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Abstract

Background: Non-small cell lung cancer (NSCLC) remains a lethal disease despite many proposed treatments.
Recent studies have indicated that epigenetic therapy, which targets epigenetic effects, might be a new
therapeutic methodology for NSCLC. However, it is not clear which objects (e.g., genes) this treatment specifically
targets. Secreted frizzled-related proteins (SFRPs) are promising candidates for epigenetic therapy in many cancers,
but there have been no reports of SFRPs targeted by epigenetic therapy for NSCLC.

Methods: This study performed a meta-analysis of reprogrammed NSCLC cell lines instead of the direct examination
of epigenetic therapy treatment to identify epigenetic therapy targets. In addition, mRNA expression/promoter
methylation profiles were processed by recently proposed principal component analysis based unsupervised feature
extraction and categorical regression analysis based feature extraction.

Results: The Wnt/-catenin signalling pathway was extensively enriched among 32 genes identified by feature
extraction. Among the genes identified, SFRP1 was specifically indicated to target 3-catenin, and thus might be
targeted by epigenetic therapy in NSCLC cell lines. A histone deacetylase inhibitor might reactivate SFRP1 based upon
the re-analysis of a public domain data set. Numerical computation validated the binding of SFRP1 to WNT1 to

suppress Wnt signalling pathway activation in NSCLC.

Conclusions: The meta-analysis of reprogrammed NSCLC cell lines identified SFRP1 as a promising target of epigenetic

therapy for NSCLC.

Background

Non-small cell lung cancer (NSCLC) is still lethal despite
many proposed therapeutic strategies. Among the many al-
ternative strategies, epigenetic therapy is regarded as a
promising method [1], and a histone deacetylase (HDAC)
inhibitor [2] or DNA methyltransferase inhibitor [3] were
shown to be promising NSCLC treatments, especially when
combined [1]. There has been extensive research regarding
the clinical usefulness of epigenetic therapy for NSCLC;
however, studies investigating the target genes of these
treatments are limited, although some promising candi-
dates have been proposed [4]. The potential reasons for the
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small number of epigenetic therapy target gene reports
might be the difficulty of in vitro studies [5]. Compared
with many clinical studies regarding the efficiency of epi-
genetic therapy, there have been few in vitro studies of epi-
genetic therapy [6, 7]. Thus, alternative strategies to direct
in vitro experiments for epigenetic therapy such as the in-
vestigation of reprogrammed cancer cell lines are required
to investigate the effect of epigenetic therapy in NSCLC.

It is thought that epigenetic therapy targets epigenetic
effects, e.g,, DNA methylation and/or histone modifica-
tion, which might be affected by reprogramming. Thus,
a detailed and extensive comparative study might indir-
ectly identify the effect of epigenetic therapy in NSCLC
cell lines.

This study performed a meta-analysis of reprogrammed
NSCLC cell lines to identify genes associated with epigenetic
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alterations and expression changes during reprogramming
and to identify promising candidate genes for targets of epi-
genetic therapy. Among those identified, secreted frizzled-
related protein (SFRP)1 was of interest. Using in vitro epi-
genetic therapy experiments, we confirmed that SFRP1
mRNA expression and its histone modification were altered.
Furthermore, SFRP1 might suppress the Wnt signalling
pathway by binding to Wnt genes. An in silico study indi-
cated the potential binding of SFRP1 with WNTT; thus, the
reactivation of SFRP1 suppressed in NSCLC might be a
promising candidate target for the epigenetic therapy of
NSCLC.

Results

Identification of biologically significant genes

To identify genes targeted by epigenetic therapy in NSCLC,
we analysed gene expression and promoter methylation in
reprogrammed NSCLC cell lines [8]. Although it is useful
to consider histone modification and promoter methylation
together because epigenetic therapies targets both, suitable
data sets were not publically available for histone modifica-
tion; therefore, as promoter methylation often reflects the
effect of histone modification [9], a data set containing
gene expression and promoter methylation information
was analysed. The primary aim of this analysis was to iden-
tify genes associated with aberrant gene expression and
promoter methylation during reprogramming because as-
sociated genes are most likely targeted by epigenetic
therapy.

Although promoter methylation was generally expected to
be negatively correlated with gene expression, this was not
always observed, especially when histone modification was
also considered [10]. Because this study aimed to identify
targets of epigenetic therapy including both DNA methyla-
tion and histone modification, we did not restrict candidate
biologically significant genes such as those associated with
negative correlations between promoter methylation and
gene expression, but considered all genes associated with
significant correlations between promoter methylation and
gene expression independent of the direction.

To select biologically significant genes, we used principal
component analysis (PCA) based unsupervised feature ex-
traction (FE) [11-24]. PCA based unsupervised FE is useful
when there is no information regarding how to order mul-
tiple classes. It also allows us to restrict number of pairs
whose correlations must be computed, which can reduce
the possibility that selected genes are rejected because of P-
values adjustments based on multiple comparison correc-
tion criteria. Therefore, because many cell lines, including
those that were reprogrammed and differentiated, were
used in this study, PCA based unsupervised FE was a suit-
able method for analysis. To select principal components
(PCs) with a significant correlation between gene expres-
sion and promoter methylation for FE, we performed
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hierarchical clustering (see Methods) to identify a pair of
PCs associated with a high correlation between promoter
methylation and gene expression. PC3 and PC4 were the
most suitable candidate pairs (Fig. 1).

One may wonder why H1, IMR90, and iPSIMR90 must
be included in the analysis. As can be seen in Additional
file 1, reprogrammed cell lines have similar values to H1 or
iPSIMRO0 that are pluripotent; this suggested that the in-
clusion of H1 and iPSIMR90 guaranteed that cell lines were
correctly reprogrammed. Similarly, inclusion of IMR90
guaranteed that reprogrammed cell lines are often distinct
from IMR90 that is differentiated. Thus, H1, IMR90, and
iPSIMR90 are worthwhile being included.

To determine the stability of pairs of PC3 and PC4 be-
tween gene expression and promoter methylation we
constructed hierarchical clustering with only 23 samples
(because there are 24 samples, there was a sequential re-
moval of one specific sample from the 24 samples; see
Methods and full results are Additional file 2). Pairs of
PC3 and PC4 between gene expression and promoter
methylation were conserved for 22 hierarchical clusters
among 24 samples. Thus, the pairs of PC3 and PC4 in
Fig. 1 are not accidental but robust.

Although we previously [24] considered only PC1 and
PC2 when analysing the same data set for another study,
gene expression and promoter methylation showed a
lower correlation when compared with PC3 and PC4 in
this study. This might explain why promising candidate
genes were not identified in our previous study [24].
Therefore, we used PC3 and PC4 for gene selection in
this study. In addition to PCA based unsupervised FE,
we used another FE that is also suitable for multiclasses
that lack a pre-decided order, FE based upon categorical
regression (see Methods).

Table 1 summarizes the genes selected by PCA based
unsupervised FE and categorical regression based FE.
In total, we identified 32 unique gene candidates (three
genes were identified by more than one method). Gene
expression and promoter methylation of specific PCs
and genes and their correlation information is summa-
rized in Table 1 and detailed in Additional files 1, 3, 4
and 5.

Biological significance of selected genes

Disease association of genes

To validate the biological significance of the selected genes,
we used the Gendoo server [25] to search the literature for
genes associated with diseases. For most of the genes
examined (excluding LAD1, KIF1A, SLC16A12, SCG3
and IGSF21), there were significant associations with
cancer-related diseases as summarized in Table 1A (and
Additional file 6). Many oncogenes and tumor suppres-
sors are not unique for specific cancers but are related to
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Fig. 1 Hierarchical clustering of PCs. Vertical axes represent distance that is negative signed absolute correlation coefficients between PCs. PCs
with “M" indicate promoter methylation and those without “M” were computed from gene expression

several cancers. This suggested that the genes selected in
this study have the potential to be involved with NSCLC
tumourigenesis.

Pathway/Gene Ontology (GO) term analysis

Because disease association is not always informative re-
garding how the genes are involved in tumourigenesis, we
uploaded a list including gene IDs to two gene annotation

Table 1 Genes selected by FEs

servers [26, 27] (Table 2). The selection of “extracellular
region” was reasonable, because this is a reprogramming
study, thus cell surface receptors should be activated to
initiate differentiation, which is related to another selected
GO term, “cell proliferation”. When mapping selected
genes to the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway, most were at the cell surface
(see Additional file 7).

(A) (®) (@) ©) (A) ®) © D) (A) ®) © D)

Categorical regression SFRP1 o o o o LAMC2 o o o o
SALL4 ) o o o SLC16A12 HMGAT o o o o
TACSTD1* o o o o HOXAS5 o o o o LAD1 o o
ANGPT1 o o o KIFTA o o o PFKFB3 o o o
TACSTD2* o o o o H2AFY o o o DEFB1 o o

IGSF21 ATP5G2 SRGN o o o

EFNB1 o o o TMA4SF1 o o o o UCHL1 o o o o
MEST o o o o GPR56* o o o o ALDH3A1 o o o o
SCG3 o S100P o o o o EPB41L3 o o o
PCA based unsupervised FE (PC4) PCA based unsupervised FE (PC4) RTN1 o o o

F2R o o o o SPINT2 o o o o LAMAT1 o o o
DKK3 o o o o CDH1 o o o o

Genes with asterisk were selected by more than one method

(A) Associations with cancer related genes reported by Gendoo server. (B) Significant negative correlations (P < 0.05) between gene expression and promoter
methylation. (C) At least one study reported a direct/indirect relationship with NSCLC. (D) At least one study reported a direct/indirect relationship with Wnt/p3-
catenin signalling pathways. Asterisked three genes are also identified by PCA based unsupervised FE with PC4
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Table 2 Results from various annotation servers
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P-value Number of genes

Targetmine

GO Term Extracellular region [GO:0005576] 203% 107 21
Lateral plasma membrane [GO:0016328] 855x 107 3

GOSlim Term Extracellular region [GO:0005576] 643%x107° 21
Locomotion [GO:0040011] 134%107° 9
Cell adhesion [GO:007155] 134%107 7
Cell junction organisation [GO:0034330] 174%1072 4
Anatomical structure development [GO:0048856] 176x107° 14

g:Profiler

GO Term Cell proliferation [GO:0008283] 142%1072 12
Regulation of cell proliferation [GO:0042127] 483x107° 10
Regulation of cell adhesion [GO:0030155] 1581072 6
Cellular component movement [GO:0006928] 367%x107° 11
Extracellular region [GO:0005576) 394x107* 19

TF PPAR, HNF-4, COUP, PAR [TF:M00762 4] 272%1072 18

Adjusted P-values for target-mining is based on BH criterion

Literature search

To determine whether the selected genes were specific-
ally related to NSCLC and pluripotency because the data
analysed was from reprogramming experiments, we per-
formed an extensive literature search. Studies regarding
the relationship between NSCLC and proteins reported
to bind to any of the 32 genes listed in Table 1 were col-
lected and analysed with BioGrid [28], which reports
literature-based protein-protein interactions. Most of the
genes identified were specifically related to NSCLC
tumourigenesis and some were also related to pluripo-
tency (Table 1C and Additional file 8). Thus, this meth-
odology is promising.

Discussion

The Wnt/B-catenin signalling pathway as an NSCLC
therapy target

Although we found that the genes identified in this
study were mostly related to NSCLC tumourigenesis,
genes should be selected according to their potential for
epigenetic therapy of NSCLC. However, as can be seen
in Table 2, no significant pathway enrichments were de-
tected. In order to investigate pathway enrichment, we
performed literature searches manually. Then we have
found that multiple genes selected in this study were re-
lated to the Wnt/p-catenin signalling pathway (Table 1D)
that was recently reported to be a major pathway in
NSCLC tumourigenesis [29]. One may wonder why
Wnt/B-catenin signalling pathway was not detected in
enrichment analyses in Table 2. First of all, even if no
significant enrichments were detected, it does not always
mean the lack of enrichment, but often simply means

the lack of ability of the specific statistical tests. Second,
as can be seen in the following, some genes detected by
literature searches, e.g., EPCAM and TACSTD2, are not
included into KEGG pathway. This means that we need
more sophisticated investigations than simple enrich-
ment analyses. This is the reason why we additionally
performed literature searches.

SALL4 is part of the Wnt signalling pathway [30] and
regulates the stemness of EPCAM-positive hepatocellular
carcinomas [31, 32]. EPCAM was recently reported to be
an endoderm-specific Wnt derepressor [32]. ANGPT1 was
reported to be upregulated via the overexpression of [3-
catenin that is a key factor of the Wnt signalling pathway
[33]. TACSTD2 was proposed to be a Wnt target [34]
identified through consistent gene expression changes in
APC-mutant intestinal adenomas from humans and mice;
EENBI :Eph-related receptor is a Wnt signalling target
gene in colorectal cancer [35] that binds to the EFNBI lig-
and. MEST inhibits Wnt signalling through the regulation
of LRP6 glycosylation [36]. F2R(PAR1) stabilizes f-catenin
in mammary gland tissues [37]. DKK3 binds to LRP5/6
and inhibits the initiation of Wnt signalling [29]. SFRP1
binds to FZD and WNT to suppress the activation of Wnt
signalling [29]. HOXAS expression increased the retention
of B-catenin in adherens junctions and reduced permeabil-
ity [38]. KIF1A binds to at least two -catenin binding pro-
teins [39], ESR1 [40] and AR [41]. TM4SF1 might have a
role in coordinating Wnt signalling and migration during
endocrine pancreas specification [42], and TM4SF1 and
TMA4SF4 belong to the tetraspanin L6 domain family.
GPR56: The Wnt/B-catenin signalling pathway regulates
genes involved in cell proliferation, survival, migration and
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invasion through by the regulation of T-cell factor (TCF)-4
transcription factor proteins that activate GPR56 in HCC
[43]. S100P: Increased expression of S100P promoted cel-
lular proliferation by increasing the nuclear translocation
of B-catenin in endometrial cancer [44]. SPINT2: The epi-
genetic silencing of SPINT2 promoted cancer cell motility
via HGE-MET pathway activation in melanoma [45], and
[-catenin formed a complex with c-Met (HGF receptor)
[46]. CDHI1 (E-cadherin) is involved in the inactivation of
Wnt/B-catenin signalling in urothelial carcinoma and nor-
mal urothelial cells [47]. LAMC2 (Laminin y2) mediated
the Wnt5a-induced invasion of gastric cancer cells [48].
HMGAL1 interacted with B-catenin to positively regulate
Wnt/B-catenin signaling in colorectal cancer cells [49].
PFKFB3: The altered expression of PFKFB3 is associated
with Wnt signalling pathway genes [50]. UCHLL is a colo-
rectal cancer oncogene that activated the p-catenin/TCF
pathway through its deubiquitinating activity [51].
ALDH3AL is overexpressed in a subset of hepatocellular
carcinoma characterized by activation of the Wnt/B-ca-
tenin pathway [52]. EPB41L3 (DAL1) binds to YWHAZ
[53], and the YWHAZ/B-catenin axis promoted epithelial-
mesenchymal transition and lung cancer metastasis [54].
LAMAI1 (laminin): Overexpression of the Wnt antagonist
FRZB1 decreased RNA levels of the essential basement
membrane genes fibronectin and laminin [55].

B-catenin is often reported to be related to NSCLC
Although p-catenin is extensively related to the selected
genes in this study, p-catenin was overexpressed in NSCLC
[56]. B-catenin expression was also prognostic for improved
NSCLC survival [57]. Nuclear [-catenin accumulation was
associated with the increased expression of NANOG protein
and predicted a poor prognosis of NSCLC [58]. Promoter
methylation-mediated silencing of B-catenin enhanced the
invasiveness of NSCLC and predicted an adverse prognosis
[59]. All of these studies strongly suggest the importance of
[-catenin in NSCLC.

These genes are also related to epigenetic therapy

The following genes were also suggested to be related to
epigenetic therapy. Recently, the combined usage of two
drugs, romidepsin and decitabine, restored SFRP1 activity
in four cancer cell lines, A498, KIJ265T, MDA-231, and
BT-20 [60]. This strategy might be useful for NSCLC ther-
apy because an HDAC inhibitor, MPTOE028, enhanced
erlotinib-induced cell death in epidermal growth factor re-
ceptor tyrosine kinase inhibitor (EGFR-TKI)-resistant
NSCLC cells [61] and SAHA, a HDAC inhibitor, had pro-
found anti-growth activity against NSCLC cells [62]. Other
evidence includes an organosulfur derivative of the HDAC
inhibitor, valproic acid, which sensitised human lung can-
cer cell lines to apoptosis and to cisplatin cytotoxicity [63].
EGFR-TKI resistance by BIM polymorphism was
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circumvented when combined with HDAC inhibition [64],
and antitumour activity of histone deacetylase inhibitors
was observed in NSCLC cells [65]. The effect of HDAC in-
hibitors can be improved by in silico drug screening [66].
In addition, SALL4 was reported to form a protein com-
plex with HDAC [67-69] (Fig. 4a in [69]), which suggests
that epigenetic regulation of the Wnt signalling pathway is
a key factor in the tumourigenesis of NSCLC. Interestingly,
promoters of SALL4 and SFRP1 were methylated simultan-
eously [70-72]. Although there have been no reports to
suggest a direct relationship between HOXAS5 and the Wnt
signalling pathway in NSCLC, HOX is related to the Wnt
signalling pathway, which controls HOX gene expression
in C. elegans [73], while HOX genes control Wnt signalling
[74]. Furthermore, WNT7A has a strong relationship with
HOX genes [75]. In addition, from an evolutionary point of
view, HOX and Wnt might be related [76]. Thus, HOXA5
might be involved in Wnt signalling in NSCLC and might
also be influenced by HDAC [77].

SFRP1 is a potential epigenetic therapy target

Overall, we concluded that the Wnt signalling pathway is a
likely target of epigenetic therapy in NSCLC cell lines. A
previous study suggested that the reactivation of Wnt an-
tagonists, including DKK3 and SFRP1, in NSCLC might be
a beneficial epigenetic therapy [78]. Among the genes po-
tentially related to Wnt signalling, we considered SFRP1 to
be the most promising candidate gene targeted by epigen-
etic treatment. A previous study reported that treatment
with 5-aza-2’-deoxycytidine, a DNA methyltransferase in-
hibitor, enhanced SFRP1 expression in NSCLC [79].
Transcriptional silencing of the gene was also due to
hypermethylation of its promoter region in NSCLC [80].
SFRP1 has been reported as a marker for NSCLC [81, 82].
In addition, SFRP1 was also reported to be related to -
catenin. For example, SFRP1, SFRP2, and SFRP5 regulate
Wnt/B-catenin and planar cell polarity pathways during
early trunk formation in mice [83]. Loss of SFRP1 expres-
sion was associated with aberrant p-catenin distribution
and tumor progression in mucoepidermoid carcinoma of
salivary glands [84].

To confirm whether the HDAC inhibitor affected SFRP1
regulation in NSCLC, we analysed a public domain data set.
Miyanaga et al. [65] compared various cell lines to deter-
mine whether they were resistant to HDAC inhibitors. We
investigated SFRP1 expression between HDAC inhibitor-
resistant cell lines and non-resistant cell lines for adenocar-
cinoma and squamous cell carcinoma and found different
levels of SFRP1 expression (Table 3). SFRP1 expression was
upregulated in non-resistant cell lines compared with resist-
ant cell lines because cell lines with downregulated SFRP1
required greater levels of HDAC suppression to increase
SERP1 expression. In addition, histone acetylation of SFRP1
in NSCLC was enhanced by HDAC inhibitors compared
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Table 3 Comparison of gene expression between resistant and
non-resistant cell lines for adenocarcinoma and squamous cell
carcinoma [65], and H3K9K14ac during treatment with an HDAC
inhibitor for NSCLC cell lines [85]

Gene expression

Adenocarcinoma

P-value Non-resistant  resistant cell lines
cell lines
SFRP1 464x10™ 61106 >92.60
DKK3 673x107° 26327 >30.59
Squamous cell carcinoma
SFRP1 7.42x107% 30453 >49.53
DKK3 461x107" 26138 <506.25
Histone modification (H3K9K14ac)

P-value 0 hours 2 hours

(A549) 290x1072 —1.29 <-052

SFRP1 (H1299) 4.06x1072 -251 <-1.85
CL1-y  871x107" -138 <-134

(A549) 619%x 107" —1.17 <-1.01

DKK3 (H1299) 1.98x107> —-1.70 <-048
(CL1-)  148x 107" -059 >-1.13

(A549) 474x107" =170 <-137

TACSTDT  (H1299) 151x107"  -261 <=2.20
L1 862x 107" —2.03 >-209

(A549) 1.71x1073 244 <-1.05

SALL4 (H1299) 523x107"  -262 >-2.86
(CL1-1) 1.03x107* 097 >-0.59

Significant P-values (<0.05) are shown in bold

with DKK3 and TACSTD1 [85], but not in CL1-1 generated
from the cervix. These results are in accord with the hy-
pothesis that the therapeutic effect of HDAC in NSCLC is
caused by the reactivation of SFRPI1. Interestingly, the his-
tone acetylation of SALL4 in NSCLC was also enhanced by
the HDAC inhibitor in an A549 cell line (Table 3, P-values
for the CL1-1 cell line were very small, but because of the
deacetylation, this effect is not likely to be caused by the
HDAC inhibitor). Unfortunately, the microarray analysis by
Miyagawa et al. [65], did not include SALL4, thus we can-
not check whether SALL4 expression was coincident with
HDAC inhibitor resistance.

Potential of SFRP1 binding to WNT1

Next, we validated the ability of SFRP1 to bind to
WNT1 as it was the most promising target from our
study that affected the Wnt signalling pathway. Al-
though Wnt8 and FZ8 share a cysteine-rich domain
(CRD) that forms a protein complex with SFRP1 [86]
and FRZBI that is a similar protein to SFRP1 [87] was
reported to bind to WNT1 in Xenopus [88], there have
been no direct reports investigating the binding of
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SFRP1 to WNTI1 [89]. Therefore, we examined the for-
mation of a SFRP1I-WNT1 protein complex using nu-
merical simulation. The tertiary structures of WNT1
and SFRP1 were inferred by RaptorX [90]. Then, the ob-
tained structures were uploaded to the ZDOCK server
[91], a rigid body based protein complex predictor. The
10 top ranked protein complex structures obtained were
further uploaded to Fiberdock [92] that refines the protein
complex structures obtained by other methods by consid-
ering the flexible structures of the proteins. Finally, the
best candidate (with the minimum energy) reported by
Fiberdock was identified as the most reliable candidate for
the WNT1-SFRP1 protein complex. Figure 2a shows the
structure of the protein complex obtained using this pro-
cedure. This structure is very similar to the WNT8-FZ8
complex (Fig. 2d) because the CRDs of SFRP1 and FZ8
were similarly sandwiched by two arms of the Wnt pro-
tein. This suggests that SFRP1 can bind to WNT1 and
suppress the Wnt signalling pathway.

To confirm the reliability of this structure, we performed
two tests. The first was to upload WNT8 and the CRD of
FZ8 separately to ZDOCK and Fiberdock, as for the pro-
tein tertiary structures of SFRP1 and WNT1 obtained by
RaptorX, to determine whether the correct structure was
identified as that with the minimum energy. Figure 2b
shows a protein complex identified by the combined usage
of ZDOCK and Fiberdock. The expected structure con-
tains an FZ8 CRD sandwiched by two arms of WNTS,
thus, this confirms the use of our strategy using the com-
bined ZDOCK and Fiberdock systems.

The second test was a molecular dynamics (MD) simu-
lation to test the stability of the protein complex predicted
by the combined usage of ZDOCK and Fiberdock. The
protein complex inferred by ZDOCK and Fiberdock was
used as the initial state and MD simulation was performed
by GROMACS [93]. The obtained structure was modified
to have minimum energy and was simulated under NVT
(constant number of molecules, volume and temperature)
and NPT (constant number of molecules, pressure and
temperature) conditions over 0.1 ns, respectively. Then, a
2 ns equilibration MD was performed. Figure 3 shows the
time developments of the root mean square deviation
(RMSD) during the first and second 1 ns in equilibration
MD. Although the structure heavily fluctuates because
RMSD increased with time, the SFRP1 CRD structure was
sandwiched by two arms of WNT1 and was maintained
even after 2 ns equilibration MD (Fig. 2¢) indicating this
structure was stable. Thus, SFRP1 binds to WNT1 to sup-
press the Wnt signalling pathway.

Possibilities that proteins other than SFRP1 are epigenetic
therapy targets

Although this study focused on SFRP1 as a promising can-
didate for epigenetic therapy of NSCLC, 31 other proteins
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Fig. 2 Protein complex. a WNT1 (cyan) + SFRP1 (light green) by Fiberdock + ZDOCK, b WNT8 (cyan) + CRD of FZ8 (light green) by Fiberdock +
ZDOCK, ¢ WNT1(cyan) + SFRP1(light green) by GROMACS (time =2 ns), d WNT8 (cyan) + CRD of Fz8 (light green) in PDB (PDB ID: 4FOA)

selected in Table 1 might also have potential for NSCLC
epigenetic therapy. SALL4, DKK3 and HOXA5 were sug-
gested to be related to the Wnt signalling pathway. DKK3
suppresses the Wnt signalling path-way by binding to
LPR5/6 proteins. Other genes also contribute to many
other pathways involved in tumourigenesis (Additional
files 6 and 8). Thus, although no strong evidence that pro-
teins other than SFRP1 were epigenetic therapy targets for
NSCLC was obtained, it is likely that other proteins identi-
fied in this study are epigenetic therapy targets.

Conclusion

In conclusion, this meta-analysis of reprogrammed
NSCLC cell lines indicated that SFRP1 was a promising
candidate for NSCLC epigenetic therapy. The reliability
of SERP1 binding to WNT1 to suppress the Wnt signal-
ling pathway was confirmed using numerical investiga-
tions. Thus, we propose that SFRP1 is an epigenetic
therapy target for NSCLC.

Methods

Gene expression and promoter methylation profiles
during reprogramming of NSCLC cell lines

Gene expression and promoter methylation profiles were
downloaded from the Gene Expression Omnibus (GEO)

using GEO ID: GSE35913. Files including gene expression,
GSE35911_SampleProbeProfile.txt.gz, were provided as a
supplementary file in the subseries GEO ID: GSE35911.
Columns annotated as “AVG Signal” were used. Promoter
methylation profiles were obtained from “Series Matrix
File(s)” in the subseries GEO ID: GSE35912. They
consisted of eight cell lines, H1 (ES cell), H358 and
H460 (NSCLC), IMR90 (Human Caucasian foetal lung
fibroblast), iPCH358, iPCH460, iPSIMR90 (repro-
grammed cell lines), and piPCH358 (re-differentiated
iPCH358) with three biological replicates. In total,
there were 3 replicates x 8 cell lines x 2 properties (gene
expression and promoter methylation) =48 samples. No
further normalization processes were applied. Multiple
probes attributed to the same gene were not integrated
before feature selection and if genes with more than one
attributable probes were selected, the genes were regarded
as extracted features.

PCA-based unsupervised FE

PCA based unsupervised FE was performed as previously
described [15]. Briefly, x; is ith feature that represents
gene expression/promoter methylation/histone modifica-
tion of the jth sample. In contrast to the standard usage of
PCA, features but not samples were embedded into low
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Fig. 3 RMSD for GROMACS MD for those from 0 ns to 1 ns and
those from 1 ns to 2 ns

dimensional space. Then, kth PC score attributed to ith
feature, x;, was expressed as

Xik = chjk (oe5=<iypy)

where cj is the contribution of jth sample to kth PC (PC
loadings) and (- --) ; is the mean over i. After identify-
ing biologically critical PCs (in this study, PC3 and PC4,
based on hierarchical clustering, Fig. 1), features that are
outliers along the specified PC were extracted, because
outliers were expected to reflect biological significance
(in this study, there was a high correlation between gene
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expression and promoter methylation) that specified PCs
represent. The number of features to be extracted as out-
liers was decided empirically. In this study, the top 300
outliers, those with larger or smaller (larger absolute
values of) x;. of kth PC selected for FE, were selected for
gene expression and promoter methylation profiles, re-
spectively. Genes listed in Table 1 were those commonly
selected as the top ranked outliers for gene expression and
methylation profiles in the following four combinations of
rankings: larger x; for gene expression and larger xy, for
promoter methylation; larger x; for gene expression and
smaller (negatively larger) xy for promoter methylation;
smaller (negatively larger) x;, for gene expression and lar-
ger xy for promoter methylation; and smaller (negatively
larger) x;, for gene expression and smaller (negatively lar-
ger) x; for promoter methylation.

Identification of biologically meaningful PCs

Although there are several ways to identify biologically
meaningful PCs, this study used the coincidence of cj be-
tween gene expression and promoter methylation. To iden-
tify mostly coincident PCs between gene expression and
promoter methylation, we computed the correlation coeffi-
cients between kth and k’th PCs of gene expression or pro-
moter methylation as follows: (all pairs were considered
among PCs of gene expression and promoter methylation)

Pre = (ACKAC);

Ak = (C/k_<c/1’<>fl)/ [< (Cizk—<6;3k>13)2>/2} .

where (-..) ; is the mean over j. Then, the negative
signed absolute value of pi-, — |pre|, was used as the
distance for hierarchical clustering (Unweighted Pair
Group Method with Arithmetic mean, [UPGMA], was
employed). If a pair of PCs for gene expression and pro-
moter methylation were clustered together with a
smaller distance, i.e., with a larger absolute value of cor-
relation coefficient, we employed the pair of PCs of gene
expression and promoter methylation, for FE.

Hierarchical clustering with 23 samples

PCs were computed with 23 samples and hierarchical
clustering was performed. As a result, we had 24 hierarch-
ical clusters. Because the correspondence between PCs
with a distinct set of 23 samples is incomplete, we re-
labelled the first five PCs (PC1, PC2, PC3, PC4 and PC5)
and compared them with PCs obtained using 24 samples.

Categorical regression-based FE

Categorical regression-based FE was defined as follows:
x;; reflects the ith feature of the jth samples as described
above; therefore x; can be represented as:
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Xj = dip + E Aitdji,

with &5 =1 only when the jth sample belongs to the /th
category (in this study, each category corresponds to the
type of cell line), otherwise it is 0. Category summation was
determined and a;s were the fitting parameters. Because in-
dependent variables are categorical, the above regression
equation belongs to a category of equations often named
categorical regression. For each ith feature, P-values were
computed using the Im function implemented in R [94]
(this can be easily performed if factors corresponding to the
types of cell lines are used as independent variables in Im).
Genes were ranked based upon obtained P-values and
the top 300 ranked significant genes (those with smaller
P-values) were extracted. Genes listed in Table 1 were
those commonly selected as top ranked genes for gene ex-
pression and methylation profiles.

Disease associations with genes

Disease associations with genes were investigated by
Gendoo [25], a literature-based disease-gene associ-
ation database.

Probe annotation

For gene expression, probe annotations were based on the
“Accession” column (for RefSeq gene ID) or “Symbol” col-
umn (for gene symbol) in the GSE35911_SampleProbePro-
file.txt.gz file. For promoter methylation, GPL849065.txt
available from the GEO ID: GSE35912 file was used and
the “Accession” column was used to assign a Refseq gene
ID to each probe.

Gene expression for comparison of resistant and non-
resistant cell lines

Gene expression profiles used for the comparison between
resistant and non-resistant cell lines were obtained from
GSE4127 [65]. The data set included in the “Series Matrix
File(s)” was used for analysis without further normalization.
RERF-LC-MS, PC14, PC9, A549, and RERF-LC-K] were
regarded as non-resistant cell lines and CP7, ABC-1, PC3
and LC2/ad were regarded as resistant cell lines.

Histone modification during treatment with an HDAC
inhibitor

Histone modification profiles used for analysis during
treatment with an HDAC inhibitor were obtained
from GSE20304 [85]. Data sets included in the “Series
Matrix File(s)” were used for analysis without further
normalization.

Inference of protein tertiary structures

Amino acid sequences extracted from Uniprot (Q8N474.1
for SFRP1 HUMAN and P04628.1 for WNT1 HUMAN)
were uploaded to the RaptorX server and inferred protein
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structures were used for further analyses, i.e., uploading to
ZDOCK, Fiberdock and MD by GROMACS.

MD by GROMACS

GROMACS 5.04 compiled with enabling mpi (Message
Passing Interface) and GPU usage was used for MD. The
protein complex of SFRP1 and WNT1 inferred by the
combined usage of ZDOCK and Fiberdock (Fig. 2a) was
used as the initial structure of the protein complex. Force
field used was OPLS-AA/L (all-atom force field) and group
13 “SOL” was employed for embedding ions. At first, en-
ergy minimization was performed and NVT and NPT con-
ditions of the simulation followed. Finally, an equilibration
run was executed over 2 ns. For all the procedures, we
followed the instructions shown in [95].

Additional files

Additional file 1: ¢, of PC3 and PC4 employed for feature extraction.
The left column corresponds to gene expression and the right column
corresponds to promoter methylation. PC3 and PC4 show distinct sample
dependence. PC3 represents sample dependence that distinguishes between
two NSCLC cell lines and non-NSCLC cell lines, while PC4 represents the
distinction between two NSCLC cell lines in addition to that between two
NSCLC cell lines and non-NSCLC cell lines. (PDF 7 kb)

Additional file 2: Hierarchical clustering with 23 samples. Hierarchical
clustering between PCs with 23 samples. Left (right) column corresponds
to those before (after) re-labelling. (PDF 77 kb)

Additional file 3: FE based upon categorical regression. Gene expression/
promoter methylation of genes selected by categorical regression. FE based
upon categorical regression does not always guarantee a high correlation
between gene expression and promoter methylation, because it simply
filters those with distinct expression/methylation among samples. However,
among eight genes selected, four had a significant (P < 0.05) negative
correlation coefficient between gene expression and promoter methylation.
This suggested the feasibility of FE based upon categorical regression. The
correlation between gene expression and promoter methylation is very high.
However, only one gene had a significant positive correlation. (PDF 19 kb)

Additional file 4: Genes selected based upon PC3. Gene expression/
promoter methylation of genes selected by PCA based unsupervised FE
employing PC3. Among eleven selected genes, eight genes had a significant
(P < 0.05) negative correlation between gene expression and promoter
methylation. Because we did not restrict the selection of genes to those with
negative correlations, large numbers of genes with negative correlations
demonstrate the feasibility of our methodology. (PDF 26 kb)

Additional file 5: Genes selected based upon PC4. Gene expression/
promoter methylation of genes selected by PCA based unsupervised FE
employing PC4. Among 16 selected genes, 12 genes had a significant
(P < 0.05) negative correlation between gene expression and promoter
methylation. Because we did not restrict the selection of genes to those
with negative correlations, large numbers of genes with negative
correlations indicate the feasibility of our methodology. (PDF 36 kb)

Additional file 6: Disease associations of genes in Table 1. Disease
associations listed with Gendoo server and associated P-values. (PDF 99 kb)

Additional file 7: KEGG pathways associated with genes in Table 1.
Pathway image files downloaded from KEGG and the html file is linked
to these images. (ZIP 963 kb)
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