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Abstract

Background: Accurate discovery of molecular biomarkers that are prognostic of a clinical outcome is an important yet
challenging task, partly due to the combination of the typically weak genomic signal for a clinical outcome and the
frequently strong noise due to microarray handling effects. Effective strategies to resolve this challenge are in dire need.

Methods: We set out to assess the use of careful study design and data normalization for the discovery of prognostic
molecular biomarkers. Taking progression free survival in advanced serous ovarian cancer as an example, we conducted
empirical analysis on two sets of microRNA arrays for the same set of tumor samples: arrays in one set were collected
using careful study design (that is, uniform handling and randomized array-to-sample assignment) and arrays in the

other set were not.

Results: We found that (1) handling effects can confound the clinical outcome under study as a result of chance even with
randomization, (2) the level of confounding handling effects can be reduced by data normalization, and (3) good study
design cannot be replaced by post-hoc normalization. In addition, we provided a practical approach to define positive
and negative control markers for detecting handling effects and assessing the performance of a normalization method.

Conclusions: Our work showcased the difficulty of finding prognostic biomarkers for a clinical outcome of weak
genomic signals, illustrated the benefits of careful study design and data normalization, and provided a practical
approach to identify handling effects and select a beneficial normalization method. Our work calls for careful study
design and data analysis for the discovery of robust and translatable molecular biomarkers.

Background

Accurate discovery of molecular biomarkers that are
prognostic of a clinical outcome is an important yet
challenging task [1]. A main reason for the difficulty is
the combination of the typically weak signal for a clinical
outcome and the frequently strong noise due to micro-
array handling effects [2]. In particular, array handling
effects can increase data variability and often confound
with the outcome of interest, which have been reported
profoundly in high-throughput genomic studies as a
reason for dubious or even erroneous findings [3].
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To account for handling effects in microarray studies,
careful study design has been advocated and data
normalization has been routinely used for discovering
molecular markers that can distinguish two or more
sample groups [4—7]. We recently conducted a proof-of-
principle study on the feasibility and benefits of careful
study design (that is, uniform experimental handling and
balanced array-to-sample-group assignment via the use
of blocking and randomization) for biomarker discovery
in clinical microarray studies [8—10]. We generated two
microRNA (miRNA) array datasets for the same set of
tumor samples (96 advanced serous ovarian cancer and
96 endometrioid endometrial cancer tumors): arrays in
one dataset were collected with careful study design, while
arrays in the other dataset were not [11, 12]. As a proof
of concept, we assessed the benefits of study design, in
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comparison with post-hoc data normalization, when the
outcome is tumor type, whose level of signal is relatively
strong. Through both empirical analysis and re-sampling
based simulations, we showed that careful study design
can more effectively improve the accuracy of biomarker
discovery than data normalization. It remains to be eluci-
dated what roles study design and data normalization can
play for the discovery of prognostic biomarkers for a sur-
vival outcome especially when its level of signal is weak.

In this paper, we took progression free survival (PFS)
in advanced serous ovarian cancer as an example and
assessed the role of study design and data normalization
on prognostic biomarker discovery, using the ovarian
cancer data from the pair of array datasets that we have
previously collected. We found that (1) handling effects
can confound the outcome of interest as a result of chance
even when randomization was used for array assignment,
(2) the level of handling effects can be partially reduced by
post-hoc data normalization, and (3) while useful to certain
extent data normalization cannot replace the use of good
study design for data collection. These findings showcased
the difficulty of finding prognostic biomarkers for a clinical
outcome of weak signal, illustrated the benefits of careful
study design and data normalization for accurate discovery
of prognostic biomarkers, and underscored the importance
of checking for evidence of confounding handling effects
even in the presence of randomization. Comparing with
our previous works on the paired datasets, the novel contri-
butions of this paper are (1) the examination of a weak yet
clinically meaningful survival endpoint, (2) the study of
using only randomization and no blocking for data col-
lection, and (3) the development of a new and practical
approach for detecting handling effects and assessing a
normalization method.

Methods

Human tumor tissues used in this study were obtained
from participants who provided informed consent and
their use in our study was approved by the Memorial
Sloan Kettering Cancer Center Institutional Review Board.

Data collection

A set of 192 untreated primary gynecologic tumor samples
(96 endometrioid endometrial tumors and 96 serous ovar-
ian tumors) were collected at Memorial Sloan Kettering
Cancer Center during the period of 2000-2012. The sam-
ples were profiled using the Agilent Human miRNA Micro-
array (Release 16.0), following the manufacturer’s protocol.
This array platform contains 3,523 markers (representing
1,205 human and 142 human viral miRNAs) and for each
marker multiple replicates (ranging from 10 to 40). In
addition, it has eight arrays on each glass slide (that is, the
experimental ‘block’) arranged as two rows and four
columns. Two datasets were originated from the same
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set of samples using different processes of array-to-sample
assignments and experimental handling. The first dataset
was created using randomization and blocking in the array-
to-sample assignment and was handled by one experienced
technician in one experimental run. Here, blocking means
that arrays on each block are assigned proportionally to
each tumor group, and randomization means that within
each tumor group arrays are randomly paired with samples.
The second dataset used an array assignment in the order
of tumor sample collection and was handled by two techni-
cians in multiple runs. In this study, we used the portion of
the data for the 96 serous ovarian tumor samples, for which
only randomization and no blocking were used for array as-
signment. More details on data collection can be found in
Qin et al. [11].

Array data preprocessing

We preprocessed the array data using log2 transformation
and median summarization for replicates of the same
marker on the array. The randomized array dataset was an-
alyzed both with and without quantile normalization; the
un-randomized array dataset was analyzed with quantile
normalization [12]. When quantile normalization was used,
it was applied after log2 transformation and before median
summarization [13].

Survival analysis

Progression free survival was calculated as the time
interval from primary tumor resection to progression,
death, or loss of follow up, whichever occurs first. Associ-
ation between clinical and molecular covariates with PFS
was assessed with the Cox regression model and the
score test [14]. Alternatively, PFS was also dichotomized
at its median (18 months) and association between mo-
lecular covariates and PFS at 18 months was assessed
using the t-test statistic comparing the two PFS groups.
The two-sided p-value was calculated. A p-value cutoff of
0.05 was used as the significance cutoff for clinical vari-
ables and 0.01 for molecular markers.

Definition of negative and positive control markers for
detecting handling effects

For the Agilent miRNA array, we defined poorly-expressed
markers as those with mean expression below a small cut-
off (preprocessed data <6) reflecting little biological effects
and mainly handling effects, and well-expressed markers as
those with mean expression above a cutoff (preprocessed
data >8) reflecting mainly biological effects. We used the
cutoff of mean expression 6 to select poorly-expressed
markers because it was close to the low end of the dynamic
range of Agilent arrays and the selected markers also had a
very narrow range of expression level with the standard de-
viation ranging roughly from 0.1 to 0.5. The randomized
dataset had 217 well-expressed markers belonging to 133
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miRNAs, among which 84 were represented by two
well-expressed markers and 49 by one. Pearson correlation
coefficients were calculated between replicate markers for
each of the 84 miRNAs. The randomized dataset had 2805
poorly-expressed markers representing 1070 miRNAs,
among which 331 were represented by four poorly-
expressed markers, 89 by three, 564 by two, and 86 genes
by one. One single poorly-expressed marker was randomly
selected for each miRNA represented by multiple poorly-
expressed markers. Pairwise Pearson correlation coeffi-
cients were calculated among the 1070 poorly-expressed
markers representing 1070 unique miRNAs.

Results

Analysis of clinical characteristics

Table 1 lists the clinical characteristics of the 96 primary
high-grade ovarian cancer patients in our study. Among
these patients, 67 (70 %) were stage III, 29 (30 %) stage
IV, and 43 (45 %) had no residual disease; the median
PFS was 18 months (95 % CI: 15 ~ 21 months) and the
median follow up among progression free survivors was
49 months (Fig. 1). In agreement with the literature,
tumor stage (p = 0.03) and residual disease (p < 0.01) were
both significant prognostic variables for PFS.

PFS analysis of the randomized array data

We assessed the association of miRNAs with PFS in
ovarian cancer using the randomized dataset, which was
collected with uniform handling and randomized assign-
ment of arrays to samples (Additional file 1: Figure S1).
Surprisingly, the vast majority of miRNAs had a hazard
ratio greater than one, indicating positive associations
with risk to progression (Fig. 2a). This observation is
independent of the analysis method used, as the same
pattern persists when the analysis is done by dichotom-
izing PFS at its median 18 months and comparing those
who progressed at 18-month and those who did not
using a two-sample ¢-test (Additional file 1: Figure S2);
it is also independent of the scale of the array data such
as dichotomization (Additional file 1: Figure S3) or the

Table 1 Patient characteristics among the 96 ovarian cancer

samples
N (%) Median PFS in months  P-value
(95 % Cl)
All 96 18.0 (15.3-214)
Age <60 41 (43 %) 222 (13.7-354) 025
> =60 55 (57 %) 17.1 (13.6-20.5)
Stage Il 67 (70 %) 20.0 (16.3-30.0) 0.03
% 29 (30 %) 144 (12.7-19.2)
Residual disease 0 cmn 43 (45 %) 289 (21.1-55.5) <0.01
>0cm 53 (55 %) 14.1 (12.1-16.5)
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Fig. 1 KM curve for PFS among the 96 ovarian cancer patients

adjustment for tumor stage and residual disease (Additional
file 1: Figure S4).

We seek to understand whether the predominance of
positive risk association is due to true biological signals
or confounding handling effects (despite randomization
and uniform handling). Towards this end, we defined
poorly-expressed markers as those with mean expression
below a small cutoff reflecting few biological effects and
primarily handling effects, and well-expressed markers as
those with mean expression above a cutoff reflecting pri-
marily biological effects and some handling effects (Fig. 3a).
Our reasoning for diagnosing the existence of handling ef-
fects using poorly-expressed and well-expressed markers is
as follows. If handling effects exist in the data, they manifest
high positive correlations among the collection of poorly-
expressed markers (one single marker kept for each repre-
sented miRNA) simply due to the similar handling effects
shared among markers; however, these positive correlations
should dissipate after the data are normalized as an effort
to remove handling effects. In contrast, high positive correl-
ation should exist between replicate markers for each well-
expressed miRNA (that is represented by more than one
marker) due to both shared biological signals and shared
handling effects and would persist even after normalization.
Figure 3b and ¢ show the correlation coefficients among
the poorly-expressed markers (more specifically, the collec-
tion of one single poorly-expressed marker for each repre-
sented miRNA) and those between replicate well-expressed
markers for each represented miRNA. The former peaked
towards one before normalization and centered around
zero after normalization, while the latter was nearly one
both before and after normalization. As suggested by a re-
viewer, we also examined the p-value distribution among
poorly-expressed markers and observed a shift towards the
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Fig. 2 Volcano plot for the PFS analysis in the randomized data
before (a) and after (b) quantile normalization

uniform distribution after normalization (Additional file 1:
Figure S5).

The aforementioned findings collectively suggest that,
(1) even with uniform handling, the randomized dataset
was not completely free of handling effects, which may
reflect an inherent and unavoidable nature of high-
throughput data, and (2) despite randomized array-to-
sample assignment, handling effects can still confound
with the outcome as a result of chance. Therefore the
predominantly positive risk association among the
miRNAs was likely due to handling effects rather than
biological signals.
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Normalization to adjust for confounding handling effects

When evidence of confounding handling effects is ob-
served, one should consider the use of data normalization
before any further analysis. A beneficial normalization
should maximally remove handling effects while minim-
ally impact the biological effects [15]. This can translate to
reducing the high correlation among unique poorly-
expressed markers to around zero and at the same time
keeping the high correlation among replicate probes for
each well-expressed markers intact, which was what we
have observed for quantile normalization, a most com-
monly used method for microarray data normalization
(Fig. 3b and ¢). In contrast, median normalization was less
effective in removing the correlation between poorly-
expressed markers (Additional file 1: Figure S6).

We re-analyzed the randomized data for PES association
after quantile normalization. As a result of normalization,
the numbers of positive and negative risk-associated
markers were more evenly distributed (Fig. 2b). Two
highly-expressed markers, both representing miR-23a,
were significantly associated with PFS (p =0.006 and
HR = 1.5 for one marker; p =0.007 and HR = 1.4 for an-
other) (Additional file 1: Figure S7), consistent with recent
reports showing that miR-23a promoted tumor progression
in multiple cancer types [16-18].

We note that, although useful to some extent,
normalization cannot replace good study design. In our
study, good study design refers to uniform handling and
random array-to-sample assignment. In a second array
dataset on the same 96 ovarian cancer samples where no
careful study design was exercised, no well-expressed
markers were identified to be significantly associated with
PFS even with quantile normalization (Additional file 1:
Figure S8). In particular, the two markers of miR-23a were
no longer significant (p = 0.19 and p = 0.23).

Discussion

Our data have demonstrated that, despite uniform hand-
ling and randomization, there can still be confounding
handling effects in the data, which could be detrimental
to the biomarker discovery for weak clinical outcomes.
Our work strongly supports the practice that (1) when
the outcome of interest is known at the time of array
generation, one should use blocking or stratification to
further balance handling effects and hence avoid their
confounding effects (In fact, many array platforms come
as natural ‘blocks” for example, the Illumina mRNA array
platforms have six, eight, or twelve arrays on each glass
slide (the block), and the Agilent miRNA array platform
has eight arrays on each glass slide arranged as two rows
and four columns.); (2) when blocking is not possible (for
example, when the outcome of interest is unknown or
when the outcome of interest is a secondary phenotype),
one could use randomization in array assignment to
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Fig. 3 a Scatter plot of marker-specific standard deviations versus marker-specific means for the selection of well-expressed and poorly-expressed
miRNAs. b Histogram of the Pearson correlation coefficients among the collection of unique markers for each poorly-expressed miRNA, before
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reduce the chance of confounding handling effects; (3)
even in the presence of randomization, one should still
assess for evidence of confounding handling effects
and if positive use data normalization before making
any biological inference from the data.

We have presented a simple yet useful method for
assessing the presence of handling effects. Our method
is based on the selection of negative control markers that
are expected to have no biological activities and positive
control markers that share similar biological activities, and
the assessment of the correlation structure among each set
of control markers before versus after data normalization.
For Agilent miRNA arrays, we have demonstrated the use
of poorly-expressed markers as negative controls and well-
expressed markers as positive controls. Although the results

in this paper were based on the positive and negative
control markers defined on the randomized data for the
proof of concept, we have found that similar markers were
selected based on the un-randomized data (Additional file
1: Table S9). Therefore, when only the un-randomized
data is available in a study, one can still select the positive
and negative markers using the un-randomized data. We
further assessed the use of poorly-expressed markers and
well-expressed markers in the miRNA array data from the
Cancer Genome Atlas ovarian cancer study and observed
similar change of correlation structure before versus
after normalization, supporting the generalizability of our
choice of the negative and positive control markers for the
purpose of assessing the presence of handling effects
(Additional file 1: Figure S10) [19].
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Conclusions

Our work in this paper is consistent with our previous
study on the benefits of careful study design and data
normalization, and it provides meaningful new informa-
tion on the possibility of confounding handling effects
even in the presence of randomization and a practical ap-
proach to check for such confounding handling effects.
This work continues our advocacy of careful study design
and data analysis in order to accurately discover robust
and translatable biomarkers for clinical applications.

Additional file

Additional file 1: Figure S1 is a figure showing the boxplots for the 96
ovarian arrays in the randomized data. Additional file 1: Figure S2 is a
figure showing the volcano plot for PFS analysis in the ovarian randomized
data when the outcome is PFS at 18-month. Additional file 1: Figure S3 is a
figure showing the volcano plot for PFS analysis in the ovarian randomized
data when the array data is dichotomized. Additional file 1: Figure S4 is a
figure showing the volcano plot for PFS analysis in the ovarian
randomized data when adjusting for stage and residual disease. Additional
file 1: Figure S5 has two figures showing the distribution of the p-values
from PFS analysis among poorly-expressed markers and well-expressed
markers. Additional file 1: Figure S6 has histograms of the Pearson
correlation coefficients and of the PFS p-values among poorly-expressed
markers and among replicate markers for each well-expressed miRNA after
median normalization for the randomized data. Additional file 1: Figure S7
is a figure showing the Kaplan-Meier curve for miR-23a when its expression
data were quantile normalized and dichotomized at the median. Additional
file 1: Figure S8 is a figure showing the volcano plot for PFS analysis using
the ovarian un-randomized data with quantile normalization. Additional file
1: Table S9 is a table comparing the well- and poorly-expressed markers
selected by the randomized data versus those selected by the un-randomized
data. Additional file 1: Figure S10 has figures showing the selection of poorly-
expressed and well-expressed markers and their correlation distribution before
and after quantile normalization, using the miRNA array data from the Cancer
Genome Atlas ovarian cancer study (n =462).
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