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Predicting target proteins for drug
candidate compounds based on drug-
induced gene expression data in a
chemical structure-independent manner
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Abstract

Background: Phenotype-based high-throughput screening is a useful technique for identifying drug candidate
compounds that have a desired phenotype. However, the molecular mechanisms of the hit compounds remain
unknown, and substantial effort is required to identify the target proteins associated with the phenotype.

Methods: In this study, we propose a new method to predict target proteins of drug candidate compounds based
on drug-induced gene expression data in Connectivity Map and a machine learning classification technique, which
we call the “transcriptomic approach.”

Results: Unlike existing methods such as the chemogenomic approach, the transcriptomic approach enabled the
prediction of target proteins without dependence on prior knowledge of compound chemical structures. The
prediction accuracy of the chemogenomic approach was highly depended on compounds structure similarities in
data sets. In contrast, the prediction accuracy of the transcriptomic approach was maintained at a sufficient level,
even for benchmark data consisting of structurally diverse compounds.

Conclusions: The transcriptomic approach reported here is expected to be a useful tool for structure-independent
prediction of target proteins for drug candidate compounds.
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Background
Phenotype-based high-throughput screening (PHTS) is a
useful technique for identifying drug candidate compounds
that have a desired phenotype; thus, it is a prominent part
of the drug development process [1]. However, when using
PHTS alone, the underlying molecular mechanisms of hit
compounds remain unknown, and considerable effort is
usually required to identify the target proteins associated
with the phenotype. Obtaining information on the mecha-
nisms of drug actions (e.g., the primary target, off-targets,
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and active pathways) can help to optimize the structure of
drug candidates and elucidate their potential side effects.
Therefore, there is a strong incentive for researchers to effi-
ciently predict the target proteins of drug candidate
compounds.
Recently, a variety of in silico methods for compound tar-

get prediction have been proposed in the context of chemo-
genomics, where target prediction is based on compound
structures and protein sequences as well as pre-existing
knowledge from databases about known compound–pro-
tein interactions [2–7]. Chemogenomic methods work well
when query compounds (e.g., drug candidate compounds)
and the known target compounds in these databases share
similar chemical structures. In contrast, when the chemical
structures of these compounds share little similarity, che-
mogenomic methods are often ineffective. Recently, the use
of information on the side effects of drugs has been
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proposed as an alternative method for target predictions
[8–10]. Although side effect-based methods do not depend
on the similarly of the compounds’ chemical structures,
they are applicable only to those approved drugs for which
detailed side effect profiles are available. Therefore, side
effect-based methods cannot be applied to new drug candi-
date compounds (e.g., newly synthesized compounds) that
are yet to have their side effects profiled.
Recent advances in transcriptome technologies (e.g.,

DNA-chips and RNA-seq) have enabled us to measure the
expression profiles of all human genes at low cost, and
several databases containing gene expression data have
been constructed worldwide [11–13]. Connectivity Map
(hereafter referred to as “CMap”) is a well-established
database in which gene expression profiles for the chem-
ical perturbations of 1,309 bioactive compounds in four
cell lines are stored [14]. Broad Institute in the USA
released CMap in 2006, and since then several studies
have reported correlations between drug actions and the
drug-induced gene expression patterns in the database
[15–20]. In particular, the CMap resource has useful
pharmaceutical applications, such as drug repositioning.
In this study, we propose a new method to predict target

proteins of drug candidate compounds, termed the “tran-
scriptomic approach,” which is based on drug-induced
gene expression data in CMap with a machine learning
classification technique. We compare the performance of
the transcriptomic approach with that of the chemoge-
nomic approach, which is based on chemical structures
and protein sequences, and we show that the transcrip-
tomic approach can predict target proteins independent of
data on compound chemical structures. The prediction
accuracy of the transcriptomic approach was maintained
at a sufficient level, even for benchmark data consisting of
structurally diverse compounds. Therefore, the transcrip-
tomic approach is expected to be useful for predicting tar-
get proteins of drug candidate compounds in a chemical
structure-independent manner.

Methods
Drug-induced gene expression data
CMap (build 02) is a collection of 6,100 gene expression
profiles for 13,469 human genes from four cell lines
(MCF7, HL60, PC3, and SKMEL5) treated with 1,309
bioactive small compounds. The CEL files of CMap were
downloaded from the database website [21]. The CMap
annotation file (cmap_instances_02.txt) indicates the
distinct instance ID for each pair of treatment-control
samples with experimental conditions (i.e., concentra-
tion, cell line, and batch). A filtering process was applied
to this dataset as follows. First, MCF7 cell line instances
were selected because MCF7 is the most frequently used
of the four cell lines. Next, the instance with the highest
concentration of treatment was selected when the same
compounds were assigned different instances. The in-
stance with a smaller batch ID value was selected if the
instance with the same condition instance was present
in different batches. Following this filtering process,
1,294 instances (i.e., compounds) were finally selected.
MAS5 normalization was applied to all selected samples
[22]. The GeneChip array (HG-U133A) has multiple
probes assigned to one gene. The unique representative
probe was selected by using the highest average rank
based on the rank ordered matrix of expression changes
between treatments and controls. The fold change score
was calculated for each treatment against the corre-
sponding control, and the base-2 logarithm was calcu-
lated. Finally, a 1,294 × 13,469 gene expression matrix
(comprising 1,294 compounds in rows and 13,469 genes
in columns) was constructed and denoted by X.
The gene expression similarities of compounds and of

proteins (hereafter referred to as “compound expression
similarities” and “protein expression similarities,” respect-
ively) were evaluated by using Pearson’s correlation coeffi-
cients on the row and column profiles of the gene
expression matrix, respectively. The expression profile of
each compound is a real-valued feature vector, so we used
Pearson’s correlation coefficient for "compound expression
similarities", and the expression profile of each protein is a
real-valued feature vector, so we used Pearson’s correl-
ation coefficient for "protein expression similarities". In
fact, Pearson’s correlation coefficient is a standard similar-
ity measure in transcriptomic data analysis.

Compound chemical structures and protein amino acid
sequences
The compound structures used in CMap were obtained
from ChemBank [23, 24]. The 2D frequency chemical de-
scriptor of each compound was calculated by using the
DragonX program [25], where the number of chemical
substructures in the DragonX descriptor was 780. The
chemical structure similarity scores of compound pairs
were evaluated with generalized Jaccard coefficients. Pro-
tein amino acid sequences were downloaded from UniProt
[26, 27]. The sequence similarity scores of protein pairs
were calculated by using the Smith-Waterman algorithm
in the EMBOSS water program (parameters: gap open
penalty = 10.0, gap extension penalty = 0.5), and they were
normalized via a cosine operation such that the maximal
value was 1 and the minimal value was 0 [28, 29].

Compound–target interactions
The information about compound–target interactions was
obtained from DrugBank [30, 31] and ChEMBL [32, 33].
For the target information in ChEMBL, we used only
target proteins labeled “active” in the comments section.
In total, there were 4,870 unique compound–protein in-
teractions in the merged dataset, with 756 compounds
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and 584 proteins involved in these interactions. We used
all possible compound-protein pairs excluding positive ex-
amples as negative examples. Thus, the number of positive
examples is 4870 and the number of negative examples is
436634. We used this dataset as the gold standard to
evaluate the performance for compound target prediction.
To investigate the validity of new predictions, we used
experimental data from ChEMBL on compound–target
interactions (e.g., binding affinity of <30 μM in IC50), as
well as independent information about compound–target
interactions stored in KEGG [34], Matador [35], and
PDSP Ki [36].
Direct method for compound target prediction
The most straightforward method for compound target
prediction involves directly using the fold change values
of the associated compound–protein pairs in the gene
expression matrix, X. The rationale for using this
method is that drug-affected genes are highly variable in
the observed gene expression. Thus, high scoring com-
pound–protein pairs are predicted to be candidates for
interacting compound–protein pairs. In this study, this
method is referred to as the “direct method.”
We tested three possible scores for compound–protein

pairs: i) X, ii) –X, and iii) abs (X). For the X score, the
original fold change values of X are used, and higher
scores correspond to up-regulated genes. For the –X
score, the sign-inversed values of X are used, and higher
scores correspond to down-regulated genes. For the abs
(X) score, the absolute values of X are used, and higher
scores correspond to up- or down-regulated genes.
Compound-protein pairs with high scores in i) X, ii) –X,
and iii) abs (X) are predicted to be candidates of inter-
acting compound-protein pairs.
Classification method for compound target prediction
Another method for compound target prediction in-
volves comparing the gene expression profiles of query
compounds with those of other compounds of known
target proteins. For this method, the rationale is that
drugs with similar gene expression patterns are likely to
share common target proteins.
We attempted to solve the problem of compound tar-

get prediction by supervised classification, which con-
sists of the following two steps. First, a classifier for
discriminating interacting compound–protein pairs from
the other pairs is learned based on partially known com-
pound–protein interactions. Second, the learned classi-
fier is applied to new compound–protein pairs, and high
scoring compound–protein pairs are predicted to be
candidates for interacting pairs. In this study, this
method is referred to as the “classification method.” The
related classification algorithms or their variants have
also been used in the context of chemogenomics in sev-
eral previous studies [2–7].
Given a training set of nx × ny compound–protein

pairs (xi, yj) (i = 1⋯ nx; j = 1,⋯ ny), f(x ', y ') should be es-
timated to predict whether a compound x’ interacts with
a protein y’. Among the pair classification algorithms,
we used pairwise kernel regression (PKR) [9] because of
its computational efficiency. We define a similarity func-
tion k compound for compounds and a similarity function
kprotein for proteins; thus, a statistical model of PKR for a
given compound–protein pair (x’,y’) is defined as follows:

f x0; y0ð Þ ¼
Xnx
i¼1

Xny
j¼1

βijkcompound xj; x
0� �
kprotein yj; y

0
� �

βij is a weight parameter to be optimized based on the
training set. In practice, high-scoring compound–protein
pairs are predicted as the interacting pairs. The inputs of
the PKR model are similarity scores for both compound
pairs and protein pairs. Therefore, the performance de-
pends heavily on the similarities of compounds and
proteins.
In the transcriptomic approach, we used compound

expression similarity (Pearson’s correlation) for “com-
pound similarity” and protein expression similarity
(Pearson’s correlation) for “protein similarity”. In the
chemogenomic approach, we used chemical structure
similarity (generalized Jaccard coefficient) for “com-
pound similarity” and protein sequence similarity (nor-
malized Smith-Waterman score) for “protein similarity”.
In the integrative approach, we used the average of com-
pound expression similarity and compound structure
similarity for “compound similarity” and the average of
protein expression similarity and protein sequence simi-
larity for “protein similarity”.

Predictive performance measures
We evaluated the predictive performance by using the
receiver operating characteristic (ROC) curve and
Precision-Recall (PR) curve, which are plots of true posi-
tive rates against false positive rates based on various
thresholds (ROC) and precision (positive predictive
value) against recall (sensitivity) based on various thresh-
olds for the prediction score (PR), respectively. We com-
puted the area under the ROC curve (i.e., the AUC
score), where 1 is returned for a perfect inference and
0.5 is returned for a random inference, and the area
under the PR curve (i.e., AUPR score), where 1 is
returned for a perfect inference and the ratio of positive
examples against all samples in the gold standard data is
returned for a random inference. We used the ROCR
package in the R language. In the program, many thresh-
old values (e.g., 1, 0.9, 0.8, 0.7, ….,–0.8,–0.9, -1) were
prepared for the predictions scores, the true positive
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rates against the false positive rates at each threshold
value were plotted, and the ROC curve was drawn by
connecting the dots. The AUC and AUPR scores were
computed for each compound, and the average scores
were used to summarize the results.
We also evaluated the performance of top ranked pre-

dictions by determining whether known target proteins
appeared in the top 10 or top 50 high-scoring predic-
tions. The accuracy of top ranked predictions is import-
ant in practice because experimental validation will be
preferentially conducted on high-confidence predictions
rather than low-confidence predictions. We computed
the ratio of the number of correctly predicted com-
pounds with at least one known target protein in the top
10 or top 50 against the number of all compounds of
known targets in the gold standard data. We denote the
ratio scores for top 10 and top 50 as “Top10 ratio” and
“Top50 ratio,” respectively. AUC/AUPR represents the
global accuracy of all compounds in each benchmark
dataset, while Top10/Top50 represents the local accur-
acy of top compounds in each benchmark dataset. Note
that the prediction accuracy scores were evaluated from
different viewpoints.

Experimental protocol for the classification method
The classification method requires supervised learning
with pre-existing knowledge about known compound–
protein interactions. To evaluate the predictive per-
formance of the classification method, we performed a
cross-validation experiment using the gold standard
compound–protein interaction data. This experiment
was designed to simulate the practical situation in
which researchers are required to predict the potential
target proteins of new drug candidate compounds.
We performed the following 5-fold cross-validation. (i)

We randomly split compounds into five compound
subsets. (ii) We took each compound subset as test com-
pounds, and constructed a test set of compound–protein
pairs. (iii) We took the remaining compound subsets as
training compounds, and constructed a training set of
compound–protein pairs. (iv) We trained a classifier
using the training set, and applied it to the test set. (v)
We computed the prediction scores for compound–pro-
tein pairs in the test set, and evaluated the prediction
accuracy over the 5-fold process. It should be noted that
only compounds were split into the training and test
sets, and the list of proteins was common across both
sets.

Construction of several benchmark datasets containing
compounds with diverse chemical structures
The gold standard dataset contained many drugs that
are structurally almost identical because some of them
are derivatives of the same lead compound. If these
identical drugs were divided into a training set and a test
set, the prediction in the cross-validation experiment
would be trivial. To avoid overestimation of the predic-
tion accuracy, we therefore performed filtering of similar
drugs based on their chemical structures. Hence, we
used only diverse drugs that were structurally different
to some extent.
The process proceeded as follows. First, we calculated

the generalized Jaccard coefficient (Tanimoto coefficient
for real-valued feature vectors) of chemical descriptors
for all compounds. Second, we identified the compounds
that shared high Jaccard coefficients and selected one
representative compound based on a threshold. Third,
we constructed a set of representative compounds
that shared low Jaccard coefficients. Finally, we pre-
pared seven sets of benchmark data consisting of rep-
resentative drugs by gradually varying the chemical
similarity threshold (e.g., from 0.4 to 1.0 by incre-
ments 0.1) on the dendrogram. When the threshold is
<0.4, the number of drug clusters is very small; thus,
it was not possible to test thresholds of 0.1–0.3 in
the 5-fold cross-validation.

Results
Drug-induced gene expressions are not correlated with
compound structures or target protein sequences
As a preliminary analysis, we examined the correlation
between drug-induced gene expressions and compound
chemical structures or target protein sequences. We also
analyzed the distributions of compound expression simi-
larities, compound structure similarities, protein expres-
sion similarities, and protein sequence similarities.
Figure 1 shows scatter plots of compound and protein
expression similarity scores against compound structure
and protein sequence similarity scores, respectively.
Compound expression similarities were not correlated
with compound chemical structure similarities, nor were
protein expression similarities correlated with protein
sequence similarities. These results imply that drug-
induced gene expression profiles can provide character-
istic information that is different from the information
provided by compound chemical structures and protein
amino acid sequences.

Comparison of different scoring schemes for drug-
induced gene expression
We tested the direct method with three scoring schemes
for drug-induced gene expression values, namely X, –X,
and, abs(X), and evaluated their correspondences to
known compound–protein interactions using the gold
standard compound–protein interaction data. Based on
the distributions of AUC scores for compounds when
using X, –X, and, abs(X), the abs(X) score showed the
superior performance, with X and –X resulting in almost



Fig. 1 Distributions of drug similarities and protein similarities. The left and right panels show scatter plots of drug expression similarities against
drug structure similarities and protein expression similarities against protein sequence similarities, respectively
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random inference (Fig. 2). Negative values in X corres-
pond to the down-regulation of genes by drugs (i.e., in-
hibitors), and positive values in X correspond to up-
regulation (i.e., activators). Therefore, this result suggests
that the abs(X) scores reflect drug-induced gene expres-
sion variability involving both up- and down-regulated
genes. Consequently, we used the abs(X) scores as drug-
induced gene expression profiles in the following
analysis.

The use of pre-existing knowledge on known compound–
protein interactions improves predictive performance
We tested the classification method with compound
expression similarities and protein expression similar-
ities as the inputs of the PKR model, and we evaluated
its performance in compound target prediction by per-
forming 5-fold cross-validation experiments on the gold
standard data. In addition, we compared the predictive
performance of the classification method with that of
the direct method. Based on a comparison of the AUC
and AUPR scores, and Top10 and Top50 ratios, from
Fig. 2 Comparison of gene expression values. Boxplots illustrating
the AUC scores of drugs based on X, −X, and abs(X) scores
the direct method with those obtained from the classifi-
cation method (Fig. 3), the classification method exhib-
ited superior performance for all measures. This result
suggests that using pre-existing knowledge of known
compound–protein interactions can improve the pre-
dictive performance of the method; thus, a supervised
learning framework is encouraged for compound target
prediction in practice.

The transcriptomic approach is useful for structure-
independent prediction of compound targets
We compared the performance of the transcriptomic ap-
proach with that of chemogenomic approach (note that
the transcriptomic approach corresponds to the classifi-
cation method with compound and protein expression
similarity, whereas the chemogenomic approach corre-
sponds to the classification method with compound
structure and protein sequence similarity). Figure 4
shows the AUC and AUPR scores, and the Top10 and
Top50 ratios, for the transcriptomic and chemogenomic
approaches, with results based on various benchmark
datasets derived from different chemical structure simi-
larity thresholds. The chemogenomic approach worked
well for benchmark data consisting of many structurally
similar compounds (e.g., those with chemical structure
similarity thresholds of 1 or 0.9), but it worked poorly
for structurally diverse compounds (e.g., those with simi-
larity thresholds of 0.4 or 0.5). This is perhaps explained
by the fact that many compounds correspond to drug
derivatives optimized from the same compound lead;
thus, prediction with chemical structures is relatively
simple in a cross-validation experiment when the test
and training compounds have highly similar chemical
structures. Conversely, the transcriptomic approach
maintained high prediction accuracy regardless of the
benchmark dataset, which implies that this approach can
predict compound targets independent of compound



Fig. 3 Comparison of the direct and classification methods. The left and right panels show the performance of the direct method and the
classification method, respectively. Average AUC scores, average AUPR scores, the Top10 ratio, and the Top50 ratio are illustrated
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chemical structures. These results suggest that the tran-
scriptomic approach is useful for predicting unknown
compound targets that are not expected from compound
chemical structures.
We also investigated the effects of integrating the tran-

scriptomic approach with the chemogenomic approach,
which we called the “integrative approach.” Note that the
input in the integrative approach is the average of the
compound expression similarity and compound structure
similarity. As shown in Fig. 4, the integrative approach
produced the superior performance in most cases, but
showed similar results to the transcriptomic approach
when benchmark data consisted of structurally diverse
compounds. One explanation about the observation
Fig. 4 Performance of the transcriptomic approach, chemogenomic appro
each approach is based on benchmark datasets containing compounds wi
average AUC scores, the upper right panel shows the average AUPR scores
panel shows the Top50 ratio
would be that the performance of the integrative approach
was deteriorated by the averaging with the uninformative
compound structure similarity. This suggests that the in-
tegration of transcriptome data with chemical information
is most useful when query compounds share a certain
amount of chemical structure similarity with compounds
in the training set.

Novel target prediction for compounds in CMap
Finally, we conducted a comprehensive prediction of un-
known compound–protein interactions involving 1,294
compounds and 13,469 proteins-coding genes in CMap.
We trained a predictive model using all known com-
pound–protein interactions in the gold standard data, and
ach, and the integration of the two approaches. The performance of
th different chemical diversities. The upper left panel shows the
, the bottom left panel shows the Top10 ratio, and the bottom right



Fig. 6 Anatomical Therapeutic Chemical (ATC) classification of
compounds in correctly predicted compound–protein pairs.
Compounds are labeled by the first level ATC code and the
frequency of each class is shown. The blue, orange, and gray bars
indicate the number of compounds predicted by the transcriptomic
approach, chemogenomic approach, and integrative
approach, respectively
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predicted unknown compound–protein interactions.
Consequently, by using the transcriptomic, chemoge-
nomic, and integrative approaches, we predicted potential
off-targets for 756 compounds of the known targets (com-
pounds present in the gold standard data) and potential
target profiles for 538 uncharacterized compounds of un-
known targets (compounds absent from the gold standard
data).
We investigated the validity of the top 1,000 high-

scoring predictions by using independent resources on
compound–protein interactions and the latest information
in KEGG, DrugBank, Matador, ChEMBL, and PDSP Ki.
As a result, we confirmed the validity of 150 predictions
from the transcriptomic approach and 186 predictions
from the chemogenomic approach and 213 predictions
from integrative approach. Figure 5 shows a Venn diagram
with the overlap of only 60 common correctly predicted
compound–protein interaction pairs between the two
approaches. Thus, there is apparently a large difference
between the compound–protein pairs that are correctly
predicted by each approach.
Figure 6 shows the frequency of ATC classification

(Anatomical Therapeutic Chemical Classification
System) for the compounds in correctly predicted
compound–protein interaction pairs. In addition,
Table 1 shows a list of target proteins found in the
correctly predicted compound–protein interaction
pairs from the transcriptomic, chemogenomic, and
integrative approaches. Most proteins in the high
scoring prediction pairs from the transcriptomic ap-
proach were those known to be associated with the
mechanism of drug actions. For example, the ATC
classification showed that the compounds corre-
sponded largely to drugs for the cardiovascular sys-
tem (those with the first level code “C” in Fig. 6),
and the associated proteins corresponded to neuro-
transmitter receptors (e.g., ADRB3 in the GPCR fam-
ily). This implies that neurotransmitter antagonists
Fig. 5 Venn diagram of correctly predicted compound–protein pairs
in the transcriptomic, chemogenomic and integrative approaches.
The three circles represent the correctly predicted compound–
protein pairs from the transcriptomic approach, chemogenomic
approach, and integrative approach, respectively
have characteristic gene expression profiles, which is
a finding also supported by previous work [19].
In contrast, more than 50 prediction pairs from the

chemogenomic approach were proteins associated with
metabolism of drugs. For example, the top ranked target
proteins corresponded mainly to drug metabolizing en-
zymes (e.g., CYP2C9 in the cytochrome P450 family),
which are known to have low substrate specificity and to
bind many compounds with ubiquitous properties such
as large dipole, negative charge, oxygen-richness, and
aromatic rings [37, 38]. These results suggest that the
high scoring predictions from the chemogenomic ap-
proach are likely to indicate target proteins that are not
associated with the mechanisms of drug action.

Discussion
In this study, we examined the performance of computa-
tional methods for CMap-based compound target predic-
tion. We observed that the direct method worked poorly,
and was only slightly better than random inference. This
suggests that chemically perturbed genes do not always
correspond to target proteins of a query compound and the
direct method is therefore not useful in practice. In con-
trast, the classification method performed well, which indi-
cates that comparing gene expression profiles among a
query compound and other compounds of known targets is
more useful than simply selecting the regulated genes in
the gene expression profile of the query compound.
The previously developed methods for predicting

drug/compound targets can be mainly categorized into
gene expression-based methods such as CMap and
chemical structure-based methods such as the chemoge-
nomic approach. However, to the best of our knowledge,
the relationship between the two types of methods has



Table 1 A list of proteins from the correctly predicted
compound–protein pairs

Transcriptomic Chemogenomic Integrative

GeneName Number GeneName Number GeneName Number

ADRB3 15 CYP2C9 22 ADRB3 17

CA1 5 CYP2C19 16 ADRA1D 7

DRD5 5 CYP1A2 14 TOP2B 7

HTR2B 5 CHRM4 6 CA1 6

ADRA1B 5 CHRM5 6 DRD5 6

CA7 4 CHRM3 5 ADRA2C 6

CACNG1 4 ESR2 5 CACNG1 5

CHRM4 4 DRD1 4 HTR2B 5

BCHE 4 DRD2 4 ADRA1B 5

SLC12A2 4 CA7 4 BCHE 5

CA12 4 HTR2C 4 CA12 5

ADRA2C 4 CA1 3 HTR2C 4

HTR2C 3 HRH1 3 CHRM5 4

CHRM5 3 HSD17B10 3 CA7 4

ADRA1D 3 HTR1B 3 DRD3 4

CACNA1I 3 ADRA1A 3 CHRM4 4

CA9 3 ADRA2A 3 CA3 4

SLC12A3 2 THPO 3 SLC12A2 4

CACNA1S 2 ALOX15 3 CA9 4

ABCC8 2 ADRA1D 3 CA14 4

HTR1B 2 CA3 3 CA4 4

DRD3 2 BCHE 3 HTR1A 3

HDAC2 2 SLC12A3 2 ESR1 3

DRD4 2 ESR1 2 CACNA1H 3

HTR1A 2 MAPT 2 CACNA1I 3

HTR7 2 PTGS1 2 SMN1/SMN2 3

ESR1 2 PTGS2 2 ESR2 3

ALOX12 2 ALDH1A1 2 CYP1A2 3

CA3 2 ABCC8 2 SLC12A3 2

CA4 2 DRD5 2 CACNA1S 2

CA14 2 KCNH2 2 ABCC8 2

GABRA3 2 CACNG1 2 HTR1B 2

GABRA2 2 HTR1A 2 HDAC2 2

SMN1/SMN2 2 ADRB3 2 DRD4 2

GABRA6 2 MTOR 2 PTGS1 2

GABRA4 2 SLC12A2 2 HTR7 2

PTGS1 2 ALOX12 2

ADRA1A 2 SLC6A3 2

RPS6KA3 2

DRD1 2

CHRM3 2

GABRA3 2

Table 1 A list of proteins from the correctly predicted
compound–protein pairs (Continued)

GABRA2 2

GABRA4 2

GABRA6 2

PKM 2

CYP2C9 2

CYP2C19 2

Proteins in correctly predicted compound–protein pairs, which were obtained
by using the transcriptomic approach, chemogenomic approach, and
integrative approach, are listed. The list shows proteins that were correctly
predicted multiple times
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not previously been investigated; therefore, this study
was the first to systematically compare the usefulness of
gene expression and chemical structure information in
the context of compound target prediction (with the
same benchmark data tested under unbiased experimen-
tal conditions). Our results showed little correlations
between gene expression and chemical structure similar-
ities, which suggests that the two resources are
complementary.
We also observed that the chemogenomic approach

worked poorly when test compounds did not share suffi-
cient similarity in chemical structure, whereas the tran-
scriptomic approach maintained prediction accuracy
even without this similarity. Thus, the performance of
the transcriptomic approach is apparently independent
of compound chemical structures, and this property has
practical importance for predicting the targets of com-
pounds that have novel chemical structures.
We observed that the correctly predicted compound–

protein interaction pairs with high confidence scores
differed depending on the approach used. For example, the
top predictions from the chemogenomic approach con-
tained low substrate-specific proteins (e.g., enzymes in the
cytochrome P450 family). This might be because a variety
of compounds that interact with such enzymes were in-
cluded in the training data, and such predictions therefore
may have arisen from the dependency on various chemical
structures of the enzyme ligands. This property might also
have contributed to the observation that the predictions
from the chemogenomic approach were more accurate
than those of the transcriptomic approach in the cross-
validation experiment with full benchmark data derived
from a chemical similarity threshold of 1. In contrast to
those of the chemogenomic approach, the top predictions
from the transcriptomic approach did not contain low
substrate-specific proteins, but instead contained many
proteins associated with the mechanism of drug actions
(e.g., adrenergic receptors such as ADRB3 and ADRA1B).
This implies that the transcriptomic approach is more likely
to predict target proteins that affect the expression of genes
at downstream pathways rather than predict drug-
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metabolizing enzymes that have no effect on gene expres-
sion. Because the transcriptomic and chemogenomic
approaches have different properties in terms of compound
target prediction, care should be taken to choose the appro-
priate approach depending on the research objective.
The majority methods for drug/compound target

prediction are based on chemical structure, including the
chemogenomic approach. One reason for its popularity is
the huge number of compound structures that can be
easily obtained at a low cost from the many molecular
databases such as DrugBank and ChEMBL. Conversely,
considerable experimental costs are required to obtain
drug-induced gene expression profiles. The CMap project
has changed this situation somewhat by providing a large
number of drug-induced gene expression profiles, and has
thereby enabled the comparison of compounds in terms
of their gene expression [14]. Because recent technological
advances such as the development of next generation
sequencers provide the potential to measure more gene
expression profiles at lower cost, CMap and similar pro-
jects will be able to expand the transcriptomic space of
possible compounds in the near future [39–43]. Conse-
quently, the transcriptomic approach developed here will
be a useful tool for exploring the targets of drug candidate
compounds with novel chemical structures.

Conclusions
In this paper, we proposed a new method to predict target
proteins of drug candidate compounds based on drug-
induced gene expression data from CMap and a machine
learning classification technique. We compared the per-
formance of this method, termed the transcriptomic
approach, with that of the chemogenomic approach, and
we found that it does not depend on compound chemical
structures and is suitable for predicting target proteins
that cannot be expected from analyzing such structures.
To the best of our knowledge, this is the first study to
report the relationship between a transcriptomic approach
and a chemogenomic approach to target prediction. In
practice, the novel transcriptomic approach described here
is expected to be particularly useful for predicting target
proteins for drug candidate compounds in a chemical
structure-independent manner.
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