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Abstract

Background: Multifunctional transcription factor (TF) gene EWS/EWSR1 is involved in various cellular processes such as
transcription regulation, noncoding RNA regulation, splicing regulation, genotoxic stress response, and cancer
generation. Role of a TF gene can be effectively studied by measuring genome-wide gene expression, i.e., transcriptome,
in an animal model of Ews/Ewsr1 knockout (KO). However, when a TF gene has complex multi-functions, conventional
approaches such as differentially expressed genes (DEGs) analysis are not successful to characterize the role of the EWS
gene. In this regard, network-based analyses that consider associations among genes are the most promising approach.

Methods: Networks are constructed and used to show associations among biological entities at various levels, thus
different networks represent association at different levels. Taken together, in this paper, we report contributions on
both computational and biological sides.

Results: Contribution on the computational side is to develop a novel computational framework that combines
miRNA-gene network and protein-protein interaction network information to characterize the multifunctional role of
EWS gene. On the biological side, we report that EWS regulates G-protein, Gnai1, in the spinal cord of Ews/Ewsr1 KO
mice using the two biological network integrated analysis method. Neighbor proteins of Gnai1, G-protein complex
subunits Gnb1, Gnb2 and Gnb4 were also down-regulated at their gene expression level. Interestingly, up-regulated
genes, such as Rgs1 and Rgs19, are linked to the inhibition of Gnai1 activities. We further verified the altered expression
of Gnai1 by qRT-PCR in Ews/Ewsr1 KO mice.

Conclusions: Our integrated analysis of miRNA-transcriptome network and PPI network combined with qRT-PCR verifies
that Gnai1 function is impaired in the spinal cord of Ews/Ewsr1 KO mice.
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Background
Ewing sarcoma is the second most common bone and
soft tissue tumor that predominantly afflicts children
and adolescents [1–3]. Understanding biological mecha-
nisms underlying this tumor is critical to the identifica-
tion of new cancer therapy targets. The Ewing sarcoma
gene (EWS)/EWS RNA-Binding Protein 1 (EWSR1), a
transcription factor, encodes an RNA binding protein
whose specific functional targets are still largely un-
known [4]. In previous studies, fusion genes such as,
EWS-FLI-1, EWSR1-WT1, EWSR1-KLF17, EWSR1-ATF1,
and EWSR1-CREB3L1, are known to be produced by re-
arrangement of the EWSR1 gene with different gene fu-
sion partners and these fusion genes have functions
related to a variety of soft tissue tumors [5–9]. To
characterize functions of EWS, we used RNA-seq gene
expression data and miRNA expression data measured
by using the spinal cord samples of Ews/Ewsr1 knock-
out (KO) mouse and wild type.

Motivation
Multi-function genes interact with a number of coding
and non-coding genes and perform a variety of functions
depending on cell conditions and tissue types. Multi-
function gene EWSR1 is known to regulate Drosha and
microRNAs that inhibits RNA splicing [10, 11]. How-
ever, it is still unknown which genes are regulated by
and which biological functions are related to EWSR1. To
characterize functions of EWSR1, we used a well-known
differentially expressed gene (DEG) set analysis. We
performed functional analysis of top 200 up-regulated
DEGs and top 200 down-regulated DEGs (2 % of the
whole genes) using gene ontology (GO) and KEGG
pathway. From the GO analysis, we found 322 genes of
400 top DEGs were involved in 44 GO terms in the
GOTERM_BP_FAT category which is the summarized
version of Biological Processes in the Gene Ontology
(Additional file 1A). Top three GO terms with the lar-
gest number of genes were ion transport, immune re-
sponse, and homeostatic process. It is not clear how
these three biological processes are related to EWS. In
addition, we tried molecular function GO terms, which
did not produce coherent biological functions related
to EWS. From the KEGG pathway result, 93 of 400
genes hit 140 pathways. Only two pathways had more
than 10 genes: metabolic pathway and cell adhesion
molecules. Most of the pathways were not significant.
Overall, GO and KEGG pathway analysis using DEGs
did not produce meaningful clues on the role of EWS.
For the analysis of miRNA expression data, it is not

clear how to perform an integrated analysis of gene ex-
pression data and miRNA expression data. In addition, a
multifunction gene can play roles at various levels such
as transcription, gene regulation, translation and protein

activity level. To address this computational challenge,
we developed a novel computational framework for the
characterization of EWS multifunctional gene using gene
expression data and miRNA expression data measured
under a knockout condition of the multifunctional gene.
The framework utilized microRNA-target gene network
and Protein-Protein interaction (PPI) network and incor-
porates the two networks in a workflow. The workflow
of the framework can be viewed as an effort to model
the role of EWS at various levels, DEG analysis at the
transcription level, the microRNA-target gene network
analysis at the gene regulation level, and PPI network
analysis at the translation and protein activity level.

Methods
We developed a three-step pipeline for the integrated
analysis of omics data using mRNA-microRNA network
and protein-protein interaction network. We describe
the workflow and computational methods used in each
step in this section. Figure 1 illustrates the workflow of
the proposed omics data analysis pipeline. In “Results”
section, we discuss output from each step in detail.

Step 1. MicroRNA-target gene regulation network analysis

Input: gene expression data, miRNA expression data
Output: differentially expressed miRNAs and their
target genes

To investigate roles of EWS, we analyzed the transla-
tional regulatory network. The microRNA-target gene
integrated network analysis was performed following the
strategy in MMIA [12].

Selection significantly expressed microRNAs
We selected significantly up- or down-regulated micro-
RNAs in the Ews/Ewsr1 KO condition compared to the
wild type condition. To select significantly differentially
expressed miRNAs from microarray data, we used the
SAM (significance analysis of microarrays) tool package
[13] (More information in the detailed method section).

Prediction of microRNAs target genes
After selecting significantly expressed microRNAs, we
predicted regulatory target genes of the selected differ-
entially expressed microRNA by TargetScan [14] and
miRDB [15, 16].

Reselection target genes by correlation
We further investigated miRNA and gene target rela-
tionship by measuring negative correlation in expres-
sion levels between miRNAs and genes targeted by
miRNAs since up-regulated microRNA inhibits transla-
tion of mRNA.
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Step 2. Pathway analysis of DEGs from MMIA analysis and
validation

Input: DEGs selected in Step 1
Output: important pathways related to EWS and key
genes in the pathways

Differentially Expressed Gene (DEG) analysis
Differentially expressed genes (DEGs) analysis of NGS
RNA-seq was performed in the following steps. First,
adaptor sequences of reads in raw data were trimmed.
The Ensembl mouse reference genome sequence was
downloaded for mapping short reads. Bowtie [17] was
used to build an index of the reference genome sequence
for alignment. Trimmed reads were then mapped to the
reference genome sequence using Tophat2 [18]. Finally,
Cufflinks was used to calculate gene expression levels.
We compared gene expression values and selected DEGs
by using Cuffdiff in the Cufflinks package [19].

Integrated analysis of miRNA and mRNA expression data
15 differentially expressed miRNAs were found to target
4342 genes based on TargetScan and miRDB. To further
screen target genes, we integrated miRNAs target infor-
mation and mRNA-seq based gene expression levels.
The negative correlation analysis reduced the number of
targets to 1338 genes. The negative correlation analysis
is based on the techniques in [20, 21]. The rationale for

the negative correlation analysis is that if a miRNA tar-
gets a gene the expression levels of the miRNA and the
gene should have negative correlation due to the regula-
tory effect of miRNA on the target gene. These DEGs
were then analyzed by GSEA (Gene Set Enrichment
Analysis) using DAVID (The Database for Annotation,
Visualization and Integrated Discovery) [22].

Pathway analysis
To characterize functions of selected target DEGs by nega-
tive correlation in the spinal cord of Ews/Ewsr1 KO mice,
we performed biological pathway analysis using the KEGG
mapper [23]. KEGG mapper highlighted DEGs with colors:
up-regulated DEGs as red, down-regulated DEGs as blue,
and other DEGs as light green. In addition, we performed
additional pathway interpretation based on gene ontology
by using ClueGO [24], a Cytoscape [25] plug-in, that ana-
lyzes biological pathway interpretation with KEGG ontol-
ogy (2014 latest version) to integrate Gene Ontology (GO)
terms and KEGG/BioCarta pathways to generate a func-
tionally organized GO/pathway term network.

Verification of Gnai1 expression by Quantitative real-time
PCR (qRT-PCR)
To verify whether the expression of target genes is cor-
related with the analysis, we performed qRT-PCR using
RNA isolated from the spinal cords of Ews/Ewsr1 WT
and KO mice.

Fig. 1 Illustration of the workflow of the pipeline. Transcription factor (TF) gene has multiple functions to regulate transcription. Generated
mRNAs are regulated by microRNA and translated proteins have functions with interacted proteins and molecules. RNA sequencing data and
microRNA (miRNA) microarray data are generated from spinal cord extraction in Ews/Ewsr1 knockout and wild type mice. SAM (Significance
Analysis of Microarrays) is used for selection of significantly expressed miRNA from miRNA microarrays. TargetScan and miRDB were used to
predict target genes of miRNAs. From RNA sequencing data, gene expression values are mapped to the reference genome data using Tophat.
Then negative correlated differentially expressed genes (DEGs) are selected. Significantly expressed microRNA target genes have many interacting
proteins. Specific target gene interactional neighbor proteins are searched in the STRING DB. PPI network analyzed with gene expression value.
Analysis results of miRNA-mRNA network and PPI network are integrated by analyzing correlation in expression levels. Regulated genes further
are analyzed and visualized with DAVID, KEGG and Cytoscape
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Step 3. Protein-protein interaction network analysis

Input: Key genes identified in Step 2
Output: G protein complex genes and regulators

After selecting the key gene in Step 2, we investigated
the biological functions of the genes by extending gene
sets with neighboring genes of the key gene.

Selection significantly expressed gene
From gene set analysis (GSA) and pathway analysis (see
the detailed methods section), we selected specific genes.

Search for proteins that interact with the selected gene
Protein-protein interaction (PPI) analysis of genes neigh-
boring the key gene was performed by using STRING
(Search Tool for the Retrieval of Interacting Genes/Pro-
teins) [26], the most widely used database of known and
predicted protein interactions.

Analysis of biological functions
Relationship between the key gene and neighbor genes
was investigated by performing the literature search. When
we considered the relationship among genes, we also con-
sidered the regulatory roles of genes, i.e., activators or re-
pressors, if applicable. For the regulatory relationship, we
considered gene expression change information.

Results
Analysis of multifunctional EWS by using the network-
based workflow
In this section, we present the result from each compu-
tational step of the workflow (Fig. 1).

Step 1. Translational regulatory network analysis:
MicroRNA-mRNA network
Selection of differentially expressed miRNAs
We selected 18 significantly expressed miRNAs from the
total 1193 mouse miRNAs by SAM tool. 15 miRNAs ex-
pression level were significantly up-regulated, and 3
miRNAs were down-regulated in the Ews/Ewsr1 KO
mice against WT mice (Additional file 2). In the order
of the significance score by SAM, 15 up-regulated miR-
NAs are mmu-miR-127, mmu-miR-410, mmu-miR-433,
mmu-miR-138, mmu-miR-181c, mmu-miR-382, mmu-
miR-19b, mmu-miR-381, mmu-miR-666-3p, mmu-miR-
376a, mmu-miR-873, mmu-miR-181a, mmu-miR-383,
mmu-miR-181b, and mmu-miR-99b. Down-regulated 3
miRNAs were mmu-miR-1224, mmu-miR-9-3p, and
mmu-miR-26a in the order of the significance score by
SAM. Analysis of potential biological functions of
these miRNAs was performed by using genes targeted

by the miRNAs (see the DEG analysis from RNA-seq
data result section).

Prediction of target mRNA regulated by selected miRNA
To perform the integrated analysis of miRNA and their
target genes, we need to predict targets of miRNAs. Pre-
dicted target genes of miRNAs were collected by using
TargetScan and miRDB. 5,779 and 5,448 genes were pre-
dicted by TargetScan and miRDB, respectively. 1,927
genes were targeted by multiple miRNAs in the predic-
tion result of TargetScan, and 2,371 genes were multiply
targeted according to miRDB. After discarding repeat-
edly predicted genes, a total of 4,342 genes were pre-
dicted as targets of 15 differentially expressed miRNAs.
Only 36 % (1,587 genes) of predicted target genes were
predicted by both TargetScan and miRDB. In other
words, the genes targeted by each miRNAs of predic-
tion results by TargetScan and miRDB do not agree
much (Additional file 3). 4,342 target genes predicted
by both TargetScan and miRDB were further analyzed
by performing a negative correlation analysis to sort
out potentially true miRNA-gene relationships (see the
next section).

Negative correlation analysis of DEGs with DE microRNA
Predicted target genes were further screened by consid-
ering negative correlations in expression levels between
miRNA and each of its target genes. The rationale for
the negative correlation analysis is that miRNA degrades
its target genes, thus a higher expression level of miRNA
should result in a lower expression level of its target. We
applied the same technique used in [14, 15]. Negatively
correlated miRNA-mRNA interaction network of miR-
NAs and their target DEGs were visualized by using
Cytoscape (Fig. 2). In Fig. 2, significantly up-regulated
15 miRNAs are in red color, and negative correlated
target DEGs are in blue color. Color intensity denoted
the level of gene expression. As a result of the correl-
ation analysis, 4,342 genes were reduced to 860 genes.
Among the 860 DEGs, 339 target genes were targeted
by multiple miRNAs.

Step 2. Pathway analysis of DEGs from MMIA analysis and
validation
KEGG pathway analysis of DEGs gene set targeted by
miRNA
We mapped the 860 negatively correlated DEGs to the
KEGG pathway using the KEGG mapper. 201 pathways
were hit by the negatively correlated DEGs. We se-
lected 13 pathways with eight or more gene hits. Meta-
bolic pathways, calcium signaling pathway, PI3K-Akt
signaling pathway, axon guidance, pathways in cancer,
MAPK signaling pathway, tight junction, dilated car-
diomyopathy, circadian entrainment, proteoglycans in
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cancer, regulation of actin cytoskeleton, cholinergic
synapse and focal adhesion pathways were selected.
Analysis of KEGG pathways of DEGs were highlighted
in colors chosen by KEGG mapper. Blue color genes
were down-regulated genes, and red color genes were
up-regulated genes in the pathways of Ews/Ewsr1 KO
mice (Additional file 4). Color intensity denoted the
level of gene expression.

Gene ontology based network analysis
Networks of negatively correlated target DEGs in terms
of KEGG ontology were generated using ClueGO (Fig. 3).
“Cholinergic synapse pathway” term was highly clustered
by down-regulated DEGs belonging pathways. ECM-

receptor interaction pathway, focal adhesion pathway,
tight junction pathway, and action cytoskeleton regula-
tion pathway were mostly correlated with selected
down-regulated DEGs. Gnai1, which is most signifi-
cantly down-regulated in the cholinergic synapse path-
way, was selected for further investigation. More
discussion on biological functions of these pathways is
presented in the Conclusion section.

qRT-PCR of Gnai1
qRT-PCR was performed to confirm the difference of
Gnai1 expression in the spinal cords of Ews/Ewsr1 WT
and KO mice. Average gene expression levels of Gnai1
in Ews/Ewsr1 KO mice were significantly lower than

Fig. 3 Venn diagram generated by ClueGO. ClueGO analyzes KEGG ontology of selected down-regulated genes which are targeted by up-regulated
miRNA. Cholinergic synapse pathway is showed highly clustered by down-regulated gene pathways

Fig. 2 Network of microRNAs and mRNAs. Up-regulated miRNAs (Red nodes) are selected by SAM. Target genes (mRNAs, blue nodes) of selected
miRNAs are predicted by TargetScan (left) and miRDB (right). Down-regulated genes targeted by up-regulated miRNA are selected from each
predicted results. miRNA-mRNA interaction network is drawn by Cytoscape. Color intensity denotes the level of gene expression
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those in Ews/Ewsr1 WT mice. This data validated that
Gnai1 expression level was down regulated in Ews/Ewsr1
KO mice (Fig. 4).

Step 3. Protein-protein interactions network analysis
We selected Gnai1 that is down-regulated in cholinergic
synapse pathways and action cytoskeleton regulation path-
way. To investigate the effect of down-regulation of Gnai1,
we used the STRING protein-protein interaction network
DB. In the PPI network, genes neighboring Gnai1 were
further investigated for their biological functions. Looking
at gene expression values, we were able to confirm the
relationship between G-protein genes and RGS genes.
Genes neighboring Gnai1 were selected by using STRING
(Fig. 5). Top 20 interacted genes are shown in Table 1.
Gnai1 and G-protein related genes, such as Gnb1, Gnb2

and Gnb4, were down-regulated at their gene expression
level (Fig. 6). In contrast, Rgs1 and Rgs19, regulators of G-
protein signaling genes that are associated with the inhib-
ition of Gnai1 function, were up-regulated (Fig. 6).

Discussion
Potential interaction map of EWS, RGS, and G-protein
complex genes
A growing body of evidence shows multifunctional roles
of the EWS/EWSR1 fusion oncoproteins [5, 7–9]. How-
ever, the role of wild-type (WT) EWS/EWSR1 is not fully
understood yet. EWS/EWSR1 deficiency contributes to
the failure of precursor B lymphocyte development and
leads to the premature cellular senescence in mouse em-
bryonic fibroblasts (MEFs) [27, 28]. It seems likely that
the WT EWS/EWSR1 protein exhibits many different
cellular functions in a cell-type specific manner. In the
spinal cord of Ews/Ewsr1 KO mice, microRNAs, such as
mmu-miR-381 and mmu-miR-181a/b/c were up-regulated.
These microRNAs suppressed expression of Gnai1 (Gi
Protein Alpha subunit). Concurrently, RGS (Regulator
of G-protein Signaling) genes, Rgs1 and Rgs19, were
up-regulated, which repressed Gnai1 activity. In addition,
G Protein Beta subunit genes, Gnb1, Gnb2 and Gnb4 were
down-regulated. Thus in the Ews/Ewsr1 KO condition, G
protein complex was not formed (Fig. 7).
Since Gnai1 was down-regulated, it is proposed that

Gnai1 may be unable to inhibit downstream adenylate
cyclase genes, such as Adcy9 and Adcy4, in cholinergic
synapse pathway. Adenylate cyclase catalyzes the conver-
sion of ATP to cAMP, and the cAMP regulates cAMP-
proteins, transcription factors, and cAMP-dependent
kinases. Adenylate cyclase is an enzyme with key

Fig. 5 PPI network of Gnai1 from the STRING DB

Fig. 4 Verification of altered Gnai1 expression in Ews/Ewsr1 WT and
KO mice. The gene expression level of Gnai1 was significantly lower
in the spinal cords of Ews/Ewsr1 KO mice (n = 6) compared to EWS
WT mice (n = 6). The bar graph represents average ± standard error
mean (SEM). **, Significantly different at p < 0.01 by Student T-test
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regulatory roles, and Adenylate cyclase regulator Gnai1
has important roles in cholinergic synapse.
Our study presents for the first time that Ews/Ewsr1 defi-

ciency modulates microRNA processing in the spinal cord.
Notably, increased levels of mmu-miR-381 and mmu-miR-
181a/b/c were directly associated with the down regulation
of G protein complex in the spinal cord of Ews/Ewsr1 KO
mice. We have previously shown that Ews/Ewsr1 deficiency
leads to abnormal microRNA processing and skin develop-
ment via Drosha-dependent pathway [10]. Furthermore,
we found that Ews/Ewsr1 deficiency reduces the expression
of Uvrag (UV radiation resistance associated) gene at the
post-transcription level via mmu-miR-125a and mmu-miR-
351 [29]. Interestingly, the reduction of Uvrag by mmu-
miR-125a and mmu-miR-351 impaired autophagy function
in Ewsr1 knockout (KO) MEFs and KO mice. Considering
that G protein-coupled signaling transduction pathway is
very complex, the Gnai1-dependent cellular function and
mechanism in in vitro and in vivo models of EWSR1 defi-
ciency remains to be determined in future studies.

Conclusion
We developed a computational framework for the ana-
lysis of the multifunction TF EWS gene and showed that
EWS has a significant role in the regulation of G protein

complex. Since a multifunction TF gene has a compli-
cated biological functions at various levels, such as tran-
scription, gene regulation, and protein levels, powerful
analysis tools are needed. Our method utilized miRNA-
target gene network and protein-protein interaction net-
work and combined multiple tools in a single computa-
tional framework.
We analyzed the miRNAs and mRNA data in the

spinal cord of Ews/Ewsr1 KO mice, and selected all

Fig. 6 G-proteins and RGS (regulator of G-protein) expression level
and log2 fold change value in Ews/Ewsr1 wild type and knock-out

Table 1 Top 20 interacted genes with Gnai1 from the STRING DB

Gene Symbol Prediction Score Binding Inhibition

Gnb1 0.994 Yes

Gnb4 0.98 Yes

Gnb2 0.98 Yes

Rgs19 0.979 Yes Yes

Gnb3 0.978 Yes

Rgs1 0.976 Yes Yes

Plcb1 0.974 Yes

Adcy4 0.973 Yes Yes

Adcy9 0.973 Yes Yes

Rgs14 0.972 Yes Yes

Plcb4 0.97 Yes

Adcy1 0.97 Yes Yes

Plcb3 0.97 Yes

Adcy8 0.969 Yes Yes

Adcy2 0.969 Yes Yes

Rgs10 0.969 Yes Yes

Adcy6 0.967 Yes Yes

Adcy7 0.967 Yes Yes

Adcy5 0.966 Yes Yes

Adcy3 0.966 Yes Yes

These gene are sorted by prediction score. 13 genes are related to inhibition
with Gnai1
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significantly differentially expressed miRNAs and nega-
tive correlated DEGs. We constructed an interaction
network with selected miRNAs and mRNAs and ana-
lyzed the GSEA and related pathways. From the result of
pathway analysis, we identified significantly down-
regulated Gnai1 gene in the cholinergic synapse pathway
that is highly clustered by down-regulated DEGs belong-
ing pathways. Gnai1 was verified by qRT-PCR, and ana-
lyzed about PPI sub-networks. Gnai1 was suppressed by
mmu-miR-381 and mmu-miR-181a/b/c, and inhibited by
Rgs1 and Rgs19 in the spinal cord of Ews/Ewsr1 KO
mice. As a future work, we plan to develop a software
package for the analysis of multifunction TF genes.

Material & detailed methods
NGS data
RNA sequencing data and microRNA microarray data
those were generated from the spinal cord tissue sam-
ples of Ews/Ewsr1 WT and KO mice [10].

Differentially expressed miRNA analysis
Differentially expressed miRNAs were selected from
miRNA microarray data by using the samr (SAM: Sig-
nificance Analysis of Microarrays, version: 2.0) package
in Bioconductor. We used “two-class unpaired” option
with 1000 permutations. SAM generated an interactive
plot of the observed vs. expected (based on the per-
muted data) d-values. The user can dynamically change
thresholds for significance to set the value of the tuning
parameter delta. We set the delta to 2 to reduce the
numbers of selected significant miRNAs.

MicroRNA target Gene prediction
We collected target genes of differentially expressed
miRNAs using TargetScan and miRDB. TargetScan pre-
dicts biological targets of selected miRNAs by searching
for the presence of conserved 8mer and 7mer sites that
match the seed region of each miRNA. miRDB is a data-
base of predicted miRNA targets in animals. MicroRNA
targets in miRDB were predicted by using SVM (support

vector machine) based prediction program. Only 22 % of
predicted target genes by TargetScan and miRDB agreed.
Since we were unable to decide which predicted gene
are correct and we used all predicted target genes.

Reference genome sequence for alignment
We downloaded and used Ensembl reference genome
sequence (Mus_musculus.GRCm38.70) for reads map-
ping [30].

GTF (General Transfer Format) file for gene annotation
After the alignment, we calculated the FPKM (fragment
per kb exon model) values of each gene by Cufflinks with
Ensembl gene model (Mus_musculus.GRCm38.70) [31].

Preprocessing of RNA-sequence data for DEG analysis
Before mapping reads, we clipped two adaptor se-
quences of paired-end RNA-seq data. For trimming, we
allowed 2 mismatch of adaptor sequences to short
reads. After the trimming process, we discarded reads
of 18 bp or shorter.
Used trimming processing adaptor sequences show the

next lines.
READ1 adaptor sequence: GATCGGAAGAGCACAC

GTCTGAACTCCAGTCAC
READ2 adaptor sequence: AGATCGGAAGAGCGTC

GTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGC
CGTATCATT

DEG (differently expressed gene) analysis from RNA-seq
NGS data
Paired-end total RNA-sequencing raw data were gener-
ated by Illumina HiSeq 2000. Each of the numbers of
reads in raw data of wild type and Ews Knockout 3-
week-old mice spinal cord samples show Table 2. After
adaptor sequence trimming process for discarding of
low quality sequence, the number of trimmed reads for
each samples show Table 2. These amount of reads is
sufficient for DEG analysis. After reference genome
indexing, trimmed short reads were mapped to the

Fig. 7 Roles of G proteins and its regulatory mechanisms by miRNAs in the spinal cord of Ews/Ewsr1 KO mouse. Direction of arrow means with a
change of gene expression level in Ews/Ewsr1 KO mice. Upper arrows are up-regulated gene expression level, and bottom arrows are the opposite
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reference genome by Tophat. The ratios of mapped reads
for each samples were 81.72 and 81.5 %. The mapping ra-
tios were higher than 80 % for all samples and variations in
the mapping ratio across the samples were very small. Thus
we believe that results of analysis for RNA sequencing
experiment and short read processing were satisfactory.
We quantified the expression level of each gene using
Cufflinks based on the gene information from Ensembl.

Quantitative real-time PCR
Total RNA was extracted from the spinal cord of Ews/
Ewsr1 WT and KO mice by TRIzol reagent (MRC, Cin-
cinnati, OH, USA) as previously described [10]. RNA
was measured in a spectrophotometer at 260-nm ab-
sorbance. RNA analysis was conducted as follows. Fifty
nanograms of RNA were used as a template for qRT-
PCR amplification, using SYBR Green Real-time PCR
Master Mix (Toyobo, Osaka, Japan). Primers were stan-
dardized in the linear range of cycle before the onset of
the plateau. Mouse GAPDH was used as an internal
control. Two-step PCR thermal cycling for DNA amplifi-
cation and real-time data acquisition were performed
with an ABI StepOnePlus Real-Time PCR System using
the following cycle conditions: 95 °C for 1 min × 1 cycle,
and 95 °C for 15 s, followed by 60 °C for 1 min × 40 cy-
cles. Fluorescence data were analyzed by the ABI StepO-
nePlus software and expressed as, Ct, the number of
cycles needed to generate a fluorescent signal above a
predefined threshold. The ABI StepOnePlus software set
baseline and threshold values.

Additional files

Additional file 1: Table S1. Top 400 DEGs analysis result. A) GO term
result of DAVID analysis. B) KEGG pathway result list. (XLSX 19 kb)

Additional file 2: Figure S1. Graphic plotting of miRNA microarray
analysis by SAM. Red dots are significantly up-regulated miRNAs and
green dots are down-regulated. In the table of SAM result, columns are
score, numerator, denominator, fold change and q-value. (DOCX 34 kb)

Additional file 3: Table S2. The number of genes targeted by each
miRNAs by using TargetScan and miRDB. Prediction results by TargetScan
and miRDB do not agree much. Union of target genes were further
analyzed by performing. (DOCX 15 kb)

Additional file 4: Figure S2. The cholinergic synapse pathway related
with significantly down-regulated genes by ClueGO. Selected DEGs are
highlighted in colors chosen by KEGG mapper. Blue genes are down-
regulated genes, and red genes are up-regulated genes in Ews/Ewsr1 KO mice
compared to WT mice. Green color genes are not changed. (DOCX 53 kb)
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