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Abstract

Background: Although Helicobacter pylori (H.pylori) is the dominant gastrointestinal pathogen, the genetic and
molecular mechanisms underlying H.pylori-related diseases have not been fully elucidated. Long non-coding RNAs
(IncRNAs) have been identified in eukaryotic cells, many of which play important roles in regulating biological
processes and pathogenesis. However, the expression changes of INcRNAs in human infected by H.pylori have been
rarely reported. This study aimed to identify the dysregulated IncRNAs in human gastric epithelial cells and tissues
infected with H.pylori.

Methods: The aberrant expression profiles of INcCRNAs and mRNAs in GES-1 cells with or without H.pylori infection
were explored by microarray analysis. LncRNA-MRNA co-expression network was constructed based on Pearson
correlation analysis. Gene Ontology (GO) and KEGG Pathway analyses of aberrantly expressed mRNAs were performed
to identify the related biological functions and pathologic pathways. The expression changes of target INcRNAs were
validated by gRT-PCR to confirm the microarray data in both cells and clinical specimens.

Results: Three hundred three INcRNAs and 565 mRNAs were identified as aberrantly expressed transcripts (22
or <0.5-fold change, P < 0.05) in cells with H.pylori infection compared to controls. LncRNA-mRNA co-expression
network showed the core INcRNAs/mRNAs which might play important roles in H.pylori-related pathogenesis.
GO and KEGG analyses have indicated that the functions of aberrantly expressed mRNAs in H.pylori infection
were related closely with inflammation and carcinogenesis. QRT-PCR data confirmed the expression pattern of
8 (n345630, XLOC_004787, n378726, LINC00473, XLOC_005517, LINCO0152, XLOC_13370, and n408024) IncRNAs
in infected cells. Additionally, four down-regulated (n345630, XLOC_004787, n378726, and LINC00473) IncRNAs
were verified in H.pylori-positive gastric samples.

Conclusion: Our study provided a preliminary exploration of INCRNAs expression profiles in H.pylori-infected cells by
microarray. These dysregulated IncRNAs might contribute to the pathological processes during H.pylori infection.
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Background

Helicobacter pylori (H.pylori) is a human-specific gastric
bacterium that colonizes more than half of the world’s
population. The infection of this pathogen is thought to
be persisted for lifetime without treatment. The pathogen
can evoke both innate and adaptive immune responses.
However, immune system fails to eradicate this causative
agent, which can lead to the gastric mucosa pathological
changes [1]. The clinical outcome, ranging from chronic
gastritis to peptic ulcers, even to cancer or mucosa-
associated lymphoid tissue (MALT) lymphoma, is caused
by multiple interior genetic dysregulation in combination
with various environmental factors and bacterial virulence
factors [2, 3].

Long noncoding RNAs (IncRNAs) are a little-understood
class of transcribed RNA molecules, exceeding 200 nu-
cleotides in length but have no significant protein-coding
capacity, which are identified as key regulators in various
biological functions.[4]. It has been known that IncRNAs
are linked to epigenetic regulation, body development,
and physiological responses [5—7]. Moreover, recently evi-
dences have revealed that remarkably expressed IncRNAs
are correlated with human diseases, such as neurological
disorders, cardiovascular diseases, autoimmune diseases,
inflammatory diseases, infectious diseases and various
cancers [8, 9]. The discovery of IncRNAs and investiga-
tion on their functions in regulatory networks could lead
us to a deeper comprehension of pathogenesis. Recently,
the researchers have made some achievements in under-
standing IncRNAs. However, the expression patterns and
functions of IncRNAs in cells infected by H. pylori have
been seldom reported. Considering the wide range of roles
that IncRNAs play in cellular and molecular regulatory
processes, we do believe that it is possible that the aber-
rant expression of some IncRNAs might contribute to the
H.pylori-infection associated disorders and diseases.

In this study, we identified the expression patterns of
IncRNAs in H.pylori-infected gastric epithelial cell GES-1
via microarray analysis. LncRNA-mRNA co-expression
networks were built based on Pearson correlation analysis.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway analysis were performed
to analyze IncRNA related coding genes involved in
distinguishable biological responses. Several aberrantly
expressed IncRNAs were confirmed by qRT-PCR in
cells and gastric mucosa tissues. Our results suggest
that the aberrantly expressed IncRNAs might expand
our understanding of pathogenesis in H.pylori related
diseases.

Methods

Cell lines and cultures

Cell lines were purchased from the Institute of Biochem-
istry and Cell Biology, SIBS, CAS (Shanghai, China). The
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human normal gastric epithelial cell line GES-1 was rou-
tinely cultured in RPMI 1640 (Gibco, Grand Island, N.Y,,
USA). Human gastric cancer cell lines SGC-7901 and
BGC-823 were propagated in low-glucose DMEM (Gibco).
All the media were supplemented with 10 % (vol/vol)
fetal bovine serum (FBS; Wisent Inc., Quebec, Canada).
Cells were maintained in humidified air with 5 % CO,
at 37 °C before use.

H. pylori culture and infection model

H.pylori wild-type strain 26695 was obtained from ATCC
and cultured on Columbia Agar (OXOID, UK) plates
containing 5 % FBS (Wisent Inc.) grown at 37 °C in a
microaerophilic atmosphere for 48 to 72 h.

Cells were seeded in six-well cell culture plates before
infection. The following day, 80 % confluent monolayer
cells were washed in PBS, and the medium was replaced
with fresh medium. Then, H.pylori was added to cells
for 24 h at a multiplicity of infection (MOI) of 100 as ex-
perimental groups. Cells without H.pylori infection were
maintained for indicated time periods as control groups.
After 24h infection, cells were washed in PBS to wash
away the non-adherent H.pylori, then harvested in
TransZol Up reagent (TransGen Biotech, Beijing, China)
and preserved at -80 °C until RNA isolation.

RNA isolation

Total RNA was extracted from cells and tissues using
TransZol Up reagent (TransGen Biotech) according to
the manufacturer’s instructions. RNA quantification and
purity were measured by ND-1000 spectrophotometer
(NanoDrop Technologies, Inc., Wilmington, DE, USA)
measuring absorbance ratios of Ajgo/Azge and Ageo/Agzo,
and RNA integrity assessed by standard denaturing
agarose gel electrophoresis.

Microarray analysis

The Human Transcriptome Array 2.0 (HTA 2.0; manu-
factured by Affymetrix Inc., Santa Clara, CA, USA) was
employed in this study. HTA 2.0 covers global profiling
of full-length transcripts, containing more than 40,000
non-coding and 245,000 coding transcripts in human
genome; each transcript is accurately identified by specific
exon or exon-exon splice junction probes. All of the tran-
scripts were collected from multiple public sources such as
NCBI RefSeq, Ensembl, UCSC (known genes and
lincRNA transcripts), Vertebrate Genome Annotation
(Vega) database, Mammalian Gene Collection (MGC)
(v10), www.noncode.org, IncRNA db, Broad Institute,
Human Body Map lincRNAs and TUCP catalog. In the
cases of small samples, random variance model (RVM)
t-test was applied to filter the aberrantly expressed
transcripts for experimental and control group. After sig-
nificant analysis and false discovery rate (FDR) analysis,
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the differentially expressed transcripts were selected ac-
cording to the P<0.05.[10-12]. The ¢cDNA labeling,
microarray hybridization and bioinformatics analysis were
performed by Genminix Informatics, Shanghai, China.

Construction of the IncRNA-mRNA co-expression network
The IncRNA-mRNA co-expression network was built
according to the normalized signal intensity of specific
expression IncRNAs or mRNAs. The Pearson correlation
was calculated for each pair of IncRNA-mRNA, and then,
the significant correlation pairs were chosen to construct
the network [13, 14]. The co-expression network was built
in H.pylori-infected group and control group, respectively.
Within a network, “degree” is the simplest and most im-
portant measure of the centrality of one gene or IncRNA
that determining the relative importance. The “degree” is
defined as the link number of one transcript directly
had to the other [15]. The “degree” in infected group
was recorded as S_Degree, while in control group was
recorded as C_Degree. In addition, “clustering coefficient”
is a measure of the “degree” to which transcripts in a net-
work tend to cluster together. It was calculated by the
local measure [16]. To exclude other transcripts’ impact
in each co-expression network, we further performed
normalization of the “degree”, i.e., divided by the maximum
value of the transcript degree in each network [Normalized
degree(X) = degree(X)/degree(Max)]. Then, the difference
value of a transcript’s normalized degree (delta normalized
degree, represented as |DiffK|) was calculated between
the experimental and control co-expression networks.
The core IncRNA/mRNA always owned the largest
IDiffK|s [17].

Coding gene functional analysis

Gene Ontology (GO) and KEGG Pathway analysis were
performed to clarify the function and biological pathways of
differentially expressed IncRNA co-expressed mRNAs from
our microarray data. The differentially expressed mRNAs
were annotated according to their attributes of gene prod-
ucts. Gene Ontology (http://www.geneontology.org) was
then used to assign the genes to different GO terms of
their associated aspects: biological processes, cellular
components and molecular functions, according to
their annotations [18]. Furthermore, the biological func-
tion of genes can be better understood via integrated ana-
lysis of KEGG (http://www.genome.ad.jp/kegg/) Pathways
and gene annotations [19, 20]. The P-value was used to
determine the significance of the enrichment, and the
false discovery rate (FDR) was used to evaluate the sig-
nificance of the P-value. The significant GO terms and
pathways were filtered in accordance with P < 0.05 and
FDR < 0.05.
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Patient, specimens, and clinical data collection

The clinical specimens were collected from 126 patients
with gastritis or ulcer at the Digestive Endoscopy center,
and the gastric cancer tissues were collected from 30
gastric cancer patients undergoing surgery at the Second
People’s Hospital of Changzhou in Changzhou, Jiangsu,
China. In this study, 67 cases were H.pylori—positive, me-
dian age of patients (35 men and 32 women) was 49 years
(range 20-81 years); 89 cases were H.pylori—negative as
healthy control, median age of patients (45 men and 44
women) was 56 years (range 19-77 years). Three biopsy
specimens taken from each patient were for histopatho-
logical examination, Rapid Urease Test (RUT; Huitai
Medical tech corp., Shanghai, China), and for RNA ex-
traction. The specimens were preserved in TransZol
Up reagent at -80 °C until RNA isolation.

The H.pylori infection status was assessed by RUT and
H. pylori-specific ureC polymerase chain reaction (PCR)
[21]. H.pylori-positive patients were grouped under at
least one of the tests yielded positive results. The patients
neither received nonsteroidal anti-inflammatory drugs
(NSAIDs) nor had taken antibiotics or proton pump in-
hibitor in the preceding 4 weeks. Informed consents
were obtained from all individual participants enrolled
in this study before examination. The information of
specimens is presented in Additional file 1.

Quantitative real-time PCR (qRT-PCR)

Following RNA extraction, 1 pg of RNA samples were
reverse transcribed into cDNA using HiFiScript 1st Strand
c¢DNA Synthesis Kit (CWBIOTECH, Beijing, China) ac-
cording to the manufacturer’s protocols. The differentially
expressed candidate IncRNAs in this study were verified
by qRT-PCR (Table 1). Each qRT-PCR was performed
using 2 x SYBR Green mix (TransGen Biotech) with cyc-
ling conditions of 94 °C for 5 min followed by 45 cycles of
94 °C for 30s, 58 or 60 °C for 25 s. For each sample, we
performed qRT-PCR for target genes and a housekeeping
gene S-actin as an internal control. The sequences of spe-
cific primers are listed in Table 2. After PCR amplification,
melt curve analysis was performed to confirm reaction
specificity; expression fold change of each IncRNA was
calculated via the 242" method. Differences in expres-
sion levels between H.pylori—positive and negative sam-
ples were analyzed using Student’s t-test, with a value
of P<0.05 considered statistically significant.

Statistical analysis

All results were expressed as means * standard deviation
(SD) of three independent experiments. Statistical signifi-
cance of difference in the means between groups was ana-
lyzed using Student’s t-test with SPSS software (version
20.0 SPSS Inc., Chicago, IL, USA) and GraphPad Prism
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Table 1 Microarray expression results of selected IncRNAs. “S” represents H.pylori-infected GES-1 groups, and “C" represents control

groups. P-value < 0.05 was considered statistically significant

INcRNA Accession Number Gene Symbol Variation trend Fold change (5/Q) P-value INncRNA Source Probe ID

n345630 down 0.099 <le-07 NONCODE TC04001940.hg.1
TCONS_00010304-XLOC_004787 down 0.14 < le-07 Rinn lincRNAs TC05002959.hg.1
n378726 down 0.15 < 1e-07 NONCODE TC06003993.hg.1
NR_026860 LINC00473 down 0.16 < le-07 RefSeq TC06002302.hg.1
n345729 down 0.18 < le-07 NONCODE TC05002683.hg.1
n342056 down 041 1.06E-05 NONCODE TC12002644.hg.1
n384667 down 042 1.80E-06 NONCODE TC05003053.hg.1
TCONS_00011401-XLOC_005517 up 1.63 4.24E-05 Rinn lincRNAs TC06003154.hg.1
NR_038366 HOTAIRM1 up 1.65 1.66E-05 RefSeq TC07000165.hg.1
NR_024204 LINC00152 up 2.11 1.00E-07 RefSeq TC02000535.hg.1
NR_015379 UCA1 up 2.15 1.70E-06 RefSeq TC19000279.hg.1
TCONS_00027385-XLOC_013370 up 222 1.85E-04 Rinn lincRNAs TC19002530.hg.1
n408024 up 4.84 < 1e-07 NONCODE TCOX001624.hg.1

6.0 (GraphPad Software Inc., La Jolla, CA, USA). P-value
<0.05 was considered statistically significant.

Results

Analysis of aberrantly expressed IncRNAs and mRNAs

To explore the potential IncRNAs involved in H.pylori—
induced gastric mucosa disorders, we examined the IncRNA
and mRNA expression profiles in gastric epithelia cell
models through microarray analysis (Fig. 1). According
to the microarray data and the authoritative data, 303
unique IncRNAs were significantly induced or suppressed
in GES-1 following H.pylori infection, of which 56.4 % (171
IncRNAs) were suppressed and 43.6 % (132 IncRNAs) were
induced (fold change >2 or <0.5, P<0.05) (Fig. 1la,

Additional file 2). n335470 (11.48-fold change) was the
most significantly up-regulated IncRNA and NR_002763
(CPS1-IT1, 0.075-fold change) was the most significantly
down-regulated IncRNA.

As to mRNAs, the expression profiling data showed that
of the total 1936 mRNAs, 565 were aberrantly expressed
mRNAs in H.pylori-infection models relative to their con-
trol models (fold change >2 or <0.5, P<0.05), of which
49.2 % (278 mRNAs) were up-regulated, while 50.8 % (287
mRNAs) were down-regulated (Fig. 1b, Additional file 2).
Among these mRNAs, IGFBP1 (12-fold change) showed
the highest degree of up-regulation, while MUCI13
(0.11-fold change) was the most down-regulated protein-
coding gene.

Table 2 Primers designed for gRT-PCR validation of candidate IncRNAs and f-actin

INncRNA Accession Number Forward primer Reverse primer Product length (bp) Tm (°Q)
n345630 5'-TCCGTTGAACCTTCCACAGT-3' 5-ACTCTGCTCCGTTCCACATT-3' 168 58
TCONS_00010304-XLOC_004787  5-CTCAGGAAAGGAGTATAGAATG-3' 5-GGTGCAAGGTATAGAGTGT-3' 104 58
n378726 5'-CCACAATGCAAACAACTGCT-3' 5'-GAAAGCTGCTCTGTGGTGAA -3' 161 60
NR_026860 5-CTTGGTTGTGCGGGATTCT-3' 5'-GTCAGAAGGAGGAGCAGGTAG-3' 204 60
n345729 5-AGGGTCATTTAGCCAGAAAGT-3 5-GATAAACCCAGATGCCCTTGTAG-3' 144 58
n342056 5-CAGGCTTATGGAGCGTTAAGAAT-3' 5-CATCAGGGAGAAGTTATCAGGT-3' 177 58
n384667 5'-TGCCTGATAAGGTCACATACAC-3' 5'-CCAGGACATGCGATGAAGATTG-3' 123 58
TCONS_00011401-XLOC_005517  5-TCCTGGGTCAAGCTGAGTATC-3' 5-TGGAGTCTTACAAATCTTTTA-3' 131 58
NR_038366 5-ACTCCGTGTTACTCATTCC-3' 5-TTGCTTCTTCTTCTCCTCTT-3' 188 58
NR_024204 5'-GAATAACTGGGAGATGAAACAGG-3' 5'-CAACAGGTAGAGGTGCTGGA-3'! 102 58
NR_015379 5'-TCCATTCAGACCGCCACTCAC-3' 5'-CAAGGTGCCAGTTAGCGTAT-3' 244 58
TCONS_00027385-XLOC_013370  5-GGCTGTCTTAGAAGGATGAA-3' 5'-AATAGAGCTGGTTGACTGC-3' 129 58
n408024 5'-CGGAAGGTTACAGTCTCTAG-3' 5-TGCTGTGTCCTCATTTATCA-3' 125 58
B-actin 5-GATGACCCAGATCATGTTTGAG-3' 5'-AGGGCATACCCCTCGTAGAT-3' 159 58-60
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The complete microarray data are publicly available
at Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) under the accession num-
ber GSE74577.

LncRNA-mRNA co-expression network

We constructed the IncRNA-mRNA co-expression network
to identify the interactions between mRNA and IncRNA.
The value of “Degree” in co-expression network indicated
that one mRNA/IncRNA might correlate with several
IncRNAs/mRNAs. The core IncRNA/mRNA from the
co-expression network were identified according to the
|DiffK|s, and supposed to interact in processes of H.pyl-
ori infection. The IncRNAs with 30° in experimental
group network are listed in Table 3, and the top 10
IncRNAs in co-expression network are presented in
Table 4.

GO analysis and KEGG Pathway analysis of aberrantly
expressed mRNAs

GO analysis was applied to investigate the potential
functions of the IncRNAs co-expressed mRNAs on the
regulation of the pathological responses against H.pylori
infection. In this study, corresponding to the up-regulated
mRNA, there were 189 aberrantly expressed mRNAs
assigned to biological process, 213 assigned to cellular
component and 181 assigned to molecular function; while
among the down-regulated genes, there were 133 aberrant
expressed mRNAs assigned to biological process, 170
assigned to cellular component and 137 assigned to mo-
lecular function. The significance of enrichment of each
GO term was assessed by P-value <0.05 and FDR < 0.05,
then the GO terms were filtered by the enrichment scores
(-Lg (P)) in aberrantly expressed mRNAs. The enrichment
analyses of top fifteen GO terms were listed in Additional
file 3 and shown in Fig. 2. The GO enrichment analysis
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Table 3 The “Degree” of INCRNAs in co-expression network of experimental group (only no less than 30° is shown)

LncRNA Type Style Degree Clustering Coefficient
n336000 noncoding up 32 0.8004
TCONS_00027385-XLOC_013370 noncoding up 32 0.8004
n326267 noncoding down 32 0.7903
n384365 noncoding down 31 0.8215
n387010 noncoding down 31 08215
n345751 noncoding down 30 0.8253
NR_038407 noncoding down 30 0.8069
n384667 noncoding down 30 0.7701
n337099 noncoding down 30 0.7563
n344793 noncoding down 30 0.754

revealed that positive regulation of cell proliferation
(GO: 0008284), cytosol (GO: 0005829), protein binding
(GO: 0005515) were the most enriched GO terms tar-
geted by aberrantly up-regulated mRNAs in biological
process, cellular component and molecular function,
respectively (Fig. 2 a, ¢, e). While the small molecule
metabolic process (GO: 0044281), extracellular vesicu-
lar exosome (GO: 0070062) and protein binding (GO:
0005515) were the most enriched GO terms targeted by
aberrantly down-regulated mRNAs in biological process,
cellular component and molecular function, respectively
(Fig. 2 b, d, f).

KEGG Pathway analysis offered us a reliable way to
elucidate the candidate biological pathways that the
IncRNAs interacted with mRNAs. We identified 54
up-regulated pathways comprising 90 differentially
expressed genes, among them, the top three enriched
pathways were rheumatoid arthritis (pathway ID: 05323),
HIE-1 signaling pathway (pathway ID: 04066), and MAPK
signaling pathway (pathway ID: 04010). 40 down-regulated
pathways containing 61 differentially expressed genes were
identified, and the top three enriched pathways were meta-
bolic pathways (pathway ID: 01100), steroid biosynthesis

(pathway ID: 00100), and fatty acid biosynthesis (pathway
ID: 00061). The enrichment analyses of top fifteen path-
ways were showed in Fig. 3, the pathways and genes were
listed in Additional file 4.

Validation of the expression levels of IncRNAs by qRT-PCR
To confirm the accuracy and repeatability of the micro-
array data, 13 candidate IncRNAs were selected for val-
idation by qRT-PCR based on their features, such as fold
change, adjacent co-expressed mRNAs, and literatures re-
ported. PCR was first carried out to confirm the expres-
sion of candidate IncRNAs in GES-1 cells (Additional
file 5). The IncRNAsexpression pattern detected by
qRT-PCR analysis was the same as that determined by
microarray analysis. The changes were statistically dif-
ference for only 8 of the 13 IncRNAs (Fig. 4a). We con-
firmed that n345630, XLOC_ 004787, n378726, and
LINCO00473 were suppressed during H. pylori infection,
whereas the expression of XLOC_005517, LINC00152,
XLOC 13370 and n408024 were induced (P < 0.05). The
13 candidate IncRNAs were also assessed in other two
kinds of gastric cancer cell lines upon H.pylori treatment.
However, the expression patterns of candidate IncRNAs in

Table 4 The top ten IncRNAs with largest |DiffK| in co-expression network

LncRNA Style S_Degree S_K C_Degree C_K DiffK(S-C) |DiffK]

n334184 up 26 0.7647 9 0.2432 05215 05215
NR_033917 down 1" 03235 30 0.8108 -0.4873 04873
n339262 up 28 0.8235 13 03514 04722 04722
TCONS_00011401-XLOC_005517 up 27 0.7941 12 03243 0.4698 0.4698
n340399 down 9 0.2647 27 0.7297 -0.465 0465

TCONS_I2_00005430-XLOC_I2_002852 down 12 0.3529 30 0.8108 -04579 04579
TCONS_00027385-XLOC_013370 up 32 0.9412 18 04865 04547 04547
n335665 up 28 0.8235 14 03784 04452 0.4452
n335607 up 21 06176 7 0.1892 04285 04285
TCONS_00010304-XLOC_004787 down 14 04118 31 0.8378 -0.4261 04261
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BGC-823 and SGC-7901 were very different from
those in GES-1 cell lines under the same conditions
(Additional file 6).

Then we confirmed the aberrant expression pattern
of the 8 candidate IncRNAs in 156 clinical specimens
by qRT-PCR. The results indicated that n345630,
XLOC_004787, n378726, and LINC00473 were down-
regulated (P<0.05) in 67 H.pylori—positive specimens
compared with 89 negative specimens (Fig. 4b), whereas
no significant changes were observed in XLOC_005517,
XLOC_13370 or n408024. Interestingly, there was an

opposing expression pattern of LINC00152 in clinical
specimens compared with the microarray data (P < 0.001).

Discussion

H.pylori possesses numerous factors to successfully colonize
the gastric mucosa, influence host immune system, and
induce gastric pathology. For the past several decades
the molecular mechanisms of H.pylori have been widely
studied, while the pathogenesis of this agent is still in-
definite and most of the involved gene transcriptional
regulations remain to be defined. The recent studies on
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microRNAs (miRNAs) have expanded our insights on
H.pylori pathogenesis. MiRNAs are a class of non-coding
RNAs, short in length, participate in post-transcriptional
regulation, and play an important role in multiple bio-
logical functions. Aberrantly expressed miRNAs con-
tributed to human diseases and carcinogenesis. Numerous
miRNAs have been reported to involve in H.pylori-
associated gastric pathology by changing the expression
of target mRNAs [22, 23]. Zhang et al. reported that
miR-21 over-expression was associated with increased cel-
lular proliferation and antiapoptosis in H.pylori-positive
gastric tissues [24]; miR-146a and miR-155 were specific-
ally involved in the attenuation of the proinflammatory
responses against H.pylori [25, 26].

LncRNAs are emerging non-coding RNAs in molecular
research, longer in length, involved in almost each level of
gene expression and regulate diverse functions, such as
genome rearrangement, chromatin modification, imprint-
ing, transcription, splicing and translation [27-29]. Increas-
ing discoveries indicated that, like miRNAs, IncRNAs
played distinguished roles in pathogenesis and tumori-
genesis, and could be novel biomarkers and potential
therapeutic targets in diseases [30]. However, only few
of IncRNAs were studied to be related to diseases, majority
of which are unrevealed and so are those in the H.pylori-
induced diseases. Thus, we conducted the current study to
uncover the role of H.pylori in gastric pathological devel-
opment from a brand new sight of IncRNA. There was
only one report exploring the expression profiles of
IncRNAs in gastric epithelial cell response to H.pylori
infection. Liu et al. found that two differentially expressed
IncRNAs, XLOC_014388 and XLOC_004122, in H.pylori-
positive tissues, might be involved in the immune re-
sponse against H. pylori infection [31].

In this study, we used HTA 2.0 microarray to detect
the expression profiles of IncRNAs in H.pylori-infected
GES-1 cells in vitro. We chose gastric epithelial cell line

GES-1 for its versatility, non-malignancy and widely used
in studying cell signaling cascades response to H.pylori
infection [32]. Our data showed a set of differentially
expressed IncRNAs, including 171 down-regulated and
132 up-regulated IncRNAs in infected cells. Construction
of IncRNA-mRNA co-expression network displayed aber-
rantly expressed IncRNAs/mRNAs which were significantly
correlated with their adjacent mRNAs/IncRNAs. From the
network of experimental group, we observed that two
IncRNAs (n336000 and XLOC_013370) were involved in
the most connections (32°) with other transcripts, including
10 target mRNAs (Table 3). As for mRNAs, IER2 was cor-
related with 23 IncRNAs of the total 34 connections (data
not shown). In addition, we found that IER2 and n334184
owned the highest value of |DiffK| in IncRNA-mRNA
co-expression network, which indicated that they might
play key roles in the development of H.pylori—associated
disorders and diseases through interaction with many
other transcripts (Table 4).

Furthermore, in order to predict the potential functions
of IncRNAs, we used GO analysis and KEGG Pathway
annotation to investigate the IncRNA co-expressed mRNAs.
GO enrichment analysis revealed that the number of genes
corresponding to up-regulated mRNAs was larger than that
corresponding to down-regulated mRNAs. Pathway annota-
tion showed that there were 54 up-regulated pathways
and 40 down-regulated pathways. The significantly enriched
up-regulated pathways like HIF-1 signaling pathway,
MAPK signaling pathway, cytokine-cytokine receptor
interaction, p53 signaling pathway, and Jak-STAT signaling
pathway, contained significantly up-regulated mRNAs,
such as VEGFA, MMP1, JUN, MYC, EGFR, FGF2, HK2,
ICAMI, CSF1, IL1A, etc (Additional file 4). The overex-
pression of these genes is contributed to promoting cell
proliferation, differentiation, metastasis, antiapoptosis, im-
mune responses, and multiple genetic transcriptions. The
aberrantly expressed IncRNAs which were co-expressed
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with these genes in network might have involved in and
play collective roles in mediating such processes in
H.pylori infection.

We initially validated a number of interesting candidate
IncRNAs for further study,including 7 down-regulated
and 6 up-regulated IncRNAs. We finally found that 8
IncRNAs (n345630, XLOC_004787, n378726, LINC00473,
XLOC_005517, LINC00152, XLOC_13370, and n408024)
were consistent with microarray results in cell models.
There were discrepancies between the results of aber-
rantly expressed IncRNAs detected in different cell models
(SGC-7901 and BGC-823). SGC-7901 and BGC-823

cell lines are from human gastric adenocarcinoma; their

cellular responses against H.pylori were very different
from those in normal gastric mucosal epithelial cells
(showed in Additional file 6). So we concluded that the
IncRNA expression profiles of those two cancer cell
lines were also very different. The IncRNAs, n345630,
XLOC_004787, n378726, and LINC00473 were exhibited
down-regulation in 67 H.pylori—positive mucosa specimens
compared with negative specimens. Increased expression of
LINCO00152 has been reported in gastric cancer and was in-
volved in cell proliferation [33, 34]. At first we supposed
that LINC00152 might be involved in pathogenesis of
H.pylori associated digestive diseases. The qRT-PCR valid-
ation of LINC00152 expression pattern in H.pylori—infected
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cells was confirmed to be consistent with microarray
data (2.11-fold change). However, when it came to the
gastric mucosa tissues, we found reversed expression
pattern (P < 0.001) out of expectation.

Conclusions

In this preliminary study, we identified a subset of aber-
rantly expressed IncRNAs in H.pylori-infected models and
gastric mucosa tissues. Our data suggested that these
novel IncRNAs might contribute to the pathological re-
sponses and development of H.pylori related disorders
and diseases. However, there are still a lot of problems
remained to be addressed. Further mechanism studies
of these versatile molecules are most important re-
quired, which will broaden our understanding of patho-
genesis and provide new approaches to the diagnosis
and therapies of H.pylori infection.
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