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Abstract

Background: Exome sequencing has been emerged as a primary method to identify detailed sequence variants
associated with complex diseases including Crohn's disease in the protein-coding regions of human genome.
However, constructing an interpretable model for exome sequencing data is challenging because of the huge
diversity of genomic variation. In addition, it has been known that utilizing biologically relevant information in a
rigorous manner is essential for effectively extracting disease-associated information.

Results: In this paper, we incorporate three different types of biological knowledge such as predicted pathogenicity,
disease gene annotation, and functional interaction network of human genes, and integrate them with exome
sequence data in non-negative matrix tri-factorization framework. Based on the proposed method, we successfully
identified Crohn’s disease patients from exome sequencing data and achieved the area under the receiver operating
characteristics curve (AUC) of 0.816, while other clustering methods not using biological information achieved the
AUC of 0.786. Moreover, the disease association score derived from our method showed higher correlation with

Crohn'’s disease genes than other unrelated genes.

Conclusions: As a consequence, by integrating biological information across multiple levels such as variant, gene,
and systems, our method could be useful for identifying disease susceptibility and its associated genes from exome

sequencing data.

Background

The advent of high-throughput sequencing technolo-
gies has enabled determining detailed catalogues of
genomic sequence variants. Especially, cost-effective
exome sequencing has been emerged for extending vari-
ant association studies to include rare variants [1]. In
Crohn’s disease (CD), exome sequencing was adopted
to identify the causative variants and the genes affected
by them [2]. Despite that some studies have successfully
identified CD associated variants and genes [3-5], the
genetic heterogeneity and environmental effects on CD
still obscure the interpretation of CD exome sequencing
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data. Particularly, since most of pathogenic variants are
enriched for rare variants [6], a large amount of samples
more than 10,000 exome sequences are required for the
association study [7]. Furthermore, predicting disease sus-
ceptibility of exome sequence for clinical applications is
still challenging.

To efficiently investigate the relationship between
sequence variants and disease susceptibility, integrating
variant-level and gene-level information is important [8].
Analogously, Na et al. [9] carried out ranking suscepti-
ble diseases for personal genome sequence by comparing
gene-level pathogenicity vectors derived from genome
sequence variants and disease-gene association knowl-
edge, respectively.
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In this study, we predict CD susceptibility from 56
exome sequences by integrating biological knowledge
described at variant-level, gene-level, and systems-
level. For the integrative analysis, we adopt the
computational framework called non-negative matrix
tri-factorization (NMTF) [10, 11], and introduce the
constraints for deriving biologically relevant solution.
This approach distinguishes the exomes of CD patients,
and simultaneously prioritizes the corresponding CD
associated genes. This unique feature could be benefi-
cial for clinical applications based on personal genome
interpretation.

Methods

Data set

We obtained exome sequencing data from the
Crohn’s disease challenge of CAGI 2011 (https://
genomeinterpretation.org). The purpose of the CAGI
challenge was to distinguish exomes of Crohn’s patients
and healthy individuals. The data is formatted in a variant
call format (VCF), and the exome samples are randomly
numbered. Besides the exome sequences, any other
information is not given. The exomes were obtained from
56 individuals, consisting of 42 patients with Crohn’s
disease and 14 healthy individuals. From the exome
sequences, a total of 155,019 coding DNA sequence vari-
ants, resulting in 1202 nonsense, 79,448 nonsynonymous,
and 74,577 synonymous mutations, are identified. For the
present work, we used the nonsynonymous mutations
of 33,948 amino acid substitutions of 11,435 human
genes.

To distinguish Crohn’s disease patients from the
exomes, we utilized various biological information. First,
pathogenicity of amino acid substitutions predicted
using PolyPhen-2 [12]. Second, knowledge on disease-
related genes was collected from DGA database [13].
We obtained 189 genes associated with Crohn’s dis-
ease (DOID: 8778) on March 2013. Third, knowl-
edge on functional interactions between human genes
was collected from HumanNet [14]. We downloaded
a functional gene network from the HumanNet web-
site, and selected only the genes corresponding to
the genes of the above exome data set. Consequently,
151,440 gene-gene interactions of 9597 human genes were
obtained.

Non-negative matrix tri-factorization

Because of a huge of diversity of genomic variations,
inferring disease-exome association is very challenging.
For that reason, an integrated method that utilizes dif-
ferent kinds of biological knowledge and bioinformatics
predictions would be effective. We adopted NMTF to
integrate various information as illustrated in Fig. la.
The notations and definitions used here are listed in
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Table 1. NMTF tri-factorizes an input non-negative
matrix into three different non-negative matrices, whose
multiplication approximates the input matrix. This can be
written as

V ~ PWH.

V is a m x m binary matrix with 1 for amino acid sub-
stitution occurrence and 0 otherwise. P, W, and H are
n x [, 1 x 2,and 2 x m factorized matrices, respectively.
P represents pathogenic effects of amino acid substitu-
tions, W represents CD associations of genes, and H
represents CD association of individual exomes. For con-
venience, we assume that the first column of W and
the first row of H correspond to CD, while the sec-
ond column and the second row indicate healthy status,
respectively.

To represent the CD associations of each gene and
exome, W and H are normalized as

2 2
Z W;j = land ZHif =1.
=1 i—1

Due to the non-negativity constraint, W;; is ranged from
0 to 1, where 1 means that the gene i is associated
with CD. In the same manner, Hj; is ranged from 0
to 1, where 1 means that the exome j is associated
with CD.

P, W and H can be derived by minimizing the squared
error between the original and the reconstructed matri-
ces, which can be written as

min ||V — PWH||3.
P,W,H>0

However, the optimization equation often does not have

a unique solution, and could be sensitive to the noise in

the data and the algorithm used for finding the optimal

solution.

Constraints for integrating biological knowledges

To derive the tri-factorization solution biologically mean-

ingful, we introduce three sorts of constraints based on

heterogeneous biological information as shown in Fig. 1b.
First, to preferentially address disease-causing muta-

tions, the mutation pathogenicity constraint is introduced

as

min [|P — Py |7,

where Py represents the predicted pathogenicity of amino
acid substitution. The predicted pathogenicity is obtained
by running PolyPhen-2. We determine (Pp); as the
PolyPhen-2 prediction value if the amino acid substitu-
tion i belongs to the gene j. Otherwise, 0 is assigned. This
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Fig. 1 Overview of NMTF model and constraints for distinguishing disease exome and identifying disease-associated genes. a Exome sequences are
represented as the matrix V encoding the occurrences of amino acid substitutions. V is approximated by the multiplication of three different
matrices P, W, and H, which represent pathogenicity of mutations, disease-associated genes, and disease status of exomes, respectively. b To obtain
a biologically meaningful solution, three kinds of biological knowledge, such as pathogenicity prediction, known annotation of disease genes, and

functional interaction between genes, are integrated as constraints
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constraint enforces to prioritize disease-causing muta-
tions more than neural variants.

Second, we utilize the annotation of known disease-
associated genes, and introduce the disease gene con-
straint as

min |W — W12,

where W, represents known CD-associated genes col-
lected from DGA database. (Wp);. is determined as [1 0]
if the gene i is annotated as CD-associated gene. Other-
wise, [0.5 0.5] is assigned. To consider that a relatively
small number of CD genes are annotated among / genes,
we enforce CD genes by using the following constraint
defined as

min v (W — Wp)|%,

where v is an indicator vector for CD genes, i.e., v; is
determined as 1 for CD gene and 0 otherwise.

Third, we introduce the gene-gene interaction
constraint, which enforces functionally interacting genes
to be simultaneously clustered. Because functionally
interacting genes perform for the similar phenotypes,
disease genes could interact with each other through the
functional interaction network. To address the functional
relationship between CD genes, we use the constraint
defined as

max rTMr,
where r is CD association score vector derived from W as

r=[Wi Wa Wap --- W',
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Table 1 Notations

Notation Definition

n Number of amino acid substitutions

m Number of exomes

/ Number of genes

Ip Number of known Crohn’s disease genes

v Exome matrix (n x m)

P Pathogenicity of amino acid substitutions (n x /)

w Disease-gene association matrix (/ x 2)

H Disease-exome association matrix (2 x m)

M Gene-gene interaction network (/ x /)

Po Pathogenicity prediction by PolyPhen-2 (n x /)

Wo Annotated Crohn’s disease-gene association matrix (/ x 2)
v Indicator vector for known Crohn'’s disease genes (/)
r Crohn's disease association vector derived from W (/)

and M encodes functional interactions obtained from
HumanNet. The HumanNet describes functional inter-
actions as a probabilistic value from 0.6 to 1.0. M is
determined as the interaction probability between the
genes, i and j. For the gene pairs discarded in HumanNet
due to low interaction probability, O is assigned. There-
fore, this constraint term has a higher value as interacting
genes are clustered together.

Optimization procedure

The NMTF squared error term and the constraint terms
are combined and formulated as the objective function
defined by

in |V — PWH|? P — P2
pipin | Iz + el oll 7

+BIvT(W — W lI2 — yr  Mr+ AW — Woll%,

where «, B, y, and A represent the weight parameters for
the constraint terms.

To find the optimal solution for the objective function,
we used the multiplicative update algorithm [15], because
it is simple to implement and usually performs well. Our
optimization algorithm is described in Algorithm 1. The
algorithm initializes the factorized matrices P, W, and H
with random non-negative values. Then, each matrix is
iteratively updated with fixing the other matrices, until
the algorithm converges. Since the multiplicative update
algorithm achieves a local optimum, we repeated the com-
putation 100 times with different initial matrices, and
selected 30 solutions with smallest squared errors. Then,
the final solution was obtained by averaging them over the
replicas.
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Algorithm 1: Multiplicative update algorithm
Input: V, Py, Wo, M, v, &, B, y and A
Output: P, W, and H
(1) Initialize P, W, and H with random non-negative
values, and normalize W and H by following (4) and
(6), respectively.
(2) Update P

(VHTWT +aPo),
"(PWHHTWT + oP)

Pj <P
i
(3) Update W
ri <= Wi
(PTVHT + BvT Wy + LrT Mr + A W))
(PTPWHHT + pvT W + W)

U

Wi < Wi
ij
(4) Normalize W
W,.
Wi+ ——— z
Zj:l Wi
(5) Update H
(WTPTV)ij
<~ H,

(WTPTPWH),

Hj

(6) Normalize H
H“
Hij < ) i
i=1 Hij

(7) Repeat (2)—(6) until convergence criteria are
satisfied.

Results

Selecting NMTF models

In our objective function, the hyper-parameters weighting
constraint terms should be properly chosen. We per-
formed the optimization with different hyper-parameters,
and compared the squared errors of the resulting solu-
tions. The hyper-parameter «, 8, y, and A were searched
in {0.05, 0.1, 0.2}, {1, 2, 4}, {0.05, 0.1, 0.2}, and {0.5, 1,
10, 15}, respectively. When comparing the squared errors,
we found similarly good approximations and convergence
timings with «, B, y, and A in {0.05, 0.1}, {1, 2}, {0.1,
0.2}, and {0.5, 1}, respectively. In the following results,
we used 0.1, 1, 0.1, and 1 for «, B, y, and A, respec-
tively. By using the chosen hyper-parameters, we repeated
the NMTF optimization procedure 100 times with differ-
ent initial solution matrices. Lastly, the final solution was
obtained by averaging 30 solution matrices of the lowest
squared errors. The squared error and constraint values
and the total values of objective function are shown in
Fig. 2. The replicas were consistently converged in 98-176
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gene constraint, d the gene-gene interaction constraint, and f the total values of objective function are denoted on the y-axis. The x-axis denotes
the iteration number. The black line represents the averaged line over the best-30 optimization results encoded as grey lines

iterations (129.7 iterations on average), and the resulting
scores of objective function showed high correlation.

Distinguishing Crohn’s disease patients and healthy
individuals

We identified the exome sequences of CD patients by
using the solution matrix H. Since we bound H in [0, 1],
the prediction values is also bounded in [0, 1]. One indi-
cates that the exome belongs to CD patient, and 0 indi-
cates that it belongs to healthy individual. Fig. 3 shows
the prediction results for 56 exome sequences. Most of
the predictions are close to 1 or 0. In addition, they
show a small variation over replicas, indicating that the

solution matrice H of replicas are highly correlated. For
CD patients, all their exomes are classified as CD, but,
for healthy individuals, 8 among 14 exomes are cor-
rectly classified as healthy. Although 6 healthy individ-
ual exomes are misclassified to CD, three of them show
smaller prediction values than CD patient exomes. We
find that the distributions of prediction values for CD
patients and healthy individuals are significantly differ-
ent from each other (two-tailed Mann-Whitney U-test,
p-value = 2.45 x 107%).

Because our prediction for an exome matches to its
soft membership in a specific cluster, we compared the
predictive performance with other clustering methods,
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c
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Fig. 3 Prediction of exomes for Crohn's disease patients. The x-axis denotes each exome, and the y-axis denotes the prediction value averaged over
the best-30 NMTF solutions. The error bars are encoded grey. The Crohn's disease patients and the healthy individuals are encoded with different
colors
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such as k-means and fuzzy clusterings. We represented
each exome as a vector identical to the column vector
of V matrix, and clustered the exomes to two clusters.
Although they did not give an interpretable annotation
for each cluster, we assumed that the bigger cluster repre-
sented CD because the number of CD exomes exceeded
that of healthy in out data set. In addition, the mem-
bership probability is used as prediction value for fuzzy
clustering. We compared the receiver operating charac-
teristic (ROC) curves for predicting CD patient exomes
as shown in Fig. 4a. NMTF showed better area under the
ROC curve (AUC) of 0.816, while k-means and fuzzy clus-
terings showed the AUCs of 0.786. We found that the 8
healthy individuals easily discriminated by NMTF were
clustered in a group by both clustering methods. Since the
8 healthy individuals were easily classified, we excluded
them and estimated AUCs for the remaining 42 CD and 6
healthy exomes. As k-means did not provide membership
probability, we only compared NMTF and fuzzy clustering
for the other healthy individuals and CD patients. When
comparing the AUCs, NMTF performed better with AUC
of 0.571 than fuzzy clustering with AUC of 0.5. In addi-
tion, we evaluated the performance of NMTF by averaging
the best-10, 20, 40, and 50 solution matrices, but the AUCs
were ranged in 0.532-0.564, still outperforming fuzzy
clustering. Consequently, the results indicate that the bio-
logical knowledges integrated in NMTF framework were
useful for distinguishing exome sequences of CD patients
from healthy individuals.

In exome sequencing studies, SIFT [16] is one of the
most highly used tools, as well as PolyPhen-2, to predict
the functional consequences of nonsynonymous variants.
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Thus, we performed the NMTF analysis by replacing the
predicted pathogenicity of PolyPhen-2 with that of SIFT.
Because the prediction of SIFT web-server was available
for 15,810 amino acid substitutions among our data set,
we only used those variants. As shown in Fig. 4b, NMTF
showed better AUC of 0.806, while k-means and fuzzy
clusterings show AUCs of 0.786 and 0.793, respectively.
Also, the prediction values of NMTF for CD patients
are significantly higher than those for healthy individuals
(p-value = 4.09 x 10~%). Although the use of PolyPhen-
2 achieved higher AUC value than the use of SIFT, it
may be caused by better performance of PolyPhen-2
[17]. As a consequence, the predicted pathogenicity uti-
lized in NMTF framework could be derived from various
predictors such as MutationTaster [18], FATHMM [19],
PANTHER [20], GERP++ [21], PhyloP [22], and so on.
Although many studies using exome sequencing have
aimed to identify rare coding varaiants causative in com-
plex diseases, analyzing the rare variants is still challeng-
ing because of the small sample size. To address this issue,
we excluded commonly occuring variants, and performed
the NMTF analysis for the remaining variants. Common
variants, with the minor allele frequencies of > 0.01 and
not annotated as diasese causing, were extracted from
Ensembl database [23]. Then, 18,999 variants were used
for predicting CD patients. As shown in Fig. 5, NMTF
showed AUC of 0.821, outperforming k-means and fuzzy
clusterings with AUCs of 0.786 and 0.808, respectively.
Also, the prediction values of NMTF significantly differs
between CD patients and healthy individuals (p-value =
1.88x10~%). Therefore, the NMTF framework can be used
for analyzing exome sequences based on rare variants.
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Analysis of Crohn’s disease-associated genes

We examined the CD association of genes by analyzing
the solution matrix W. Similar to H, the CD association
(CDA) scores of W are ranged in [0, 1], such that the
score of 1 represents strong CD association, and the score
of 0.5 represents neutral association, as encoded in the
constraint matrix Wy. The CDA scores were distributed
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as shown in Fig. 6a. The known CD genes encoded in
Wo had the scores close to 1 (0.998 on average). On the
other hand, the other genes had the scores widely ranged
in 0.326-1.0, showing the average score of 0.602. We
investigated the variation of CDA scores over replicas,
but most of genes showed small variations as shown in
Fig. 6b.

To investigate the correlation of CDA score and CD
gene, we collected CD genes from the DGA database
on July 2015, and selected newly annotated CD genes,
not used in Wj. We obtained 53 newly annotated CD
genes, and examined their CDA scores in comparison
with those of the other unannotated genes, as shown in
Fig. 6¢. The distribution of CD genes were shifted close to
1. For the newly annotated CD genes, 15.1 % and 30.2 %
of genes showed the CDA scores greater than 0.99 and
0.95, respectively. Whereas, for the other genes, only the
8.9 % and 11.6 % of genes showed the CDA scores in the
same ranges, respectively. Therefore, CDA score derived
by NMTF could be informative for inferring disease-gene
relationship.

Discussion and conclusion

In this study, we developed a computational framework
called NMTF for analyzing exome sequencing data, and
integrated biological knowledge relevant to the disease
susceptibility. By applying the proposed method to 56
exome sequences, we discriminated the exomes of CD
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patients and healthy individuals, and demonstrated the
correlation between CD genes and CDA scores.

This study makes two major contributions to the exome
sequencing data analysis. First, our method, in which
disease-associated individuals and genes are intercon-
nected by co-clustering, provides an interpretable analysis
for cliniical decision making. For example, an additional
information connecting the disease susceptibility to the
evident genes can be derived. Although the compared
clustering methods showed a certain degree of predic-
tive performance for the CD data set, they lack the
interpretability. On the other hand, in our method, co-
clustered genes in our method could support the genetic
basis determining the CD susceptibility of exomes. This
would be beneficial for understanding the heterogene-
ity of genetic effects in genetically complex disease, and
designing effective personalized treatments.

Second, we demonstrated that integrating multi-level
information could be useful for understanding geneti-
cally complex diseases. Based on the NMTF framework,
we combined a wide range of biological information
including the predicted pathogenicity of single amino
acid substitution, the annotation of disease-gene asso-
ciation, and the functional interaction between human
genes. By doing so, we inferred the disease informa-
tion from the variant-level data. Although Na et al’s
study [9] showed the integration of variant-level and
gene-level information, their approach requires well-
curated knowledge on disease-gene association. How-
ever, our approach is designed to complement imperfect
prior-knowledge on disease-gene association, by using
the systems-level information, functional interaction of
human genes, as disease-associated genes often share
common biological functions [24]. The integration of
multi-level information may be effective because CD sus-
ceptibility is affected by complicated genetic regulations
and interactions. Similarly, this approach would be use-
ful for other complex diseases in the same manner with
CD.
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