535 0.553
IBD 0.568 0.574 0.587 0522 0.557 0.585 0.587 0.56 0.569 0.577

RA 0.651 0.715 0.734 0.694 0.689 0.725 0.73 0.614 0.638 0.736
D 0.675 0.79 0.777 0.747 0.771 0.777 0.79 0.669 0.686 0.793
T2D 0.566 0.569 0.565 0.541 0.566 0.575 0.571 0.566 0.576 0.556

The highest AUC for each disease is shown in boldface

two SNP positions [24] has been improved by a more
general approach in which different numbers of SNPs,
i.e. haplotype lengths, were tested. Although the accu-
racy of inferred haplotypes increased with the number of
markers used, a modest number of SNPs of between 2
and 3 seem to obtain the best trade-off between haplo-
type accuracy and model fitting. For HT, the best solution
(AUC 0.5573) was obtained by all the genetic models
used with NBC and haplotypes comprising 5 SNPs. How-
ever, it should be noted that the AUC is too low and is
outperformed by the genotype-based model. Therefore,
haplotypes which are greater than 3 do not return better
results. As already mentioned [24], this may be due to the
decrease in accuracy of the reconstructed haplotypes.

Table 5 shows the best predictive AUC under the
genotype-based approach (columns 2 and 5) and the
haplotype-based approaches (column 7). More detailed
results can be seen in Additional file 1: Table S4 and S15—
S29 and other measures of fitness in Additional file 1:
Tables S30—-S74.

Although multiple logistic regression seems to outper-
form modern classifiers such as sSVM or AdaBoost in
most diseases under the same conditions, they are clearly

below the AUC achieved when all the SNPs were used. By
comparing results with no variable filtering except p-value
thresholds, and according to our results, AdaBoostM1
seemed to be the best among all the learning approaches
used. It therefore outperformed all the others in five out
of the seven diseases for both the genotype-based and
haplotype-based models. Regarding the genetic model
used, the additive approach outperformed or equaled all
the others in five out of the seven diseases, although this
result was not statistically significant (p-value is 0.4086
in a paired Student t-test on the null hypothesis of no
superiority of the additive model over the recessive and
dominant models).

The AUC results showed no absolute winner between
the genotype and haplotype approaches (p-value was
0.8984 in a 2-tail Student t-test). The haplotype-based
approach outperformed the genotype-based one in only 4
out of the 7 diseases analyzed, and the differences in AUC
were low for most of these. The largest difference in AUC
between the two approaches was reached in bipolar disor-
der (BD) (0.6222 for the genotype-based approach versus
0.6873 for the haplotype-based approach). However, the
AUC is still a long way from its expected value even when

Table 5 Highest AUC obtained by the genotype and the haplotype-based approaches

Genotype-based, holdout approach

Haplotype-based, holdout approach

p-value filtering Top 100 SNPs

Disease AUC Learning p-value AUC Learning AUC Learning Haplotype Threshold
machine threshold machine machine length p-value

BD 0.6222 LR wGRS 15e-2 0.553 RR 0.6873 AdaBoostM1-add. 3 le-4

CAD 0611 20RF le-5 0.582 sSVM 0.5761 20RF-rec. 3 le-7

HT 0.5776 AdaBoostM1 15e-2 0.559 lasso 0.5573 NBC-all 5 Te-5

IBD 06136 AdaBoostM1 Te-5 0.587 RR 0.6213 AdaBoostM1-rec. 2 Te-5

RA 0.8152 AdaBoostM1 Te-5 0.736 GLM AIC 0.8024 AdaBoostM1-add. 2 Te-5

T1D 0.8615 AdaBoostM1 Te-5 0.793 GLM AIC 0.8682 AdaBoostM1-add. 3 Te-6

T2D 06134 AdaBoostM1 Te-3 0576 LR WGRS 0.6372 AdaBoostM1-add. 2 Te-4

The highest AUC was obtained by the genotype (column 2) and the haplotype-based approaches (column 7) using the same multisampling method for both approaches:
holdout. The learning machines used for the haplotype-based approaches include the genetic model used: additive (add.), recessive (rec.), dominant (dom.) or each model
returns the same result (all.). Column 5 shows the highest AUC for the genotype approach when the number of input variables is reduced to the top 100 SNPs in order to use

the time-consuming generalized linear models



Potenciano et al. BMC Medical Genomics (2016)

9:3

Page 8 of 16

BD - Additive model

[N

Haplo(ype length

(a)

IBD - Additive model

e

Haplo(ype length

AUC
05

04

02

o
L

AUC
04 08

02

CAD - Additive model

NI

Hap\o(ype length

RA - Additive model

(LIS

Hap\o(ype length
e

T2D - Additive model

T

Hap\o(yps length

04

02

06

02

°

HT - Additive model

LLTRTET

Hap!clype length

(c)

T1D - Additive model

3
Haplotype length

W nec
SSVM
AdaBoostM1
B s
W 20RF

Fig. 2 Predictive capacity of the haplotype-based approach under an additive genetic model. Predictive capacity of the haplotype-based approach
under an additive genetic model: the AUC in the test data set is shown for different learning machines and the seven diseases of bipolar disorder (a),
coronary artery disease (b), hypertension (), irritable bowel disease (d), rheumatoid arthritis (e), Type 1 diabetes (f) and Type 2 diabetes (g)
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Fig. 4 Predictive capacity of the haplotype-based approach under a recessive genetic model. Predictive capacity of the haplotype-based approach
under a recessive genetic model: the AUC in the test data set is shown for different learning machines and the seven diseases of bipolar disorder (a),
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only a quarter of the known genetic variance is explained
by the variants included in the model (AUC 4 = 0.80),
meaning that the potential this approach may have for
some diseases is still very limited in terms of practical use,
such as medical profiling of highly polygenic diseases.
Comparing the three different genetic models used,
there do not seem to be any significant differences
between them. Summary Table 6 shows the highest AUC
achieved by each genetic model for each disease, among
all the predictive methods and haplotype lengths used.

Table 6 Highest AUC obtained by the haplotype-based
approach for all the genetic models used

Disease Additive Dominant Recessive
BD 0.6873 0.687 0.6649
CAD 05736 05733 0.5761
HT 0.5573 0.5573 0.5573
IBD 0.6196 0.6184 0.6213
RA 0.8024 0.7968 0.7971
T1D 0.8682 0.8609 0.8633
T2D 0.6372 0.6364 0.6355

The highest AUC of all haplotype lengths and predictive methods used obtained for
each disease by the haplotype-based approach for additive, dominant and
recessive genetic models

Values are very similar. For hypertension, the AUC is
exactly the same for the three genetic models (0.5573).

Discussion

Our starting point was the current lack of predictive
models which are good enough [2] to be clinically use-
ful, not even when applied to a sample at risk for which
they should obtain an AUC of at least 0.75 [13, 24]. In
order to assess whether this was just a problem in the
approaches used or a lack of information processed, we
conducted a wide analytic study to compare and improve
the predictive capacity of different approaches and obtain
as much information as possible from the genomic data
sets. With this goal in mind, we substantially broadened
the classic approaches in this task in two ways. First, by
using other predictive models in addition to the classic
(unweighted and weighted) GRSs among the state-of-the-
art approaches in the machine learning field, including
some which are able to consider variable interaction and
which are robust to noisy or redundant variables (e.g. sup-
port vector machines, decision trees and random forests).
Secondly, by using a haplotype-based approach similar to
the one already proposed using 2-SNP haplotypes [24] but
allowing larger haplotypes (from 2 to 5 SNPs) and differ-
ent genetic models (additive, recessive and dominant).
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In light of our results, it seems that some of the
new learning approaches strongly outperform the classic
methods for them to be used for diagnosis purposes when
used with a sample at risk in two of the seven diseases ana-
lyzed: Type 1 diabetes and rheumatoid arthritis. This is
the case of boosting methods, random forests algorithms
and support vector machines in Type 1 diabetes and
only boosting methods and random forests in rheuma-
toid arthritis. Their ability to model variable interaction,
however, seems not to be the reason for them to work, as
AdaBoostM1 assumes variable independence in the same
way as logistic regression or naive Bayes classifier do. The
reason may be their robustness to noisy or redundant
variables [18] as they always include a method for vari-
able selection (sSVM), pruning (20RF, C4.5) or weighting
(AdaBoostM1).

The fact that Type 1 diabetes and rheumatoid arthri-
tis are autoimmune diseases may indicate some common
genetic cause. Additional file 1: Table S1 shows common
SNPs between the winning configuration for both diseases
(AdaBoostM1 as machine learning and p-value thresh-
old of 1e — 5). All but four SNPs belong to the major
histocompatibility complex (MHC).

In order to compare these common SNPs with those
selected in other autoimmune diseases, we have also
added results for multiple sclerosis (MS). With this goal,
we used genetic data from the International Multiple
Sclerosis Genetic Consortium (IMSGC) [36] comprising
931 family trios, and built models under the same algo-
rithms and p-value thresholds as the WTCCC diseases.
As individuals are related, the association test used is the
transmission-disequilibrium test (TDT) implemented in
PLINK [37] so that the transmitted genotypes are con-
sidered to be high risk and the non-transmitted ones
are considered to be low risk. By using family trios,
the genome of each individual can be split into its two
genome-wide haplotypes (one inherited from the father,
the other inherited from the mother). In order to sim-
plify this, the classifiers do not classify individual risk
but genome-wide haplotype risk. The final column of
Additional file 1: Table S3 shows the highest AUC for
each algorithm among all the p-value thresholds used. The
highest AUC (0.6167) was reached by 20RF and p-value
threshold le — 5, and the second highest was very close
(AUC = 0.6162) and reached by AdaBoostM1 and p-value
threshold 1e— 6. A different microarray was used to geno-
type individuals in the IMSGC GWAS (Affymetrix 500K
Set comprises Mapping250Kysp and Mapping250Ksty
Arrays) from the one used by the WTCCC GWAS. Var-
ious positions, therefore, are not in both arrays although
they may be in linkage disequilibrium (LD) between them.
In order to see LD relationships between positions chosen
by the multiple sclerosis model and those positions shared
by the Type 1 diabetes and rheumatoid arthritis models,
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we have built an LD map (the LD statistic used was D’).
The color red means perfect LD (D’ = 1) whereas white
means D' = 0. Figure 5 shows this map which was built
using BmapBuilder [38]. The positions in black are those
only in Type 1 diabetes and rheumatoid arthritis models,
the positions in red are those only in multiple sclerosis and
the positions in green are shared by all of them. The ID
position refers to the rs number. It is apparent that certain
positions from different data sets share the same high LD
block. One example of this are the positions rs115719435
(multiple sclerosis) and rs115029137 (Type 1 diabetes and
rheumatoid arthritis).

It should be noted that since there is no clear winner
for each disease, differences in model fitness obtained
by different algorithms depend on the disease. In this
paper, however, we have observed significant AUC supe-
riority of AdaBoostM1, a robust algorithm to redundant
or noisy variables, for the two diseases of Type 1 diabetes
and rheumatoid arthritis in which AUC levels are high
enough for the models to be clinically usable. Although for
the other diseases, more classic algorithms (e.g. LR GRS)
sometimes achieved the highest AUC (as exemplified by
LR wGRS for BD and HT and NBC for CAD and IBD,
respectively, in the genotype-based approach and NBC-
all in the haplotype-based approach), AUC differences
were not always significant and if they were, the AUC was
not high enough to be used in medical care. In terms of
the genotype versus haplotype approach, there is no clear
winner but differences are apparent for highly polygenic
diseases. As our expectations of achieving similar AUCs
by using random forests, support vector machines and
boosting algorithms were not satisfied, we attempted to
understand the specific properties of the boosting algo-
rithm AdaBoostM1 that enabled it to obtain the best
results.

In this work we have only used a within-study valida-
tion approach (10-fold cross validation and holdout). We
understand that the problem of spurious associations has

Fig. 5 Chromosome 6 LD map with all positions related with
autoimmune diseases. D' is used as the LD measure. All positions
chosen by both the best Type 1 diabetes and the best rheumatoid
arthritis predictive models were displayed (SNP id in black) in addition
to all the positions chosen by the best multiple sclerosis model (in
red). The color green was used for those positions shared by all
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not been completely solved [18] since cases and controls
might have undergone different DNA preparation pro-
tocols, or were genotyped in different batches, or there
might have been population stratification, etc. For a model
to be thoroughly validated, therefore, it should be tested
on an independent data set. However, the main goal of
this work was merely to perform a wide comparative
study in order to understand whether current methods
enable the onset of certain diseases to be predicted from
case/control GWAS. For this purpose, we believe that
WTCCC data sets together with a within-study validation
approach offered the best scenario.

Conclusions

We have conducted extensive research to explore algo-
rithms under very different approaches to model indi-
vidual risk to 7 complex diseases from the WTCCC
from genome-wide data. Our purpose was to understand
whether current tools may be able to build predictive
models which are accurate enough for application in med-
ical care. In light of our results, it seems that for only
two diseases with a high genetic component (rheumatoid
arthritis and Type 1 diabetes) did certain models achieve
a high enough predictive capacity for them to be used
in clinical practice. The best of these were obtained for
these two diseases by a boosting approach which is robust
to redundant and noisy variables. Given the good per-
formance of the boosting approach and the fact that we
only considered one boosting algorithm (AdaboostM1),
we believe that more systematic research of the boosting
approach for building genome-wide genetic models could
provide interesting insights.

Methods

For our experiments we used published data from the
WTCCC [2, 39], a GWAS from individuals genotyped
using the Affymetrix 500K SNP chip and involving
7 different diseases: Bipolar disease (1998 individuals),
coronary artery disease (1926 individuals), irritable bowel
disease (2005 individuals), hypertension (2001 individu-
als), rheumatoid arthritis (1999 individuals), Type 1 dia-
betes (2000 individuals) and Type 2 diabetes (T2D) (1999
individuals). After undergoing quality control, we had
genome-wide SNPs genotyped for 1868 individuals with
bipolar disease, 1988 with coronary artery disease, 1748
with irritable bowel disease, 1952 with hypetension, 1860
with rheumatoid arthritis, 1963 with Type 1 diabetes and
1924 with Type 2 diabetes. For the control individuals,
WTCCC used a data set from the 1958 British Birth
Cohort (1504 healthy individuals) which was reduced to
1480 individuals after passing quality control. A rigor-
ous quality control process was performed to remove
low quality SNPs and individuals with doubtful ancestry
or possible relatedness. The original paper [39] presents
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a full description of the data sets and quality control
procedures.

Additionally and in order to avoid spurious association
due to batch effects, genotyping errors and/or population
stratification, we applied other more stringent SNP clean-
ing as performed by Evans et al. [2], excluding any SNPs
that were not in Hardy-Weinberg equilibrium (p-value
p < 0.05 in cases and controls), those with different miss-
ing rates between cases and controls (p-value p < 0.05)
and those with a minor allele frequency of less than 1 %.

After all the quality controls, we combined all the con-
trol individuals with all the cases for each disease and
obtained 7 data sets, one for each disease. With these data
sets, we performed various analyses within two clearly
different approaches regarding how input variables were
defined: first, the genotype-based approach, using single
SNPs as input variables of three values (homozygous wild-
type, homozygous mutant and heterozygous); and second,
the haplotype-based approach, using inferred allelic infor-
mation within each chromosome. This second approach
has already been used in case/control genetic predictors
for 2-SNP haplotypes [24] and in trio samples for longer
haplotypes up to those comprising 150 SNPs [28].

p-value thresholds

The choice of p-value threshold to select the SNPs or hap-
lotypes that will be used as input variables in a genetic
predictor may influence its performance. At one extreme,
too liberal thresholds are supposed to reduce accuracy
because of noise [2]. However, most modern approaches
for learning models from highly dimensional data intro-
duce a way to increase robustness to noisy data [40]. At
the other extreme, very stringent thresholds may discard
small effects that contribute to the disease risk. In order
to study the true effect of different thresholds in predic-
tion, we chose a wide range of p-value thresholds which
was similar to Evans et al. (2009) [2]: « = 0.8;a = 0.5; ¢ =
0.1, = 0050 = 0.0, = 0.001;¢ = 0.000L; =
0.00001.

Discriminative ability and generalization capacity

(accuracy, recall, precision, sensitivity, specificity and AUC)
In order to measure the predictor performance in terms
of discriminative ability, we used six different evalua-
tion metrics: overall accuracy, recall, precision, sensitivity,
specificity and AUC. Overall accuracy is the proportion of
individuals correctly classified. The main problem of this
measure is that its interpretation depends on the marginal
distribution of cases and controls. Precision is the positive
predictive value, i.e. the proportion of individuals classi-
fied as affected that are truly affected. Sensitivity is the
true positive rate, i.e. the proportion of affected individ-
uals correctly classified. Specificity is the true negative
rate, i.e. the proportion of healthy individuals correctly
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classified. The AUC measures the discriminative ability
regarding the cost of misclassification in cases and con-
trols and the marginal distribution of cases and controls.
The receiving operating curve (ROC) plots a false posi-
tive rate (1-specificity) on the x-axis and a true positive
rate (sensitivity) on the y-axis. A ROC curve on the diag-
onal means the predictor is as inaccurate as guessing and
the AUC will be 0.5. The maximum AUC is 1 and cor-
responds not to a curve but to a vertical line at x = 0
(specificity = 1) and a horizontal line at y = 1 (sensibil-
ity = 1). Any curve above the diagonal will have an AUC
greater than 0.5. The AUC merely compares the over-
all distributions of correctly classified cases and wrongly
classified controls.

Measuring the discriminative ability of a genetic pre-
dictor through the same data set used to learn it (i.e. the
training data set) does not convey its generalization capac-
ity. Very simple models may have a low performance but
better generalize when tested on an independent data set.
On the other hand, more complex models may show a
high performance but have no generalization capacity at
all because they overfit to the training data set. There-
fore, all the measures used to test discriminative ability
have been applied on an independent data set, the test
data set. For models learned within a feasible computa-
tional time such as the genotype-based predictors in this
work, we used a multisample model validation, the 10-fold
cross-validation, in which the original data set is randomly
split into 10 non-overlapping subsets and for each sub-
set the test data set is one subset and all the remaining
subsets comprise the training data set, from which the
measures mentioned above were computed. The average
results were then calculated. For more time-demanding
models, i.e. those representing haplotype-based predic-
tors, we simply randomly divided the original data set into
two subsets of equal size and used one as the training set
and the other as the test set.

Learning machines
We used different learning machines or algorithms able to
learn models from a training data set.

Simple approaches: simple logistic regression and naive
Bayes classifiers

We first built predictive models from each training data
set following the state-of-the-art methods based on simple
logistic regression

pD | x)

InO(x) =1In
1—pD|x)

= ap + a18(x)

where g(x) may be a GRS defined as GRS(x) =
a wGRS defined as wGRS(x) =

> iy i or

221 wix; with 7 being the
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total number of selected SNPs, w; being the allelic odds
ratio defined as
pD | hi=1 pD | h; =0)

=InOR; =In— s
pD | hi=1)p(D | h; =0)

D and D indicating whether an individual has the disease
or not and /; a binary variable that refers to any of the two
alleles /4,1, hjo at position i so that x; = h;; + hj2 holds for
every i = 1,...,n. The odds ratio required to compute
wGRS and parameters o and o] were all learned from the
training data set.

Another simple model used is the naive Bayes classifier.
This model assumes independent input variables (SNPs in
our study) given the output variable (the disease outcome
in our study) based on genotypes:

pD) [, (pxi | D)
(D)l_[l 1P | D)+(@ _p(D))l_[;lzlp(xi | D)

In terms of the AUC, a wGRS should be equivalent to a
naive Bayes classifier for any choice of parameters «, o1,
as the parameters do not affect the AUC [25].

We also used a naive Bayes classifier based on alleles and
assumed that /;;,j = 1,2 are identically distributed and
are conditionally independent given D. This is equivalent
to the simple logistic regression with parameters

pD | x) =

p(D)
ap =In 1—p(D)+ Z

i=1

p(h =0]| D)
p(h;=0|D)

and o; =1 [31].

More complex approaches: support vector machines,
boosting methods, decision trees, random forests

In order to know whether the predictive capacity may be
limited by the simplicity of the state-of-the-art genome-
based models, we used very different approaches in the
machine learning field which were capable of building
more complex models from data: support vector machines
[40], decision trees, random forests and boosting meth-
ods. We chose one algorithm within each approach and
its implementations in Weka [41], a software “work-
bench” implementing several standard machine learning
techniques. From the various published support vector
machines implemented in Weka, we chose a sigmoid ker-
nel function (sSVM) since it performed best. For the deci-
sion tree we chose the leading-edge C4.5 algorithm (called
J45 in Weka) [42]. For the approach based on random
forests we tried 20 trees (20RF) (default configuration is
10) with a maximum depth of 6 to avoid overfitting (no
restriction by default). For the boosting methods we used
the trendy AdaBoostM1 [33] using decision stumps, i.e.
one-level decision trees or a single decision rule, as weak
classifiers (default configuration) and 2500 iterations (the
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default 10 is too low for models with thousands of low-
impact variables, as is the case of predicting complex
diseases from GWAS).

Genotype-based predictors

Original data are genome-wide, three-value variables rep-
resenting the genotype an individual has at each locus.
The output variable is a binary one representing whether
the individual is a case or a control. We performed a 10-
fold cross-validation approach as explained by [2]. For
each fold, only 90 % of individuals comprised the train-
ing subset, which was used to learn the model. In order to
decide whether an SNP should be used as an input vari-
able of the model, the same training subset was used to
compute the p-value for the Armitage trend test imple-
mented in PLINK [37], and any SNP with a p-value below
the threshold was selected. The remaining 10 % comprised
the test data set. The median accuracy, precision, speci-
ficity, sensitivity and AUC were estimated from the results
of these 10 analyses.

Haplotype-based predictors

For our study, we used 4 different haplotype sizes (from 2
to 5) and three different genetic models: recessive, dom-
inant and additive models on the absolute risk of the
genome-wide haplotypes. We built models for each of the
7 diseases and genotype-based predictors were also built
for these. We also used information about chromosome-
wide haplotypes to build the models [31]. As previously
mentioned, one approach using only the additive model
and haplotypes of only 2 SNPs has already been used to
predict the risk of Crohn’s disease [24]. Linkage equilib-
rium was assumed between haplotypes (i.e. no association
between haplotypes) so that the model only had a multi-
plicative effect on the odds of each haplotype (additive on
log odds) [31].

For each model we first reconstructed genome-wide
haplotypes from genotypes for each individual using
Shapeit [43], software for fast and accurate haplotype
inference. The second step was to test the haplotype-
based association between each locus and the disease. The
main problem of using haplotypes as input variables con-
cerns sample reproducibility: the longer the haplotypes,
the higher the chances of spurious associations due to
a small sample size. In order to avoid this problem we
extended the multimarker transmission-disequilibrium
test (mTDT) for nuclear families mTDT,g [29], which
is robust to haplotype size and does not overfit to cur-
rent haplotypes or to case/control data sets. The mTDT>G
statistic for family trios measures the differences in trans-
missions of g1, a group of haplotypes comprising the
haplotypes that are more often than not transmitted from
parents to offspring in an independent data subset ver-
sus go, a group of haplotypes comprising those haplotypes
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Table 7 Understanding mAssocTestyg (1): a dataset should be
split and haplotype counts obtained from half the dataset

Haplotypes 000 001 010 011 100 101 110 111
Case 13 8 11 9 14 17 16 12 100
Control 12 1 19 7 16 13 2 20 100

25 19 30 16 30 30 18 32 200

Total counts

Example of haplotype counts from half a case/control data set

that are more often not transmitted than transmitted from
parents to offspring, and this is defined as

2
Ng. g0 — N
WITDTZG — ( 818 gzgl) ,
g

with #1g, 4, M1g,g; defined respectively as:

ng1gy = Z nij and
hiegl,h,egg

ngg1 = Z Hijs
hiegg,hjegl

where #;; is the number of parents with genotype (%;/h;))
transmitting haplotype /; to their offspring, n;; is the num-
ber of parents with genotype (/;/;) transmitting haplo-
type k; to their offspring and g is the total number of
parental genotypes in the data subset with one haplotype
in g1 and the other in g>. The data set is divided into two
equally-sized parts for test application: half of each part is
used to form the two groups and the other half to compute
statistics. mTDT¢ is a McNemar test (x2 ) under the null
hypothesis of no linkage.

mAssocTestyg, the extension of mT DTy to be applied in
case/control GWAS, is defined as:

2
(Meas—gi — Meont—gi)
mAssoclestyg = a a

ng

2
n (”casfgz - Vlcontfgz)

g, ’
with 72c45 g1, Meont—g, defined respectively as the num-
ber of cases and control haplotypes belonging to group
g1- In a similar way, ncas—g,, Heont—g, are also defined.
g, is the total count of haplotypes in g1 and g, the

Table 8 Understanding mAssocTestys (Il): haplotype counts from
the other half of the data set are to be used to compute the
statistic

gi 92
Case 53 47 100
Control 38 62 100
91 109 200

Example of group counts from the other part of a case/control data set



Potenciano et al. BMC Medical Genomics (2016) 9:3

total count of haplotypes in g;. As with mTDTyg, the
data set, the training data set in our case, is divided into
two equally-sized parts for test application: one part is
used to comprise the two groups and the other to com-
pute the statistic. mTDTg is a x2 test with 2 degrees of
freedom.

For a better understanding of how mAssocTestyg is com-
puted, let us consider Table 7 of haplotype counts of
length 3 obtained from half of a data set analyzed with 100
individuals. For the sake of simplicity, major and minor
alleles at all loci are represented as 1 and 0, respectively.

From this table, group g1 comprises the haplo-
types that are more frequent in cases than in con-
trols: g1 = {000,011,101,110}, and therefore all the
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remaining haplotypes comprise the second group: go =
{001, 010,100, 111}. From these two groups, the second
data subset is used to compute the statistic. Table 8 shows
haplotype counts for the two groups from the second data

subset.

Thus, mAssocTestr)g = w = %5 + % =
4.5368 and p-value is p = 0.033175.

In the third step, once we had computed mAssocTestsg
on the training data set for sliding windows with an off-
set of 1 and different haplotype lengths (from 1 to 5),
we applied different levels of loci filtering (the 13 p-
value upper limits previously mentioned) in order to select
the input variables of the haplotype-based predictor of
individual risk pIndj, (i).

Training
data set
1st half

Training
data set

Phased
training
data set
1st half

Phased
training

2nd half

Test
data set

Filtered
phased
training
data set

Filtered
phased
test
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Fig. 6 Summary of the five steps followed by the haplotype-based approach. The training data set was split and genotypes within each subset were
independently phased using Shapeit (first step). From one half of the training data set, mAssocTest,s was used to estimate the association between
haplotypes (lengths considered were 2 to 4) and phenotype (second step). Different p-value thresholds were used to select the input variables
(comprising 2 to 4 SNP-length haplotypes) (third step). Models of haplotype risk predictors were built using the second half of the training data set
(fourth step). Individual risk was assessed by combining the two genome-wide haplotypes each individual has (fifth step)
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In the fourth step, we learned the predictors using all
of the previously mentioned approaches from the second
half of the training data set, i.e. those individuals used to
compute the mAssocTestyg statistic. The haplotype-based
predictor is defined on the basis of a predictor of haplo-
type risk, pHap(h). The log odds for each genome-wide
homologous chromosome of an individual are therefore
combined in order to estimate its individual risk. Each
genome-wide homologous chromosome comprises one
of the two chromosomes for each 22 chromosome pair.
The input variables for the predictor of haplotype risk are
binary ones, representing whether a haplotype belongs to
g1 or go. The output variable for the predictor of hap-
lotype risk is the probability of a given genome-wide
haplotype to be a high-risk haplotype. We consider that
both genome-wide haplotypes comprising the genome
of an unaffected individual must be low-risk haplo-
types while both genome-wide haplotypes comprising the
genome of a diseased individual must be high-risk ones.
Only individuals in the second half of the training data set
(i.e. those used to compute the statistic) are used to build
the haplotype risk predictor.

In the fifth and final step, we used the predictors to mea-
sure their generalization capacity, by feeding them with
individuals from the test data set. It should be noted that
for small data sets and haplotypes comprising a few posi-
tions there may be variants in the test data set that are not
present in the training data set. In order to decide whether
a haplotype at a given sliding window was a high (1) or low
(0) risk one, we computed the similarity between it and
each haplotype in the list of high risk and low risk haplo-
types for the corresponding sliding window in the training
data set. We therefore classified it as 1 or 0 depending
on whether the closest haplotype belonged to the set of
high or low risk haplotypes, respectively [31]. We used
the length measure as the similarity measure [44], which
computes the largest number of consecutive matching
alleles. Figure 6 summarizes the entire procedure of our
haplotype-based approach.
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