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Abstract

Background: Measurement of various markers of single cells using flow cytometry has several biological
applications. These applications include improving our understanding of behavior of cellular systems, identifying rare
cell populations and personalized medication. A common critical issue in the existing methods is identification of the
number of cellular populations which heavily affects the accuracy of results. Furthermore, anomaly detection is crucial
in flow cytometry experiments. In this work, we propose a two-stage clustering technique for cell type identification in
single subject flow cytometry data and extend it for anomaly detection among multiple subjects.

Results: Our experimentation on 42 flow cytometry datasets indicates high performance and accurate clustering
(F-measure > 91%) in identifying main cellular populations. Furthermore, our anomaly detection technique evaluated
on Acute Myeloid Leukemia dataset results in only <2% false positives.

Keywords: Anomaly detection, Biaxial gating, Cell-type population, Flow cytometry, Single-cell technology,
Two-stage clustering

Background
Motivation
Flow cytometry is a high-throughput, laser-based tech-
nology to study cellular heterogeneous populations [1].
It has revolutionized clinical immunology and health-
care research by providing single-cell level quantifications
of various heterogeneous cellular markers (e.g. proteins).
These single-cell measurements provide vital insights
in correlating phenotypic properties with heterogeneity.
Additionally, single cell analysis helps in identification
of biomarkers for functional classification and is vital in
providing information about the core behavior of com-
plex cellular systems like cancerous tissues. In recent
years, there has been a widespread interest in develop-
ment of flow cytometry tools. The original flow cytometry
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tools were only able to capture measurements of a single
fluorophore. However, current fluorescence based flow
cytometers can simultaneously extract measurements of
up to 20 cellular markers [2].
Analysis of the flow cytometry data is considered to be

one of the most challenging and time-consuming steps
in flow cytometry experiments. This is primarily due to
the absence of an efficient automatic analysis approach to
analyze the high dimensional data generated by advanced
flow cytometers. Thus, there is high demand for bioin-
formatics tools for automatic analysis of flow cytometry
data.
Flow cytometry data analysis includes a crucial step

called gating which refers to the identification of homoge-
neous populations of cells with a common specific func-
tion. This identification of cell subtypes can be viewed
as an unsupervised clustering problem. Gating has tradi-
tionally been performed as a manual process. A gate is
a defined region of measurement of two cell markers. In
manual gating, cells assigned to one gate are visualized

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0201-x-x&domain=pdf
mailto: nourani@utdallas.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Pouyan et al. BMCMedical Genomics 2016, 9(Suppl 2):41 Page 100 of 110

in a biaxial plot. In recent years, tools such as FlowJo
[3] and FlowCore [4] have enabled researchers to view
flow cytometry data as biaxial plots of two parameters.
A major drawback in manual gating is the requirement
of the user to manually draw gates. The user selects the
particular phenotypes on the biaxial plots based on prior
experience and intuitive interpretation of density contour
lines. Thus, manual gating has been largely criticized for
being error-prone due to inter-operator variability, highly
subjective and labor intensive. Manual gating, in gen-
eral, is not a very reliable and efficient to analyze flow
cytometry data.
Detection of outliers and anomalous behavior is a well-

known problem in the field of data mining. Although
the problem of identifying outlier instances (e.g. anoma-
lous cells) within one single subject dataset has been
studied in the literature, little effort has been made on
detection of anomalous datasets among multiple subject’s
datasets. These rare datasets can be similar or dissimilar
to each other but can be significantly different from other
datasets. For example, in flow cytometry data analysis we
obtain multiple datasets and aim to identify datasets with
significant differences from others. This identification is
very valuable in unsupervised analysis of measured flow
cytometry data from different subjects who are treated
with one commonmedicine. During treatment, there may
be some subjects with very abnormal response (either
positive or negative) to a particular medicine compared
to other subjects. This anomalous behavior can occur
due to various biological factors. Therefore, identifica-
tion of abnormal datasets can provide insights to investi-
gate the biological factors responsible for such anomalous
behavior.

Prior works
Numerous comprehensive techniques have been pro-
posed to automate gating in flow cytometry. Primary
works in this field automatically extracted cellular pop-
ulations using regression and classification approaches
[5]. However, many of these techniques were inefficient,
mainly due to the unavailability of large training datasets.
Unsupervised machine learning methods, such as K-
means clustering and Gaussian mixture modeling were
also utilized to identify clusters from flow cytometry data
[6]. Nevertheless, these approaches lack robustness as
they are highly sensitive to cluster centers and shapes.
Furthermore, these clustering techniques require advance
knowledge of number of clusters which is unknown due
to heterogeneous cell populations. Methods like Gaussian
Mixture Model also assume that each component follows
Gaussian distribution which may not always be true in
single-cell cytometry data.
A method based on pairwise comparisons and Pearson

coefficients is presented in [7]. However, this approach

requires a huge computation time as it requires a pair-
wise distance matrix of order n2, where n is the number of
cells. flowPeaks, an approach based on spatial exploration
of histograms and finite mixture model is presented in
[8]. Despite its computational time efficiency, flowPeaks
suffers from a drop in accuracy with an increase in the
number of markers. Authors in [9] apply a cluster-merging
algorithm on a mixture of t-distributions to enable the
model to fit concave cell populations. This method uses
Bayesian Information Criterion (BIC) to estimate the
number of populations. Nevertheless, BIC may cause
extraction of numerous redundant populations. Another
method called FlowMeans is presented in [10]. FlowMeans
estimates the maximum number of initial clusters and
subsequently merges them together on the basis of their
corresponding Mahalanobis distance [11]. The method
employs a change point detection algorithm to deter-
mine the number of subtypes. However, FlowMeans has
a severe limitation in cases with non-existence of the
covariance matrix resulting in an undefined Mahalanobis
distance. Mathematically, the covariance matrix does not
exist when the data has higher dimensions than the num-
ber of data points in the cluster. This situation may arise
in flow cytometry data set when there are some small
populations primarily, due to noise and/or rare subtypes.
Another technique using spectral clustering is employed
in [12] to extract cellular clusters. Spectral clustering uses
an applied sampling procedure which reduce the quality
of the results due to loss of critical biological information.
Authors in [13], propose a finite mixture modeling

approach called FLAME to automate multivariate estima-
tion. FLAME uses a skew t-distribution mixture model
to cluster fluorescence intensity matrices where rows are
cells and columns are antibodies. Spanning-Tree Progres-
sion Analysis of Density Events (SPADE) method is pro-
posed in [14] to define cellular populations and extract an
underlying phenotypic hierarchy tree structure. Although
SPADE is an effective technique to visualize high dimen-
sional flow cytometry data, it requires the user to pre-
specify the number of initial clusters to extract Minimum
Spanning Tree (MST). For example, user can set 100
clusters for a dataset with 8 cellular markers [14]. Further-
more, an increase in number of cellular markers results in
an increase in the number of required clusters to extract
using SPADE. This creates a bias problem regarding a
quantity that is rarely known (number of populations).
The user is also required to manually select cellular popu-
lations from the produced tree-like structure.
Regarding anomaly detection in flow cytometry, authors

in [15] propose an automatic technique to identify rare
cell populations in dataset from mice with Acute Myeloid
Leukemia (AML). A robust technique based on modi-
fied Support Vector Machine (SVM) is presented in [16]
to identifying rare cells within a single flow cytometry
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dataset. Furthermore, when analyzing multiple datasets,
Bayesian approach has been proposed to identify rare cell
types that are common among all datasets [17]. Authors in
[18], discuss several applications of detecting rare events
in flow cytometry analysis.

Main contribution
In this paper, a clustering technique is proposed as the
basis for: (i) cell-subtype identification for one subject
dataset, and (ii) anomaly detection within datasets of
multiple subjects. Our key contribution in this paper is
two-fold. First, we propose an approach to identify homo-
geneous cell subtypes from a single subject flow cytometry
dataset. We use a Fuzzy-C-Means and Markov cluster-
ing based technique and evaluate our method using three
public-domain flow cytometry benchmarks. Second, we
extend the approach for anomaly detection, in which
datasets from multiple subjects are simultaneously ana-
lyzed and anomalous datasets will be identified. To the
best of our knowledge, this is the first work proposed to
identify anomalous datasets within multiple flow cytome-
try datasets.
The rest of the paper is organized as follows. We

first present our initial work [19] to identify cell types
within single subject dataset. Then, in the next section
we focus on anomaly detection approach among multiple
subject datasets. Subsequently, we discuss our experimen-
tal results in the experimental section. Finally, the last
section summarizes the paper and presents conclusions
and future work.

Method
Cell-type identification methodology
Assume that we have a high-dimensional flow
cytometry dataset. This dataset includes N cells,
X =[ x1, x2, . . . , xN ]�, such that each cell x has M cel-
lular markers xi = (xi1, xi2, . . . , xiM). The goal is to
identify homogeneous populations from the data. At

first, a reasonable maximum number of populations is
estimated. Afterward, a revised version of Fuzzy-C-Mean
clustering [20] is applied to identify initial clusters from
the data. Markov clustering (MCL) [21] is applied on the
cluster centers to automatically capture distinct number
of populations. Next, the most correlated initial clusters
are merged together to find the final cellular populations.
Finally, the computed labels are assigned to the cells
in each biaxial plot to visualize the extracted subtypes.
Figure 1 shows an overall view of our work. Each step of
the proposed method will be discussed in detail in next
subsections.

Estimation of initial number of clusters
We estimate the initial number of clusters based on an
appropriate maximum number of populations. Maximum
number of populations can be estimated by computing
the total number of modes found in all eigenvectors of
the data [10, 22]. Modes in each eigenvector of the data
are detected using kernel density estimation. Then, signif-
icance test of the gradient and second derivative of a ker-
nel density estimation is computed according to method
described in [23]. Briefly, if E = {e1, e2, . . . , eM} denotes
eigenvectors of dataset X, a kernel Gaussian is considered
as follows:

κ(l) = 1√
2π

exp
(−l2

2

)
(1)

The kernel density estimator f̂ is considered as a mean
of N Gaussian kernel estimation:

f̂ (l) =
∑N

i=1 κ
(
l−ei
h

)
N · h (2)

where κ(.) is the Gaussian kernel and h is the bandwidth
defined based on Scott’s rule [24] as follows:

h = 7
2

· σ ∗ · N −1
3 (3)

where σ ∗ is the standard deviation of ei [13].

Fig. 1 Cell-type identification
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The estimator gradient is written as follows:

�f̂ (l) = 2
N · h2 ·

N∑
i=1

κ

(
l − ei
h

)
· (l − ei) (4)

Afterward, a simultaneous significance test, using
Bonferroni’s correction [25], is applied to find where the
gradient is notably different from zero [23]. The number
of modes is approximated using the number of times, the
gradient changes from positive to negative for each pro-
jection of data on the eigenvectors. K represents initial
number of clusters approximated by summation of all the
modes in eigenvectors.

Initial clustering using Fuzzy-C-Mean
Clustering is an unsupervised learning technique since it
categorizes unlabeled instances into meaningful groups
using their similar properties. The slight variation of cellu-
lar phenotypes are used to probabilistically find different
types of cells among flow cytometry dataset. Accord-
ingly, an improved version of Fuzzy-C-Means clustering
is developed to calculate the membership probability of
each cell when it presumably belongs to a cell population.
Fuzzy-C-Means is a soft clustering method which is faster
than GMM. Concisely, χ = {μ1, . . . ,μj, . . . ,μK } will be
centers of K cellular population C = {c1, . . . , cj, . . . , cK }
which represents potential similarities of M-dimensional
cells X =[ x1, x2, . . . , xn]�. Cells are assigned to differ-
ent cell populations (clusters) by minimizing the following
optimization model:

{
Minimize

{
Jm = ∑N

i=1
∑K

j=1 umij Dm(xi,μj)
}

subject to :
∑K

j=1 uij = 1 ∀i = 1, 2, . . . ,N
(5)

where cell xi belongs to population cj with the member-
ship probability of uij. Fuzzification coefficient is selected
as m = 2 in this work which is empirically reported as
m ≥ 1 in literature. Dm(xi,μj) implies the Mahalanobis
Distance between cell xi and population cj. Note that the
shorter distance between cell xi and the center of popula-
tion cj, the higher is the probability of xi belonging to the
population cj. Since membership probability depends on
the dispersion of population cj, we use Mahalanobis Dis-
tance instead of Euclidean Distance as a distance metric
between cell xi and population cj. Let sj denotes theM×M
covariance matrix of population cj indicating the direc-
tion in which population cj is spread. The Mahalanobis
Distance is represented by the following equation:

Dm
(
xi,μj

) =
√(

xi − μj
) · s−1

j · (
xi − μj

)T (6)

A Lagrangian multiplier defined in [20] is used to
minimize the optimization problem of Fuzzy-C-Means
given in Eq. 5. The result is a double-step itera-
tive solution computing centroid μj and probability
uij

(∀i, j : 1 ≤ i ≤ N , 1 ≤ j ≤ K
)
, such that:

⎧⎪⎪⎨
⎪⎪⎩

μ+
j =

∑N
i=1 umij .xi∑N
i=1 umij

∀j
u+
ij = 1[∑K

k=1

( ||xi−μj ||
||xi−μk ||

)]2 ∀i, j (7)

where μ+
j and u+

ij indicates the updated values in the next
iteration. The initial cluster set C will be available after
applying the revised Fuzzy-C-Means.

Merging clusters using Markov clustering
The number of initial populations may have been over-
estimated by kernel density estimation in the first stage.
This implies that there may be extra populations within
the obtained clusters due to projection of clusters on
more than one eigenvector. Hence, it is critical that after
clustering the cells into K initial groups, the redundant
clusters should be merged. We address this need using
Markov clustering, a fast, divisive and scalable clustering
algorithm based on stochastic modeling of flow of net-
works. To do that, we apply Markov clustering on the
initial cluster centersμ1, . . . ,μK to extract the main skele-
ton of the data cloud. Also sinceMarkov clustering groups
cis are based on their natural affinity, it locates the cis
from the same types in a single cluster. This implies that
similar initial populations have closer interaction with
each other.
Markov clustering (MCL) has recently emerged as a

popular clustering technique in bioinformatics domain for
determining cluster networks as well as protein-protein
interaction (PPI) networks [26, 27]. The algorithm com-
putes the probability of random walks through a graph
by applying two main methods: expansion and inflation.
Stochastic matrices, also known as Markov matrices are
used in this algorithm due to their capability to represent
transition probabilities between all pairs of nodes.
Applying MCL on the initial cluster centers μ1, . . . ,μK

results in a gradual determination of the underlying struc-
ture of the graph. MCL extracts cellular population by
identifying convergence regions with strong internal flow
separated by boundaries where flow is absent. The algo-
rithm behind MCL is simple yet efficient: subtypes from
the same cell contain links with higher weights than the
weights between the different subtypes. Consequently,
this implies that a random walk that visits a dense cluster
has a higher probability to stay in the same cluster until
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Fig. 2 An example of applying our method to a synthesis 2D data

all its edges have been visited rather than including edges
outside the cluster. Furthermore, there is a higher proba-
bility of random walks with beginning and ending in the
same dense cluster.
The new stochastic matrix denoted by S is obtained

after normalizing columns of adjacency matrix of cluster
centers denoted by A. As mentioned, the MCL algo-
rithm consists of two main steps: (i) Expansion: the power
of the matrix is calculated in this step, and (ii) Infla-
tion: the element-wise product of matrix S is calculated
and the matrix is rescaled to return it to a stochas-
tic state. Practically, expansion reduces the heterogeneity
of flows (random walks) by modeling the spreading out
of the flow (free flow). On the other hand, the infla-
tion step strengthens flow in the regions with strong
flow while reduces flow in the weak flow region. These
steps are repeated until the graph is partitioned into sub-
sets and a stable solution is achieved. This implies that
there are no longer any links between the isolated sub-
sets. Finally, the normalized adjacency matrix S includes
the final isolated segments. The final cellular populations
can be extracted from the collection of these isolated
segments.
When MCL is applied on centers of initial clusters,

the centers corresponding to initial populations will be
clustered in the same segments. We extract the final pop-
ulations by merging these clusters. Figure 2 illustrates an
example of applying the proposed combination of applied
method on a 2-D simulated data with seven original popu-
lations. The pseudo-code ofMCL is shown in Fig. 3.AD−1

denotes normalizing columns of the adjacency matrix A
so that they sum to one.

Flow cytometry anomaly detection
In this section, we extend our proposed clustering
approach to identify subjects with abnormal cellular
behavior using their flow cytometry data. Anomaly detec-
tion is different from cell-type identification in terms of
input dataset. In cell-type identification, we separately

analyze each single subject dataset while anomaly detec-
tion holistically investigates all flow cytometry datasets
obtained from multiple subjects.
A reliable model is necessary to overcome important

challenges in this approach including dependency on sub-
ject dataset size and cellular structure. Hence, we employ
the proposed cell identification approach (proposed in
Section Cell-Type Identification Methodology) with a
new density-based anomaly detection technique. Figure 4
illustrates an overview of our proposed method and will
be explained in the following subsections.

Feature extraction
All datasets corresponding to different subjects are com-
bined to obtain a single big dataset. The two steps (C1
and C2) of cell-type identification stage is applied on this
big dataset. Figure 5 symbolically illustrates the process
of feature extraction. The feature extraction process is
applied for each subject si in each cluster to produces a
new abstract dataset denoted byGDataset.We extract two
types of features from each subject in each cluster as fol-
lows: (i) the Median Fluorescent Intensity (MFI) [28] of
each subject’s protein marker in a particular cluster and
(ii) percentage of a subject’s cells accurately assigned to
that identified cluster.

Fig. 3MCL applied to the center of populations
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Fig. 4 Flow cytometry anomaly detection system

Density-based peak calculation
Let GDataset = {s1, s2, . . . , sP} denotes the new
abstract extracted dataset from P subjects. Each ele-
ment yi denotes one row of GDataset representing sub-
ject i with L related features yi = (

fi1, fi2, . . . , fiL
)
.

In this work, we define abnormal (outlier) instances
to those instances located in isolated areas and which
are far from the normal points in data space of
GDataset.
Note that anomalous datasets appear individually or as

rare subsets of P. In this work, we assume the number of
instances in rare subsets contain less than 1% of the total
number of instances in GDataset. We denote this rarity
threshold by γ = � P

100	.
In other words, abnormal instances have very low

neighborhood density compared to the other data

points. We apply an effective density-based peak finding
method to identify two critical parameters for each data
point.
The peak finding methodology presented in [29] is used

to determine all dominant peaks in data. Although this
method is designed to identify data clusters, we leverage
a new context of this technique to identify outlier data
points in GDataset. Briefly, the potential high dense data
points are assumed to be encircled by other data points
with lower local density. Let ρi denotes the local den-
sity of si where ρi is the number of si that are closer
than a predefined cut-off threshold [29]. However, this
approach requires to specify a predefined cut-off thresh-
old. As this cut-off threshold is constant for all si’s, it may
cause inaccuracy due to the density variation embedded
in each area. To overcome this drawback, we propose to

Fig. 5 Feature extraction
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define ρi as the mean distance between si and its ω nearest
neighbors:

ρi = ω∑ω
j=1 ||si − sj||2 1 ≤ i ≤ P (8)

where ω is computed as a percentage of the total number
of datasets and is defined by:

ω = r · P (9)

Parameter r is called density parameter and empiri-
cally considered to be r = 0.15. Our experiments have
shown the robustness of our method when r is chosen in
the range of [0.1, 0.2]. When ρ is computed for all the
datasets, we put the first γ nearest neighbor (based on
the ρ value) of dataset i in set denoted by ψi. Then, the
distance parameter δ is computed for each dataset i as
follows:

δi =
∑

j:j∈ψi{||si − sj||}
N(ψi)

1 ≤ i ≤ P (10)

where ||si − sj|| denotes the Euclidean distance between
dataset si and sj. Also, N(ψi) indicates the number of
elements in the set ψi. However, in the case si with the
highest density denoted ρmax, there will no dataset i with
density pi such that ρi > ρmax. We address this issue by
taking δi = max

1≤j≤P

{||si − sj||
}
for si with density ρmax.

Let L =
{

δ1
ρ1
, δ2

ρ2
, . . . , δK

ρK

}
and the the anomalous sub-

jects neds to be assigned as outliers (with extremely
high values) in this list L. These can be easily identified
by applying chi-square outlier detection technique [30].
Figure 6 depicts all the mentioned process using an exam-
ple. According to Fig. 6a, there are two potential clusters.
Furthermore, two required parameters δ and ρ are com-
puted for each data point and then plotted on a 2Dmap in
Fig. 6b. According to Fig. 6b, the dominant peaks (1 and 3)
and two anomalous points (2 and 14) have high values of δ.

Finally, Fig. 6c illustrates the sorted subjects based on the
calculated δ

ρ
factor. It is evident that the δ

ρ
value for two

anomalous datasets 2 and 14 are much higher compared
to the normal datasets.

Results and discussion
Cell-type identification
We performed a diverse set of experiments to evaluate the
performance of our automatic cell clustering technique:

Datasets andmethods
We have evaluated our proposed approach with three
different benchmarks that are available to download
for free through FlowRepository [31] with the follow-
ing experiment IDs: FR-FCM-ZZYY (DLBCL), FR-FCM-
ZZY2 (GvHD), and FR-FCM-ZZYZ (ND).

1. Diffuse Large B-Cell Lymphoma (DLBCL): A famous
lymphoma dataset that includes 30 subjects. DLBCL
is the most common lymphoma worldwide. It is an
aggressive (fast-growing) lymphoma arising in either
lymph nodes or outside of the lymphatic system.
DLBCL contains several subtypes that affect its
prognosis and it spreads in testes, thyroid, skin,
breast or brain. The dataset consists of 30 samples
with each sample containing 3 cellular features: CD3,
CD5, and CD19. The number of cells ranges from
1000 to 20,000 in each sample set. In addition to three
main cellular markers, CD3, CD5, and CD19, two
size cellular markers FS and SS are also measured
which are not mostly used in cellular analysis.

2. Graft versus Host Disease (GvHD): GvHD is a type of
complication arising after an allogeneic
hematopoietic stem cell transplant. In this
complication, the donated white blood cells (T cells)
in the graft initiate an attack on the skin, gut, liver,

Fig. 6 Example of determining data sub-clouds
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Fig. 7 Performance comparison

and other tissues of the recipient. Previously, gene
expression patterns have been extracted using
microarrays of peripheral blood leukocytes that are
responsible for GvHD diagnosis. However,
microarray data is inefficient in identifying gene
expressions of heterogeneous peripheral blood
leukocytes. This is primarily because microarray
analysis outputs similar gene expressions even for
heterogeneous populations [32]. This shortcoming
may lead to loss of critical variations in expressions of
individual genes within different cellular populations.
The data set includes 12 samples such that each
sample includes 12,000 to 30,000 instances. Each cell
has 4 main protein markers: CD3,CD4,CD8
and CD8.

3. Normal Donors (ND): The dataset includes 30
healthy subjects with 9 main cell markers. In this
dataset, investigators examined differences in the
responses of various cell types to different stimuli.
The time periods were relatively short in this data to
prevent change in surface markers. The staining
panel contains antibodies to surface markers and
intracellular proteins.

Additionally, we compared our method against four
well-known algorithms in the field: FLAME [13], Sam-
Spectral [12], flowMerge [9], and flowMeans [10].

Table 1 Number of extracted populations

Dataset Manual Flow Flow Sam FLAME Ours
Gating Merge Means SPECTRAL [13]
[33] [9] [10] [12]

DLBCL 2 (1–4) 5 (3–8) 3.5 (3–6) 4.5 (2–7) 9 (2–10) 2.5 (2–4)

GvHD 3 (1–5) 6 (3–9) 4 (2–5) 4 (3–7) 5 (1–10) 3.5 (2–4)

ND 6 (3–8) 9 (6–11) 7 (6–13) 10 (5–20) 9 (7–14) 8 (7–12)

Performance evaluation
A challenge in evaluation of the datasets is that all the
three datasets use distinct reference labels as the ground
truth assigned using manual gating and biological anal-
ysis in the laboratory [33]. We address this issue using
the harmonic mean of Precision and Recall or F-measure.
F-measure is defined as follows:

F(L, L′) = 1
N

∑
li∈L

|li| × max
l′j∈L′

{
F

(
li, l′j

)}
(11)

such that:⎧⎪⎪⎨
⎪⎪⎩
F(li, l′j) = 2·Recall(li,l′j)×Precision(li,l′j)

Recall(li,l′j)+Precision(li,l′j)
Precision(li, l′j) = nij

l′j
Recall(li, l′j) = nij

li

(12)

where |li| is the number of assigned labels by expert in
cluster ci, l′j is the number of cells clustered in population
cj found by automatic method. Factor nij is the number of
cells with label li assigned to cluster cj.
All experiments were performed using a desktop sys-

tem with 3 GHz CPU and 8 GB of RAM. Figure 7 shows
the calculated F-measure for algorithms applied on three
benchmarks. F-measure of each sample was calculated
and the average is reported as a single value representative
of the F-measure values. For example, the related entry to
our method forND represents that the average F-measure

Table 2 Performance comparison (running time in (MM:SS)

Dataset FlowMerge FlowMeans SamSPEC FLAME Ours
[9] [10] TRAL [12] [13]

DLBCL 11:48 00:26 00:48 00:43 00:29

GvHD 15:41 00:34 01:05 01:23 00:37

ND 23:05 00:46 01:42 01:57 00:58
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Fig. 8 An example of cell-type identification in automatic DLBCL biaxial gating

Fig. 9 An example of cell-type identification in automatic GvHD biaxial gating

Fig. 10 An example of running Auto-SPADE for DLBCL
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Fig. 11 An example of running Auto-SPADE for GvHD

for 30 samples is 0.90 in the range of [0.87, 0.92]. Accord-
ing to Fig. 7, in general, our method achieves the best or
very comparable results compared to other methods.
Table 1 illustrates the comparison of the computed

number of populations using manual analysis and
automatic methods. The results show that the number of
populations estimated by our method is close to manual
analysis results. In particular, for DLBCL, our proposed
method estimates an average of 2.5 clusters while other
methods estimation is in the range of [2, 5].
Table 2 shows the running time of each method and

dataset. Although our method is not as fast as FlowMeans
for datasets used in this experiment, FlowMeans is time-
consuming when applied on higher dimensional flow
cytometry data. This is due to the lengthy nature of the
merging step in FlowMeans making it slower than our
proposed method.
Finally, one sample from each data is selected to auto-

matically visualize the extracted populations on the biaxial
plots (Figs. 8 and 9). The comparison of the colorful pop-
ulations with isolated dense areas in biaxial plots can be
used for performance evaluation. In these figures, two
extracted populations for DLBCL and four populations
for GvHD are visualized in each biaxial gate of related
markers.

Integration within SPADE
Spanning-Tree Progression Analysis of Density Events
(SPADE) is a visualization tool for flow cytometry data. It
extracts a hierarchy tree structure from the datasets in an
unsupervised manner. Briefly, K-means clustering is used
to segment the data into a predefined number of clus-
ters. Then, a Minimum Spanning Tree (MST) is defined
on the centers of initial clusters. The tree-like structure is
extracted by unfolding the MST on the 2-D space. How-
ever, a major drawback of SPADE is that it requires user
input to extract cellular populations. Despite of its effi-
ciency in visualizing high dimensional data, SPADE is a
parametric technique due to the requirement of initial
number of clusters. Therefore, we integrate our approach
with SPADE (to be called AUTO-SPADE). This integra-
tion improves the performance of SPADE which can be

used for automated clustering tool without pre-defined
number of populations.
Figures 10 and 11 illustrate the expression value of each

protein marker on the tree-structure extracted by AUTO-
SPADE for DLBCL and GvHD, respectively. The initial
clusters are represented by circles and the red and blue
colors denote high and low expression of protein markers,
respectively. Figures 10d and 11e visualize the extracted
populations on the tree-like structures of SPADE. A large
number of clusters is estimated in the beginning by the
original SPADE tool. However, according to our method,
the initial number of clusters is proportional to the dimen-
sionality of the dataset. For example, the AUTO-SPADE
segments DLBCL and GvHD into 15 and 20 initial clus-
ters, respectively. According to Figs. 8 and 9, DLBCL and
GvHD datasets were clustered into 2 and 4 populations,
respectively.

Flow cytometry sample anomaly detection
In this section, we evaluate the proposed flow cytometry
anomaly detection technique using one publicly available
dataset which contains multiple flow cytometry datasets.
The raw datasets are freely available through FlowRepos-
itory [31] with experiment IDs: FR-FCM-ZZYY. Acute
Myeloid Leukemia (AML): The data is collected from
43 subjects with AML positive and 316 healthy donor
subjects [33, 34].
We applied our method on AML dataset to validate its

ability to distinguish rare flow cytometry datasets corre-
sponding to AML subjects from datasets corresponding
to healthy subjects. It is assumed that populations with
less than 1% of the total instances are considered as rare

Table 3 The performance of the proposed anomaly detection

Experiment Total number
of AML
subjects

Number of
identified
AML subjects

Number of
False
positives

Runtime
(In second)

1 48 47 1 2

2 203 200 3 5

3 902 897 5 12

4 1009 1000 9 19
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Fig. 12 An example of third experiment with three different AML subjects

instances. In order to show the effective of our anomaly
detection approach, we applied our method under four
different scenarios:

1. All healthy subjects in conjunction with one AML
patient (repeated 43 times for different AML
subjects).

2. All healthy subjects in conjunction with two AML
patients (repeated 100 times with each time
including a random selection of two AML patients
out of 43 total AML patients).

3. All healthy subjects in conjunction with three AML
patients (repeated 100 times with each time
including a a random selection of three AML
patients out of total 43).

4. All healthy subjects in conjunction with ten AML
subjects (repeated 100 times with each time including
random selection of ten AML patients out of total 43).

Table 3 reports the performance of our model in the
above four scenarios. For each scenario, the number of
false positives and total run time are reported. The total
number of false positives in each scenarios is negligible
compared to the size of the dataset. Table 3 illustrates that
our proposed technique is extremely fast and accurate.
Figure 12a and b display plot of δ versus ρ and plot of

list L respectively for an example case. The identified rare
subjects (red points) and dominant peaks (blue points) are
well separated and are easily distinguishable in Fig. 12a.
Once list L is created, the potential rare subjects with large
value of δ

ρ
emerged in Fig. 12b.

Conclusions
In this paper, a novel clustering based approach is pre-
sented to identify the main cellular subtypes of multi-
variable flow cytometry single subject datasets. We
integrated the proposed technique within SPADE analysis

tool to automate selection of the number of clusters
and extract main cellular populations. Furthermore, we
extended this approach to an automatic anomaly detec-
tion system to distinguish rare cases in a multi-subject
flow cytometry dataset. Our method is fast and can
be used to accurately analyze multiple flow cytometry
datasets. Our future work includes improving the accu-
racy of two approaches by applying new distance metric
learning. This is expected to improve the performance of
our methods to further analyze high-dimensional mass
cytometry (CyTOF) datasets.
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