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Integrative analyses of proteomics and RNA
transcriptomics implicate mitochondrial
processes, protein folding pathways and
GWAS loci in Parkinson disease
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Abstract

Background: Parkinson disease (PD) is a neurodegenerative disease characterized by the accumulation of
alpha-synuclein (SNCA) and other proteins in aggregates termed “Lewy Bodies” within neurons. PD has both
genetic and environmental risk factors, and while processes leading to aberrant protein aggregation are unknown, past
work points to abnormal levels of SNCA and other proteins. Although several genome-wide studies have been
performed for PD, these have focused on DNA sequence variants by genome-wide association studies (GWAS) and on
RNA levels (microarray transcriptomics), while genome-wide proteomics analysis has been lacking.

Methods: This study employed two state-of-the-art technologies, three-stage Mass Spectrometry Tandem Mass Tag
Proteomics (12 PD, 12 controls) and RNA-sequencing transcriptomics (29 PD, 44 controls), evaluated in the context of
PD GWAS implicated loci and microarray transcriptomics (19 PD, 24 controls). The technologies applied for this study
were performed in a set of overlapping prefrontal cortex (Brodmann area 9) samples obtained from PD patients and
sex and age similar neurologically healthy controls.

Results: After appropriate filters, proteomics robustly identified 3558 unique proteins, with 283 of these (7.9 %)
significantly different between PD and controls (q-value < 0.05). RNA-sequencing identified 17,580 protein-coding
genes, with 1095 of these (6.2 %) significantly different (FDR p-value < 0.05); only 166 of the FDR significant
protein-coding genes (0.94 %) were present among the 3558 proteins characterized. Of these 166, eight genes
(4.8 %) were significant in both studies, with the same direction of effect. Functional enrichment analysis of the
proteomics results strongly supports mitochondrial-related pathways, while comparable analysis of the RNA-sequencing
results implicates protein folding pathways and metallothioneins. Ten of the implicated genes or proteins co-localized
to GWAS loci. Evidence implicating SNCA was stronger in proteomics than in RNA-sequencing analyses.

Conclusions: We report the largest analysis of proteomics in PD to date, and the first to combine this technology with
RNA-sequencing to investigate GWAS implicated loci. Notably, differentially expressed protein-coding genes were more
likely to not be characterized in the proteomics analysis, which lessens the ability to compare across platforms.
Combining multiple genome-wide platforms offers novel insights into the pathological processes responsible for this
disease by identifying pathways implicated across methodologies.
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Background
Parkinson disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s disease, with
approximately six million cases diagnosed worldwide [1].
PD is characterized clinically by impairment of motor
function and cognitive abilities. The main neuropatho-
logical hallmarks of PD are protein aggregates termed
“Lewy Bodies”, which are found within neurons and
neuronal processes, and contain many proteins, but con-
sist primarily of the alpha-synuclein protein (SNCA).
Multiple neurotransmitters are implicated in PD, with
degeneration of dopaminergic neurons in the substantia
nigra most prominently seen. The disease is considered
a “complex disorder” resulting from both environmental
and genetic factors. Familial monogenic forms of PD
have been identified, with the most common of these at-
tributed to mutations in the leucine-rich repeat kinase 2
(LRRK2) [2], Parkin (PARK2) [3] and Glucosidase, Beta,
Acid (GBA) [4] genes, and with several rare monogenic
forms recognized, including rare mutations in the alpha-
synuclein gene (SNCA) [1, 5]. Recently, a large meta-
genome-wide association study (GWAS) for PD identified
twenty-four loci implicated in disease risk [6, 7], although
most of the genes responsible for risk at these loci remain
unknown. While few environmental factors have been un-
equivocally identified for PD [8, 9], the heterogeneity of
genetic and environmental factors that contribute to dis-
ease etiology makes the understanding of the underlying
pathogenic processes difficult to define.
Although protein aggregation is fundamental to PD

pathogenesis, and the roles of abnormal protein folding,
trafficking and clearance in PD are widely discussed, few
studies have sought to investigate disrupted protein
levels using genome-wide methods. To our knowledge,
the study by Riley et al. [10] is the only past study to
perform both RNA-sequencing (RNA-Seq) and proteo-
mics (Liquid chromatography tandem-mass spectrom-
etry) in brain samples for three PD cases and three
controls in the striatum and cortex. That study impli-
cated oligodendrocyte function and synaptic vesicle re-
lease as disease-related processes, and reinforced the
power of genome-wide technologies even for small sam-
ple sizes. Thus, while a few high-throughput genome-
scale experiments have been performed in the past for
PD, including cDNA microarrays [10, 11] and genome-
wide association studies (GWAS) [6, 7], the biology of
the disease remains poorly understood.
While the concordance of proteomics and RNA tran-

scriptomics is known to be weak [12, 13], PD is recog-
nized as a protein aggregation disorder; therefore, the
analysis of protein levels in PD brain may provide novel
insights in the disease pathology. Our primary interest
in this study was to assess the role of disrupted protein
homeostasis and to compare this characterization to that
measured by RNA quantification technologies. To this
end, we applied two state-of-the-art genome-wide tech-
nologies, three-stage Mass Spectrometry Tandem Mass
Tag (MS3) Proteomics and RNA-sequencing (RNA-Seq)
transcriptomics, which were analyzed together with PD
GWAS implicated loci and microarray cDNA tran-
scriptomics. The technologies applied for these studies
are outlined in Fig. 1 and were performed in a set of
overlapping prefrontal cortex samples obtained from
male PD patients and sex and age similar neurologically
healthy controls.
We first compared the levels of proteins and protein-

coding mRNAs between control and PD samples, and
then examined both data sources for enriched or com-
mon biological signals. The goals of this work were to:
1) assess differences between PD and control brain tis-
sue across multiple biological processes using current
genome-wide methodologies, 2) compare disease-related
changes in protein and mRNA levels observed in over-
lapping sets of brain samples, and 3) use the obtained
results to aid in interpretation and assessment of prior
PD GWAS studies to elucidate the genes that may be re-
sponsible for PD risk at the loci implicated by these
studies. To our knowledge, no past study has combined
these technologies in a series of PD and control brain
samples.
Methods
Brain samples
Frozen brain tissue from the prefrontal cortex Brodmann
Area 9 was available from three brain banks: the National
Brain and Tissue Resource for Parkinson’s Disease and Re-
lated Disorders at Banner Sun Health Research Institute
(BSHRI), Sun City, Arizona, the Harvard Brain Tissue Re-
source Center McLean Hospital (HBTRC), Belmont,
Massachusetts, and the Human Brain and Spinal Fluid Re-
source Center VA (HBSFRC), West Los Angeles Health-
care Center, California. A total of 29 PD and 44 control
samples were included in the RNA-Seq study. Twelve of
the 29 PD and 12 of the 44 control samples (selected from
those with lowest post-mortem intervals) were included in
the proteomics study. Additionally, 19 PD and 24 control
samples assayed via RNA-Seq were studied previously in
an expression microarray analysis [11]. All control and PD
brain samples were derived from males of European ances-
try (determined by ancestry informative genotyping [6])
and were assessed for Alzheimer’s disease (AD) pathology.
For this assessment, information about plaques and tangles
from neuropathology reports was used to exclude cases
with any AD-type pathology beyond normal signs of aging,
as previously described [14] (see Table 1 and Additional file
1: Table S1). Age at death, post-mortem interval (PMI)
and RNA integrity number (RIN) were evaluated for



Fig. 1 Study overview. Human prefrontal cortex Brodmann Area 9 tissue was used to assess mRNA abundance levels for protein-coding genes
using Illumina RNA-Seq, and protein abundance levels using MS3 proteomics in control and PD samples. Differential mRNA and protein abundance
analyses were performed to identify lists of differentially abundant genes and proteins, and these top results were evaluated for functional enrichment,
as well as for overlap with genes in the vicinity of significant SNPs from a recent mega-meta analysis of PD genome-wide association studies [7]. A
subset of the brain samples included in the RNA-Seq study had been previously assessed for mRNA abundance using Agilent microarray technology
[11], and the results obtained with the two techniques were compared
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differences between groups and assessed as potential
confounders in the analyses.

Processing of samples for proteomics
Prefrontal cortex tissue (50–80 mg) from 12 control and
12 PD samples was homogenized with an ice-cold lysis
buffer composed of 8 M urea, 75 mM NaCl, 50 mM
Tris, pH 8.2, 1 mM NaF, 1 mM β-glycerophosphate,
1 mM sodium orthovanadate, 10 mM sodium pyrophos-
phate, 1 mM PMSF and one tablet of protease inhibitors
cocktail per 10 mL. The lysate was centrifuged at
20,000 × g for 10 min to pellet cellular debris. The
Table 1 Summary statistics for brain samples

Analysis Description

RNA-Seq Number of samples

Age at death, years (range)

PMI, hours (range)

RIN (range)

Proteomicsa Number of samples

Age at death, years (range)

PMI, hours (range)

Microarray Number of samples

Age at death, years (range)

PMI, hours (range)
aAll samples studied by proteomics have both RNA-sequencing and microarray tran
protein content of the supernatant was measured using
the BCA assay. Protein disulfide bonds were reduced
with DTT, and cysteine residues were alkylated with
iodoacetamide as previously described [15]. The protein
lysates were subjected to a methanol-chloroform precipi-
tation, and then digested overnight with Lys-C (Wako)
at a 1/100 enzyme/protein ratio in a buffer comprised of
4 M urea and 50 mM Tris–HCl, pH 8.8. The digest was
acidified with formic acid to a final pH of ~2–3, and
subjected to C18 solid-phase extraction (Sep-Pak, Wa-
ters). Isobaric labeling of the peptides was accomplished
by dissolving 0.8 mg of 6-plex TMT reagents (Thermo
Control PD t-test p

44 29 -

70.00 (46–97) 77.55 (64–95) 4.6E-3

14.36 (2–32) 11.14 (1–31) 0.170

7.85 (6.0-9.1) 7.07 (5.8-8.5) 5.9E-5

12 12 -

79.50 (61–97) 76.83 (64–88) 0.539

5.66 (2–18) 4.16 (2–11) 0.455

24 19 -

74.75 (58–97) 79.57 (64–94) 0.123

13.08 (2–26) 7.57 (2–31) 3.9E-2

scriptomics
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Scientific) in 40 μL acetonitrile, and adding 10 μL of this
solution to 100 μg of peptides dissolved in 100 μL of
50 mM HEPES, pH 8.5. These samples were fractionated
using strong cation exchange chromatography [15], and
the fractions were analyzed by liquid chromatography-
MS3 on an LTQ Orbitrap Velos mass spectrometer, as
previously described [16]. Each of the four 6-plex proteo-
mics experiments included 3 PD and 3 control samples.
The sample processing and data generation for the proteo-
mics experiment were performed by the Gygi Lab (https://
gygi.med.harvard.edu/), at Harvard Medical School.

Database correlation and statistical analysis of proteomic
data
All MS/MS and MS/MS/MS spectra were searched
against the human IPI database (Version 3.87) from the
European Bioinformatics Institute by using the SEQUEST
algorithm [17]. Modifications were permitted to allow for
the detection of oxidized Met (+16), carboxyamidomethy-
lated Cys (+57), and phosphorylated Ser, Thr and Tyr
(+80). All peptide matches were initially filtered based on
Xcorr and dcorr scores [15]. A total of 6569 proteins de-
scribed by IPI IDs were identified in at least one of the 6-
plex experiments, with 3600 proteins common to all four
6-plex experiments; only these common 3600 proteins
were considered for downstream analyses. After removing
the proteins corresponding to IPI IDs that could not be
mapped to a proper official gene symbol (4 instances) and
averaging the abundance values for proteins with IPI IDs
corresponding to the same gene symbol (35 instances), a
number of 3558 unique genes were included in the ana-
lysis of the proteomics experiment. The mapping of IPI
IDs to official gene symbols was performed in April 2014.
The normalization and statistical analysis of the prote-

omics data were implemented in R. Two steps were used
to normalize the raw data: 1) an intra-experimental
(within plex) variation step – for each sample, each pro-
tein’s raw signal was normalized to the total ion intensity
of the protein within the plex, and 2) an inter-experimental
(across plexes) variation step – for each sample, each pro-
tein’s normalized value from step 1) was transformed by
dividing it to the mean of all normalized values of the pro-
tein obtained in step 1) of all 24 samples. The Surrogate
Variable Analysis (SVA) method implemented in the sva R
package [18] (v3.10.0) was used to eliminate latent noise in
the data not explained by the categorical factors, including
batch effects, by building a set of covariates constructed
directly from the proteomics dataset. Three significant sur-
rogate variables (SVs) were identified for the proteomics
data (shown in Additional file 1: Table S1). The limma R
package [19] was used for statistical analysis of differential
abundance, using a linear model fit including the 3 SVs for
the contrast between the PD and the control groups. The
p-values were adjusted for multiple comparisons using the
q-value method [20]; a gene was considered to be signifi-
cantly different between PD and control samples if it had
an adjusted q-value < 0.05. For the full set of differential
protein abundance results, see Additional file 2: Table S2.

RNA extraction
RNA tissue (10–20 mg) for each brain sample included in
the sequencing study was homogenized in TRIzol (Invi-
trogen, Carlsbad, CA). Total RNA was isolated using the
Qiagen RNeasy Mini Kit (Qiagen Sciences Inc., German-
town, MD) and further purified using Agencourt RNA
Clean magnetic beads (Beckman Coulter, Inc.). The quan-
tity and purity of the RNA was determined by absorbance
at 260 nm and by 260/280 absorbance ratio, respectively.
Each of the total RNA preparations was individually
assessed for RNA quality based on the 28S/18S ratio and
the RNA integrity number (RIN) was measured on an
Agilent 2100 Bioanalyzer system using the RNA 6000
Nano LabChip Kit (Agilent, Foster City, CA).

RNA-Seq library preparation and sequencing
For each brain sample, 1 μg RNA was used to construct
sequencing libraries using Illumina’s TruSeq RNA Sam-
ple Prep Kit. The unmodified manufacturer protocol was
followed: mRNA molecules were polyA selected, chem-
ically fragmented, randomly primed with hexamers, syn-
thesized into cDNA, 3′ end-repaired and adenylated,
sequencing adapter ligated and PCR amplified. Each
adapter-ligated library contained one of twelve TruSeq
molecular barcodes. Multiplexed samples were equimo-
larly pooled into sets of 3 samples per flowcell lane and se-
quenced using 2x101 ntd paired-end runs on Illumina’s
HiSeq 2000 system at the Tufts University sequencing
core facility (http://tucf-genomics.tufts.edu/). Demulti-
plexing and FASTQ file generation (raw sequence read
plus quality information in Phred format) were accom-
plished using Illumina’s Consensus Assessment of Se-
quence and Variation (CASAVA) pipeline.

RNA-Seq data processing
Sequenced data were aligned to the UCSC human refer-
ence genome (build hg19) using TopHat version 2.0.1 [21]
with the following explicit parameters: −−mate-inner-dist =
50, −−mate-std-dev = 50, −−splice-mismatches = 1, −−max-
multihits = 20, −−read-mismatches = 3, −−read-edit-dist =
3, −−microexon-search, −−coverage-search. The alignment
BAM files were evaluated with the RSeQC quality control
python package [22], including assessment of mapping sta-
tistics (bam_stat.py script), gene body coverage (gene-
Body_coverage.py script), GC content of reads (read_GC.py
script), and sequence quality based on Phred score (read_-
quality.py script). There were no outliers detected, and all
samples were carried forward in the analysis.

https://gygi.med.harvard.edu/
https://gygi.med.harvard.edu/
http://tucf-genomics.tufts.edu/
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mRNA gene abundance estimation
Gene expression quantification was performed using htseq-
count version 0.5.3p9 (http://www-huber.embl.de/users/an-
ders/HTSeq/doc/count.html), the GENCODE version 17
annotation gtf file (http://www.gencodegenes.org/releases),
and the alignment BAM files. The intersection_nonempty
mode and the unstranded library type (−−stranded = no op-
tion) were specified as parameters for the htseq-count run,
with all other options left as default.
Gene differential expression analysis using DESeq2
For the PD/control differential expression evaluation, we
considered the 20,331 protein-coding genes from the
GENCODE annotation file. The R (https://www.r-pro-
ject.org/) package DESeq2 version 1.4.0 [23, 24] was
used to perform the differential expression analysis.
First, a low-count filter was applied to the protein-
coding genes, removing those with 0 counts in more
than 50 % of the PD or more than 50 % of the control
samples. 17,580 genes passed this filtering criterion. For
the differential expression analysis in DESeq2, the in-
structions from the package vignette were followed.
First, a DESeqDataSet object was constructed including
as covariates age at death, post-mortem interval (PMI)
and binned RNA Integrity Number (two categories: RIN
< =7 or >7). The DESeq wrapper was run with default
options, and the results function was run specifying
independentFiltering = F as an option. The significant
genes were considered to be those with a False Discovery
Rate (FDR)-adjusted p-value below 0.05, using the pro-
cedure of Benjamini and Hochberg [24]. The official
symbols of the protein-coding genes were last updated
in April 2014, using a custom Matlab script.
For the full set of differential mRNA abundance re-

sults, see Additional file 3: Table S3. For a set of genes/
proteins with common signal in the RNA-Seq and prote-
omics experiments (multiple comparison corrected sig-
nificance in one of the two experiments and nominal
significance in the other), see Additional file 4: Table S4.
Microarray analysis
Nineteen PD and 24 control samples from the ones in-
cluded in the RNA-Seq study were previously studied as
part of an Agilent microarray analysis (44 K One-Color
Agilent 60-mer Whole Human Genome Microarray)
performed by our investigators [11]. We ran a PD/con-
trol differential expression analysis for the microarray
data of these 43 samples, following the same protocol
described previously [11], with the exception that RIN
was binned into two categories, RIN < =7 or >7 (see
Additional file 5: Table S5 for results). This analysis
change was made to match the analysis from the RNA-
Seq study.
GO and MSigDB enrichment calculation
Enrichment analyses were implemented using the Gene
Ontology (GO) annotation database [25] and the Mo-
lecular Signatures Database (MSigDB v4.0) [26]. Only
the “C2 Canonical Pathways” gene sets were used from
the MSigDB database (http://www.broadinstitute.org/
gsea/msigdb/index.jsp). To insure that gene sets derived
from the strongest implicated genes were not diluted by
more weakly implicated genes, we performed enrich-
ment analysis on the top 25 genes, then on the top 50,
100, 350, 600, 850, and 1095 genes obtained from the
RNA-Seq analysis and on the top 25, 50, 100, and 283
proteins obtained from the proteomics analysis. GO
term enrichment was performed using topGO [27], with
the “weight01” algorithm and the “fisher” statistic, after
having removed GO terms with less than 10 annotated
genes (“nodeSize = 10”). All analyzed RNA-Seq genes
and all analyzed proteomics genes were utilized as the
background for their respective analyses. Custom scripts
in the R statistical environment (http://www.r-projec-
t.org/) were created to run the analysis. Enrichment of
MSigDB Canonical Pathways gene lists was performed
with custom R scripts using the “fisher.test” and “p.ad-
just” routines. Further processing of enrichment results
was performed using custom scripts to generate plots in
python with matplotlib [28], ipython notebook [29], and
pandas [30].
An identical approach was implemented for the func-

tional enrichment analysis of the 77 genes/proteins with
multiple comparison corrected significance in one of the
two experiments and nominal significance in the other
experiment. For the full set of enrichment analysis re-
sults, see Additional file 6: Table S6.

PD Mega-Meta GWAS Genes
551 SNPs were found as genome-wide significant (p <
5E-8) in a recent mega-meta analysis of PD genome-
wide association studies [7]. We defined SNPs in a range
of 100 kb of a gene to be within the primary regulatory
region of the gene, in which 98 % of cis-acting eQTLs
are likely to occur [31]. Using this criterion, we used
Annovar [32] for the annotation of 166 genes identified
as potentially under the regulatory control of these 551
genome-wide significant SNPs. These 166 genes were
evaluated in terms of differential RNA or protein abun-
dance in our study (see Table 2 and Additional file 7:
Table S7).

Results
Proteomics study
A total of 6569 unique proteins were identified across
the four 6-plex sample sets used for the proteomics
study, with 3558 unique proteins detected in all four sets
and used in the analysis of differential abundance. 283

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www.gencodegenes.org/releases
https://www.r-project.org/
https://www.r-project.org/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.r-project.org/
http://www.r-project.org/


Table 2 Significant genes with evidence from GWAS analysis

Mega-meta GWAS locia Implicated
gene

Description Additional
evidence

Potential PD-relevant biological functionsb

No rs# available (chr4:816756)
intronic

CPLX1 complexin 1 Proteomics Synaptic vesicle exocytosis

rs2263418 (chr12:40582993)
upstream

SLC2A13 solute carrier family 2 (facilitated glucose
transporter), member 13

Proteomics N/A

rs356182 (chr4:90626111)
downstream

SNCA synuclein, alpha (non A4 component of
amyloid precursor)

Proteomics Presynaptic signaling and membrane
trafficking

rs8118008 (chr20:3168166)
downstream

SLC4A11 solute carrier family 4, sodium borate
transporter, member 11

RNA-Seq N/A

rs4889620 (chr16:31131174)
intronic

KAT8 K(lysine) acetyltransferase 8 RNA-Seq Histone acetyltransferase activity,
transcription factor binding

rs6812193 (chr4:77198986)
intronic

FAM47E family with sequence similarity 47, member E RNA-Seq Transcription cofactor activity

rs823118 (chr1:205723572)
upstream

NUCKS1 nuclear casein kinase and cyclin-dependent
kinase substrate 1

RNA-Seq N/A

rs1375131 (chr2:135954797)
UTR3

ZRANB3 zinc finger, RAN-binding domain containing 3 RNA-Seq DNA annealing helicase and endonuclease
activities

rs11724635 (chr4:15737101)
upstream

CD38 CD38 molecule RNA-Seq Signal transduction, calcium signaling

rs34195153 (chr1:154913723)
downstream

PYGO2 pygopus family PHD finger 2 RNA-Seq Signal transduction

aSince some genes have multiple SNPs within 100 kb of their start and end sites showing association to PD status at p-values < 5E-8 [7], only the SNP with the lowest
p-value is shown for each implicated gene. SNP coordinates are based on the hg19 (GRCh37.p13) human reference. SNP annotations: downstream/outstream = outside
the gene boundaries, within 100 kb from the start or end site of the gene, intronic = located in the gene intron, UTR3 = located in the 3′-UTR of the gene
bBased on gene information from GeneCards (http://www.genecards.org/), accessed in January 2015
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proteins were significantly different between PD and
control samples after adjustment for multiple compari-
sons (q-value < 0.05), with 106 of these proteins (37.5 %)
showing increased levels and 177 showing decreased
levels in PD brain compared to control brain (see Fig. 2
and Additional file 2: Table S2 for details).
Functional enrichment analyses were implemented

using GO categories and Broad Institute’s Molecular Sig-
nature Database (MSigDB) canonical pathways. To
insure that functional sets derived from the strongest
implicated proteomics genes were not diluted by more
weakly implicated genes, the enrichment was performed
for all 283 significant proteomics genes, as well as for
subsets of these genes (e.g. top 25, 50, 100 genes). Top
enrichment results are visualized in Figs. 3 and 4. De-
tailed enrichment results for all GO terms and MSigDB
canonical pathways significant for any of the used sub-
sets of significant genes are available in Additional file 6:
Table S6.
The top Biological Processes category was “mitochon-

drial electron transport, NADH to ubiquinone” (p =
3.53E-11), the top Cellular Component category was
“mitochondrial respiratory chain complex I” (p = 6.39E-
11), and the top Molecular Function category was “NADH
dehydrogenase (ubiquinone) activity” (p = 1.63E-10).
Similarly, the top MSigDB Canonical Pathway was
“REACTOME RESPIRATORY ELECTRON TRANS-
PORT”. These findings provide consistent and compelling
evidence that an agnostic assessment of genome-wide pro-
teomics analysis strongly supports impaired mitochondrial
function as fundamental to PD pathogenesis.

mRNA sequencing study
Differentially abundant protein-coding genes
We compared the mRNA abundance of 17,580 protein-
coding genes (passing a low-count filter) of 29 PD to 44
control prefrontal cortex samples (see Table 1 for sample
description). A total of 1095 genes (6.2 %) were identi-
fied with significantly different mRNA levels at FDR p-
values < 0.05, with 570 of these genes (52.1 %) showing
increased RNA level in PD compared with controls
(Fig. 2 and Additional file 3: Table S3).
Functional enrichment analyses were performed in a

similar manner to those described for the proteomics re-
sults, both for the full set of FDR-significant genes, as
well as for subsets of these genes at increasingly stricter
gene-sample cutoffs (e.g. top 25, 50, 100, 350, 600, 850
genes). The top 15 MSigDB canonical pathways, and the
top 15 enriched terms for each GO set used (Biological
Processes, Cellular Components, and Molecular Func-
tions) identified using any of the considered subsets
from the FDR-significant genes are displayed in Figs. 4
and 5. Detailed enrichment results are available in
Additional file 6: Table S6.
Both the top Biological Processes category “response

to unfolded protein” and the top Molecular Function

http://www.genecards.org/


Fig. 2 Description of top results for the RNA-Seq and MS3 proteomics experiments. Panels a and b display the distribution of log2 fold change
values for the results with multiple comparison corrected significance obtained in proteomics (N = 283) and RNA-Seq (N = 1095) differential
abundance analyses. The number of protein-coding genes assayed in the RNA-Seq experiment was almost five times larger than the number of
proteins assayed in the MS3 proteomics experiment. Panel c summarizes the overlap between the genes analyzed by RNA-Seq and proteomics,
either for all genes from the two experiments (upper part of panel c) or for the genes with multiple comparison corrected significance in one
experiment and all genes from the other (lower part of panel c). The colors of the diagram sections indicate genes present only in the RNA-Seq
experiment (blue), genes present in both the RNA-Seq and the proteomics experiments (green), and genes present only in the proteomics experiment
(yellow). The brown boxes highlight the genes with multiple comparison corrected significance – either 1095 for RNA-Seq or 283 for proteomics. For
the lower part of panel c, the green sections display two additional numbers (with percentages). These numbers represent the number of genes with
multiple comparison corrected significance in one study and nominal significance in the other (first number), and the number of genes with multiple
comparison corrected significance in one study, nominal significance in the other, and same direction of effect between the two studies (second
number). Below the diagram corresponding to the “Intersection of Significant RNA-Seq and All Proteomics Genes” header, two additional percentages
are displayed; they represent the percentages of genes with increased mRNA abundance in PD compared to control for the 1) 929 genes with multiple
comparison corrected significance in the RNA-Seq study and not present in the proteomics study, and 2) 166 genes with multiple comparison
corrected significance in the RNA-Seq study and present in the proteomics study (the two sections of the diagram directly above). Only 10 genes were
in common between the RNA-Seq and proteomics results with multiple comparison corrected significance, with eight of them showing the same
direction of effect and two of them (highlighted in red) showing opposite direction of effect, as displayed in panel d
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category “unfolded protein binding” implicate responses
to abnormal protein structure, which, although not seen
in the proteomics analysis, is not surprising given the
abnormal protein aggregation seen in PD. The top Cel-
lular Components category “COP9 signalosome” (CSN)
has not been previously implicated in PD. The CSN is a
conserved multiprotein complex, which mainly functions
in the control of proteolysis [33]. The CSN has also been
implicated in the control of NF-kappaB in innate
immunity, as well as T-cell activation and maturation.
Similar to the Cellular Components result above, the
MSigDB implicates the “KEGG ANTIGEN PROCESS-
ING AND PRESENTATION” and “REACTOME RIP
MEDIATED NFKB ACTIVATION VIA DAI”, providing
support for a role of inflammation in PD. In addition,
seven metallothionein genes out of 19 present in the
gene family showed significantly increased abundance in
PD relative to control samples.



Fig. 3 (See legend on next page.)
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Fig. 3 TopGO enrichment analysis results for the proteomics study. Functional enrichment analysis was performed for 4 subsets of the significant
results obtained in the MS3 proteomics study (top 25, 50, 100, all 283 genes with multiple comparison corrected significance). The top 15
enriched GO terms belonging to GO Biological Processes (BP), GO Cellular Components (CC), and GO Molecular Functions (MF) are displayed in
panels a, b, and c, respectively. The presented top results are those with the smallest p-values in any of the subsets of genes used. The top category
for each process implicates mitochondrial function as impaired in PD. DE = differentially expressed
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Overlap of RNA-Seq and proteomics analyses
A set of 3520 genes was common between the 17,580
protein-coding genes derived from the RNA-Seq study
and the 3558 unique proteins derived from the MS3
proteomics study. However, of the 1095 FDR-significant
genes from the RNA-Seq analysis, only 166 were
Fig. 4 MSigDB canonical pathway enrichment analysis results. Functional e
genes obtained in the proteomics study (top 25, 50, 100, all 283 genes wit
significant genes from the RNA-Seq study (top 25, 50, 100, 350, 600, 850, al
15 enriched MSigDB Canonical Pathways for RNA-Seq and MS3 proteomics
top results are those with the smallest p-values in any of the subsets of ge
available in the proteomics dataset, while out of the 283
significantly differentially abundant proteins (q-value <
0.05), one was missing from the RNA-Seq dataset (see
Fig. 2, panel c).
Given the different rate of detection in the proteomics

study for the RNA-Seq FDR significant genes (where
nrichment analysis was performed for a 4 subsets of the significant
h multiple comparison corrected significance) and b 7 subsets of the
l 1095 genes with multiple comparison corrected significance). The top
results are displayed in panels a and b, respectively. The presented
nes used. DE = differentially expressed



Fig. 5 (See legend on next page.)
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Fig. 5 TopGO enrichment analysis results for the RNA-Seq study. Functional enrichment analysis was performed for 7 subsets of the FDR-significant
genes obtained in the RNA-Seq study (top 25, 50, 100, 350, 600, 850, all 1095 genes with multiple comparison corrected significance). The top 15
enriched GO terms belonging to GO Biological Processes (BP), GO Cellular Components (CC), and GO Molecular Functions (MF) are displayed in panels
a, b, and c, respectively. The presented top results are those with the smallest p-values in any of the subsets of genes used. The Cellular components
category “COP9 signlaosome” (CSN) has not been previously implicated in PD. DE = differentially expressed
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only 15.1 % were characterized by MS3 proteomics)
compared to the remaining genes (where 20.2 % were
characterized by MS3 proteomics), we asked whether or
not there was an observed difference in terms of direc-
tion of effect between the 166 RNA-Seq FDR significant
genes detected via proteomics compared to the remaining
929 undetected via proteomics. Interestingly, the genes
with increased expression in PD compared to control at
FDR-level of significance were more likely than expected
by chance to be undetected in the proteomics study. This
result was highly significant (χ2 = 33.68, p = 1E-8), with
52/166 (31.3 %) genes detected by proteomics showing
increased expression in PD, compared with 518/929
(55.7 %) genes not detected by proteomics showing in-
creased expression in PD. This result could indicate a po-
tential post-transcriptional regulatory mechanism that
prevents protein translation for specific highly expressed
mRNAs involved in disease-related processes. This poten-
tial mechanism might also be one reason for the limited
overlap between the proteomics and the RNA-Seq mea-
surements, which restricts the analysis of overlapping
pathways between the two studies.
When comparing the genes significant after adjust-

ment for multiple comparisons from the two datasets,
only ten of them were identified by both analyses, with
eight showing the same direction of effect (these ten
genes are displayed in Fig. 2, panel d). However, among
the 283 genes with q-value < 0.05 in the proteomics ana-
lysis, 56 were observed to also have nominal significance
in the mRNA analysis, and 38 of these also had the same
direction of effect. Among the 166 proteins present in
the 1095 FDR-significant RNA-Seq genes, 31 had nom-
inal significance, and 21 of these also had the same dir-
ection of effect. In total, 77 unique genes showed
evidence for PD involvement from both the gene ex-
pression and the protein abundance experiments (see
Additional file 4: Table S4 for details). As these genes
may be of particular interest in functional studies of
PD, we performed functional enrichment for them
(Additional file 6: Table S6, tabs “Common Genes GO”
and “Common Genes MSigDB CP”). The Cellular Com-
ponent term “neuron projection membrane” (p =
0.0019) is the strongest category identified in this ana-
lysis, with the Biological Process category “superoxide
metabolic process” (p = 0.0036) and the Molecular
Function category “protein N-terminus binding” (p =
0.0046) among the top findings.
To assess the relationship between RNA expression
dysregulation and relative protein abundance, the results
for the mRNAs and for the proteins were compared for
the 3520 common genes. Weak, but significant correl-
ation for fold changes (Spearman rank correlation: r =
0.075, p = 7.4E-6) was observed. The correlation for fold
changes increased when examining the sets of significant
genes after adjustment for multiple comparisons from
the RNA-Seq study (N = 166, Spearman rank correlation:
r = 0.185, p = 0.016) or from the proteomics study (N =
282, Spearman rank correlation: r = 0.142, p = 0.016).
To further evaluate the relationship between mRNA

and protein abundance in the 24 samples with common
data, we looked at the differences in terms of absolute
correlation values between protein/mRNA abundance
for all common genes as opposed to 1) the 77 common
genes with joint evidence from the full RNA-Seq and the
proteomics studies (“AND evidence genes”, with mul-
tiple comparison corrected significance in one study and
nominal significance in the other) and 2) the 438 com-
mon genes with evidence from either the full RNA-Seq
study or the proteomics study (“OR evidence genes”,
with multiple comparison corrected significance in ei-
ther study). While there was no significant difference be-
tween the absolute correlation values of all genes and
those belonging to the “OR evidence genes” (t-test p-
value = 0.18), there was a significant difference between
the absolute correlation values of all genes and those be-
longing to the “AND evidence genes” (t-test p-value =
9.3E-6, Fig. 6).

Application to PD GWAS gene-discovery
Identifying the specific genes responsible for risk at
GWAS loci is often difficult, as the regions where SNPs
show significant levels of statistical association can span
multiple genes and the gene closest to the SNP with
strongest p-value is not necessarily the one responsible
for association. Thus, an important goal of this project
was to provide a resource for the evaluation and
prioritization of results from other PD-related high-
throughput studies, such as genetic variants from genome-
wide association (GWA) studies. The recent mega-meta
analysis of PD GWA studies [7] identified over 500 genetic
variants in 24 loci (see Methods, PD Mega-Meta GWAS
Genes). Using the criterion of genes within 100 kb of a
GWAS SNP, within which 98 % of cis-acting eQTLs with
primary regulatory effects are likely to occur [31], 166



Fig. 6 Combined assessment of mRNA and protein abundance results. a Comparison of 1) the protein abundance/mRNA abundance correlations
for all 3520 genes common between the RNA-Seq and proteomics studies (“All common genes”, displayed in green) and 2) the protein abundance/
mRNA abundance correlations for the 77 genes with common signal in both experiments (“AND evidence genes”, displayed in orange). A gene was
considered to show common signal if it had multiple comparison corrected significance in one of the two experiments and nominal significance in
the other experiment. As it can be observed from the density of the correlations, the “AND evidence genes” showed stronger correlation between the
mRNA and the protein levels. b Comparison of the mRNA abundance of 1) genes available in the RNA-Seq study, but not in the proteomics study
(“RNA-Seq - proteomics”, grey color) and 2) genes available in both the RNA-Seq and the proteomics studies (“RNA-Seq + proteomics”, blue color). The
figure displays the log2 values of the genes’ mean mRNA abundance in the 24 samples common between the RNA-Seq and the proteomics analyses.
The mRNA abundance of the genes captured by proteomics is significantly increased compared to those missed by MS3 proteomics measurements.
This result indicates a potential detection bias for the MS3 proteomics technique for proteins translated from highly expressed mRNAs
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genes were identified (Additional file 7: Table S7). Ten of
these genes, displayed in Table 2, were present among our
study’s significant RNA-Seq (FDR p < 0.05) or proteomics
(q-value < 0.05) results.
Notably, SNCA showed significantly increased protein

levels in the proteomics analysis, but did not show al-
tered RNA levels in the RNA-sequencing analysis. This
finding supports the view that SNCA protein levels are
altered in PD, and this observation may contribute to its
accumulation in Lewy bodies.

Comparison of RNA-Seq and microarray abundance
analysis results
Data available from a cDNA Agilent microarray study
recently performed by our group to compare gene ex-
pression levels of 27 PD to 26 control prefrontal cortex
samples [11] offered a medium to validate the RNA-Seq
results using an alternative technology. 895 of the genes
included in the microarray analysis overlapped with the
1095 FDR-significant genes from the RNA-Seq study.
For these genes, significant correlation of fold changes
was observed (Spearman rank correlation: r = 0.490, p <
2.2E-16), with 702 genes (78.43 %) showing the same
direction of effect between the two studies. 232 of the
702 genes (33.04 %) also had nominal significance.
Given that a subset of 24 controls and 19 PD samples

assayed in the RNA-Seq study were also evaluated in the
microarray study [11], we could perform a more direct
comparison of differential abundance results obtained
across the two technologies (see Methods, Microarray
Analysis). Although the RNA for the 43 commonly stud-
ied brain samples came from different tissue extractions,
both studies were performed in the prefrontal cortex
(Brodmann Area 9). For these samples, there were
14,115 protein-coding genes commonly analyzed; among
these genes, 80 reached FDR-level of significance in the
RNA-Seq analysis. The differential abundance results ob-
tained for the two studies showed significant, albeit low
correlation with regard to fold change (Spearman rank cor-
relation: r = 0.188, p < 2.2E-16). However, the correlation
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for fold changes was stronger when only the 80 protein-
coding genes with FDR p < 0.05 in the RNA-Seq analysis
were considered (Spearman rank correlation: r = 0.471, p =
3.6E-8). While only 9 of these 80 genes (11.25 %) had nom-
inal significance in the microarray, 62 (77.5 %) showed a
consistent direction of effect.

Discussion
While the pathological hallmark of PD is the accumula-
tion of alpha-synuclein (SNCA) and other proteins in
Lewy Bodies, past genome-wide studies have focused on
GWAS analyses of DNA sequence variants and RNA
transcriptomics by microarray. We believe this is the
first investigation of PD brain samples which involves
genome-wide analyses for (1) MS3 proteomics, (2) RNA-
sequencing transcriptomics, (3) PD GWAS implicated
loci, and (4) microarray transcriptomics. All samples
studied by proteomics were also studied by RNA-Seq
and expression microarrays, and all samples were Brod-
mann 9 prefrontal cortex.
MS3 proteomics identified 3558 unique proteins, while

RNA-sequencing identified 17,580 protein-coding genes
and 3520 of these were in common between the two
platforms. While 283 proteins and 1095 mRNAs were
significantly different between PD and controls after ad-
justment for multiple comparisons, only eight genes
were in common and with the same direction of effect
between these two sets of top results.
Our analyses revealed evidence implicating a large

number of genes, proteins, and biological networks, in-
cluding many previously reported in PD, as well as some
not previously appreciated for this disease. Among the
differentially abundant proteins with prior evidence for
PD involvement were SNCA (Synuclein, Alpha (Non A4
Component Of Amyloid Precursor); increased in PD) [34,
35], GAD1 (glutamate decarboxylase 1 (brain, 67 kDa);
decreased in PD) [36], and NPTX2 (neuronal pentraxin II;
decreased in PD) [37]. Functional enrichment analyses of
the proteomics results (Additional file 6: Table S6)
strongly support the involvement of mitochondrial-related
pathways, as has been previously suggested [10, 38, 39],
justifying renewed attention to this area of investigation
for PD. Other top enriched biological pathways for the
proteomics data point towards neurodegenerative diseases
(“KEGG PARKINSONS DISEASE”; “KEGG ALZHEI-
MERS DISEASE”; “KEGG HUNTINGTONS DISEASE”),
suggesting that pathological processes seen in PD may
overlap with those seen in other neurodegenerative dis-
eases involving aberrant protein aggregation. Evidence for
overlap across multiple neurodegenerative diseases is seen
much more strongly in the proteomics analysis than in
the RNA-Seq analysis described below, suggesting that
proteomics analysis may offer important insights for con-
trasts across neurodegenerative diseases.
The 1095 genes with FDR-level of significance in the
RNA-Seq analysis included several previously associated
with PD, such as SMOX (spermine oxidase; increased in
PD) [11], SPR (sepiapterin reductase (7,8-dihydrobiop-
terin:NADP+ oxidoreductase); increased in PD) [40],
DRD3 (dopamine receptor D3; decreased in PD) [41],
and SYT11 (Synaptotagmin XI; decreased in PD) [42].
Concordant with prior studies describing dysregulation
of metallothioneins in PD [10, 43], we observed seven
metallothionein genes out of the 19 present in this gene
family (http://www.genenames.org/cgi-bin/genefamilies/
set/638) showing significantly increased abundance in
PD samples compared with controls (MT1A, MT1E,
MT1F, MT1G, MT1M, MT1X, MT2A; See Additional file
3: Table S3). While the number of genes precludes dis-
cussion of all of them, it is worth noting that metal-
lothioneins may have neuroprotective properties [44]
and protect against oxidative stress [45].
For the functional enrichment analyses of RNA-Seq

results, the top GO terms include protein folding
(GO:0006986, “response to unfolded protein”; GO:0042026,
“protein refolding”; GO:0051082, “unfolded protein bind-
ing”), cellular response to metal ions (GO:0071294, “cellular
response to zinc ion”; GO:0071276, “cellular response to
cadmium ion”), mitochondrial processes (GO:0046034,
“ATP metabolic process”; GO:0008535, “respiratory chain
complex IV assembly”), and the ubiquitin conjugation path-
way (GO:0008180, “COP9 signalosome”). In addition, the
enriched MSigDB canonical pathways strongly support pro-
cesses and pathways related to immune function (“REAC-
TOME RIP MEDIATED NFKB ACTIVATION VIA DAI”;
“KEGG ANTIGEN PROCESSING AND PRESENTA-
TION”; “KEGG MAPK SIGNALING PATHWAY”; See
Additional file 6: Table S6), which were not prominent in
the proteomics analysis. Given that considerable recent
work points to the involvement of neuroinflammatory re-
sponse in PD [46–48], our findings substantiate that MS3
proteomics and RNA-sequencing provide differing insights
for PD.
Analyses comparing the 895 genes included in our

previously published microarray analysis [11] that over-
lapped with the 1095 FDR-significant genes from the
RNA-Seq study revealed a significant correlation of fold
changes (p < 2.2E-16). Of these genes, 702 (78.43 %)
showed the same direction of effect between the two
studies, indicating that the majority of genes implicated
by RNA-Seq show fold-change concordance by micro-
array technology.
Notably, functional enrichment analysis showed path-

ways common to both the mRNA and the protein data-
sets. They included terms related to mitochondria
processes and oxidative stress (GO:0005739, “mitochon-
drion”; “BIOCARTA ARENRF2 PATHWAY”), immune
response (GO:0043330, “response to exogenous dsRNA”;

http://www.genenames.org/cgi-bin/genefamilies/set/638
http://www.genenames.org/cgi-bin/genefamilies/set/638
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GO:0034162, “toll-like receptor 9 signaling pathway”;
“BIOCARTA FMLP PATHWAY”; “BIOCARTA CDMAC
PATHWAY”), regulation of gene expression (“BIOCARTA
PPARA PATHWAY”), brain-related processes (“REAC-
TOME NEUROTRANSMITTER RELEASE CYCLE”),
and cell-membrane transport (GO:0035725, sodium ion
transmembrane transport”). Enrichment of similar path-
way categories to those described above were observed
when the 77 genes with joint evidence for the RNA-Seq
and proteomics analyses were investigated (Additional file
6: Table S6, “Common Genes GO” and “Common Genes
MSigDB CP” tabs).
We observed a significant increase in protein/mRNA

correlation for genes with signal at both the mRNA and
protein levels, albeit the association was modest (mean
Pearson correlation values = 0.25) (Fig. 6). Given that
prior studies have reported protein and mRNA levels to
be weakly correlated, even in large datasets [49], the ab-
sence of strong correspondence between RNA-Seq and
MS3 proteomics analyses may be a consequence of the
complexity of the mRNA-to-protein signal conversion.
RNA-Seq evaluates not only the subset of mRNAs meant
for translation, but also mRNAs that are still in the nu-
cleus, mRNAs processed for storage, and mRNAs
targeted for degradation. Additionally, while protein
abundance levels are influenced by their corresponding
mRNA levels, they are also a product of translational
and post-translational mechanisms [50], which may fur-
ther limit the relationship between these two molecules.
Since detection biases for specific types of protein

classes are known to exist when protein abundance is
measured via proteomics methods [51], we used the 24
samples profiled in the proteomics study to investigate if
the mRNA abundance levels of the proteins character-
ized by MS3 proteomics were different than the mRNA
abundance levels of all genes quantified by RNA-Seq
analysis. Interestingly, the mRNAs corresponding to pro-
teins detected in the proteomics study showed signifi-
cantly increased levels when compared to mRNA levels
for all protein-coding genes in the RNA-Seq study (t-test
p-value < 2.2E-16, see Fig. 6). This finding suggests a de-
tection bias towards proteins encoded by genes with
highly abundant mRNAs, implying that the RNA-Seq
method might have a larger dynamic range of detection
than the MS3 proteomics method in human brain tissue.
Although twenty-four PD risk loci have been identified

by GWAS studies, the genes responsible for risk at these
loci are generally unknown. We overlapped our MS3
proteomics and RNA-Seq top results with loci from a re-
cent mega-meta GWAS analysis by Nalls et al. [7]. Util-
izing all SNPs with genome-wide significant p-values
identified in the Nalls study, we mapped genes posi-
tioned within 100 kb of these SNPs. Using this criterion,
166 genes were identified as positioned near a GWAS-
implicated SNP (Additional file 7: Table S7). Ten of
these genes showed overlap with the RNA-Seq or prote-
omics genes with multiple comparison corrected signifi-
cance (see Table 2). Notably, the SNCA protein is
identified as increased in PD by the MS3 proteomics
analysis, suggesting that proteomic analysis may lend in-
sights into identifying the risk associated genes at
GWAS implicated loci.
The correspondence between protein and mRNA

levels defined by proteomics and RNA-sequencing has
traditionally been found to be weak, as has been re-
ported in previous work [52]. Indeed, our study did not
find strong concordance between differentially abundant
protein-coding mRNAs (contrast between 29 PD and 44
control samples) and proteins (contrast between 12 PD
and 12 control samples) in prefrontal cortex tissue, with
only eight genes present in both studies with multiple
comparison corrected significance and same direction of
effect. This observation can be attributed to a combin-
ation of factors, including: 1) the different number of
samples analyzed in the two studies, 2) the approximate
five-fold size difference between the genes/proteins with
robust signals captured via RNA-Seq and MS3 proteo-
mics techniques, and 3) the detection bias observed for
the proteomics technique for proteins with higher mRNA
abundance. Although the correspondence between MS3
proteomics-derived protein levels and RNA-Seq-derived
RNA levels appears low, these initial attempts at resolving
the discrepancies among these platforms offer some novel
insights into the pathogenesis of PD.
The fold changes observed in the proteomics data

were small, and potential reasons that might contribute
to this are: 1) the 3600 proteins included in the proteo-
mics analysis were biased towards abundant proteins
that could be robustly identified and variations in abun-
dant proteins tend to be smaller, 2) while the isotopic la-
beling proteomics techniques, such as tandem-mass tag
(TMT) and isobaric tag for relative and absolute quanti-
fication (iTRAQ), are mass spectrometry techniques
with good quantitative accuracy, quantitation at the pep-
tide level does lead to systematic underestimation of
protein fold changes [53], 3) prefrontal cortex is not the
primary brain region affected in PD, and 4) proteins in
the brain have slower turnover compared with proteins
from other tissue types [54]. While age at death was not
significantly different between the PD and control
groups in the proteomics study, the RNA-Seq PD sam-
ples showed a significantly later age at death when com-
pared with the control samples (t-test p-value = 0.0046).
Additionally, while post-mortem interval values were
not significantly different between PD and control sam-
ples in the proteomics and RNA-Seq studies, they were
significantly increased in the control group from the
microarray validation study (t-test p-value = 3.9E-2).
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These are consequences of the fact that human brain tis-
sue with high quality RNA is not easily accessible, espe-
cially from neurologically healthy control samples. A
final limitation is the omission of non-coding RNAs,
which have yielded intriguing findings in previous stud-
ies [55]. Because the purpose of this study was to inte-
grate a differential analysis of proteomics data with
RNA-sequencing data, we focused exclusively on the
analysis of protein-coding genes. However, the analysis
of other RNA biotypes represents a logical next step.
The RNA-Seq and proteomics results made publicly

available through this study (GEO: GSE68719) are a
valuable resource for the evaluation of existing and fu-
ture high-throughput studies in PD.
Conclusions
We report the largest analysis of proteomics in PD to
date, and the first to combine this technology with both
RNA-sequencing and GWAS implicated loci. Combining
multiple genome-wide platforms offers novel insights
into the pathological processes responsible for this disease
by identifying pathways implicated across methodologies.
Functional enrichment analysis of the proteomics results
strongly supports mitochondrial-related pathways, while
comparable RNA-sequence analysis implicated protein
folding pathways and metallothioneins. Ten of the impli-
cated genes or proteins co-localized to GWAS loci. Evi-
dence implicating SNCA was stronger in proteomics than
in RNA-sequencing analyses.
Our studies emphasize the importance for continuing

to expand the numbers of proteins that can be studied by
MS3 and related developing technologies for genome-
wide proteomics analysis. In addition, as the quantification
for larger numbers of specific protein isoforms expands, it
is important to expand upon methods to assess the rela-
tionship of specific RNA transcripts to specific protein
isoforms.
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