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Abstract

Background: Inferring gene regulatory networks is one of the most interesting research areas in the systems
biology. Many inference methods have been developed by using a variety of computational models and approaches.
However, there are two issues to solve. First, depending on the structural or computational model of inference
method, the results tend to be inconsistent due to innately different advantages and limitations of the methods.
Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the
limitations of standalone methods through complementary integration. Second, sparse linear regression that is
penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were
suggested in state of the art methods for network inference but they are not effective for a small sample size data and
also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high
correlation or another true regulator.

Results: We present two novel network inference methods based on the integration of three different criteria, (i)
z-score to measure the variation of gene expression from knockout data, (i) mutual information for the dependency
between two genes, and (jii) linear regression-based feature selection.

Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better
performance overcoming the limitations of bootstrapping as mentioned above.

Conclusions: In this work, there are three main contributions. First, our z score-based method to measure gene
expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed
that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach
can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our
methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was
applied to inferences of gene regulatory network associated with psychiatric disorders.

Keywords: Gene regulatory network, Psychiatric disorder

*Correspondence: gao@uta.edu

3Depar‘[memt of Computer Science and Engineering, University of Texas at
Arlington, Arlington, TX 76019, US

Full list of author information is available at the end of the article

- © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B.oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0202-9-x&domain=pdf
mailto: gao@uta.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kim et al. BMC Medical Genomics 2016, 9(Suppl 2):50

Background
Inferring gene regulatory networks (GRN) from biolog-
ical data is currently the most interesting area of the
systems biology research aiming to elucidate cellular and
physiological mechanisms. GRN inference, which is often
referred to as reverse engineering, is a process in which
the network structure that best represents the regulation
relationship over gene expression data is estimated. An
inferred GRN consists of nodes and edges representing
genes and gene-gene regulatory interactions (activation or
suppression) respectively. Once the regulation maps are
constructed by identifying the interactions of genes from
high-throughput data such as gene microarray [1], we can
gain insight into complex biological process from the reg-
ulatory networks in order to discover biomarkers for a
target disease and apply further it to drug design [2, 3].

Basically the inference method should be determined
depending on both what kind of data such as gene expres-
sion, gene-Transcription Factor (TF) [4], or protein-
protein interaction (PPI) [5] are used to infer and which
type of network model, such as directed or indirected
graph [6], we assume. In addition, we have to consider
the case of data integration. Namely, not only individual
data but also multiple data types together (i.e. integra-
tion of gene expression and gene-TF data [7]) can be
used for more reliable inference [8, 9]. As an assump-
tion in this work, we limit our inference methods for
directed network with a single data type: gene expression
data. In order to decipher regulatory interactions with
gene microarray data, which provides the gene expression
level regulated by the other genes directly or indirectly,
the number of effective network inference methods have
been proposed by employing a variety of computational
and structural models based on boolean networks [10],
Bayesian networks [11], information theory [12], regres-
sion model [13], and so on. Depending on the different
approaches, however, the results tend to be irregular due
to inherently different advantages and limitations of each
of the inference solutions [14]. The results of the Dia-
logue on Reverse Engineering Assessment and Methods
(DREAM) project [15] describe well the pros and cons
of the different methods as well as how effectively they
can work together when the advantages of all meth-
ods are integrated (but it does not mean any combina-
tion always outperforms any other standalone method).
More specifically, we note that they conclude two points
through the experiments that (i) there is a limit to a single
criterion for continuous improvement of network infer-
ence research without the integration and (ii) specifically
the bootstrapping (re-sampling) based regression method
[16] is required to avoid overfitting in regression-based
methods [15].

As the motivation of our first strategy to this end,
we focus on an integration of Mutual Information (MI)
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and L; regularized linear regression referred to as lasso
[17] but we exclude the learning Bayesian network in
the integration. The learning structure of Bayesian net-
works is somewhat infeasible due to both the discretiza-
tion problem of a small sample size data and the high
cost of computational learning in large scale data. MI is
an information theoretic criteria that has been conven-
tionally used for learning large scale network structure
[18]. Although MI based approaches such as CLR [19]
and ARACNE [20] are limited to reconstructing only an
indirected graph unlike linear regression and Bayesian
networks, these methods have the popular advantages
of computational simplicity and non-linear dependency
enabler. In practice, the shortcoming of MI is that it is
prone to fail in differentiation between indirect regulation
and direct ones. For example, when there is a highly cor-
related indirect regulation from G1 to G3 like Fig. 1b, MI
tends to incorrectly predict feed-forward loops (Fig. 1a)
but not cascades (Fig. 1b). Lasso is also frequently used
to select the regulators of a given target gene assum-
ing sparseness of GRN in order to avoid the overfitting
of the least-squares problem. In contrast to MI, indi-
rect regulation edge in cascades could be pruned away
by lasso in which the objective function is penalized for
sparsity by a regularization parameter, called the tuning
parameter A. However, a weakness of regression-based
method is that only a strong direct regulator is more
likely to be selected than another direct regulator in Feed-
forward loops. Therefore, the integration of two methods
is considered to deal with the trade-off. The motivation
of our second strategy is that the property of knockout
data allows us to measure statistical variations between
wild-type gene expression and perturbed gene expres-
sion after knocking them out to provide the cause-effect
information between those two genes. However, there is
the limitation that the method is only applicable to gene
knockout data.

a b
Fig. 1 Example of network structures. a Feed-forward loops and b
Cascades. When G3 is a target gene, G1—G3 and G2— G3 of Cascades
are indirect and direct regulations respectively. In MI-based methods,
indirect regulations are likely to be selected incorrectly in Cascades. In

regression based method, strong direct regulators are more likely to
be selected than another direct regulator in Feed-forward loops
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In this paper, we propose two methods, IMLARF (inte-
gration of MI and LARF) and ISLARF (integration of
z-score and LARF). First, IMLARF indicates the integra-
tion of MI and LARF and consists of three steps. The first
step of IMLAREF is to build a matrix where each element is
an edge score calculated by MI. In order to overcome the
limitation of MI as mentioned above, the second step is
to construct another edge score matrix using LARF, then
the two edge score matrices are combined as the last step.
In LARE, we regard a sparse linear regression as a feature
selection since our goal is to identify the regulators that
best predict the expression level of target genes. The prob-
lem is that features selected by lasso tend to be overfitted
to a given tuning parameter A, and thus the unstabil-
ity problem caused by this overfitting can be solved by
using bootstrapping [12, 21] in which data is randomly re-
sampled so that a more stable selection can be achieved.
However, the limitation of re-sampling is that it could not
be effective in the case of a small sample size. Another
limitation of bootstrapping is that the true variable (reg-
ulator gene) is likely to be missed (false negative) when
strong indirect or direct regulators exist. LARF is sim-
ilar to bootstrapping but LARF selects variables among
randomly pre-selected candidate features in each iteration
over different tuning parameters of lasso optimization so
that true features weakly correlated to the target gene
could not be missed, excluding indirect or direct regula-
tors from the feature set. The second method we propose
is ISLARF, which integrates two criteria, ZS and LARFE.
ZS is the name of the criteria that uses the z-score of
variation of the knocked out gene expression. Although
ISLARF is available only to knockout data, the perfor-
mance is highly superior to other z-score based similar
methods with knockout data in related works.

In the experimental evaluation, we validate the pro-
posed method on a dataset from the DREAM3 challenge
[22]. In addition, we explore the gene networks of Psychi-
atric disease with the related genes. The results shows that
the proposed method significantly outperforms the state-
of-the art [23, 24] and re-builds the known regulations of
genes possibly associated with Psychiatric Disorders.

Methods

Problem definition

We begin with a brief definition of problems and nota-
tions. The network we target is a directed graph that con-
sists of n nodes and n(n — 1) edges representing genes and
regulations respectively. Given a matrix XeRN>*" where
N is number of samples, we denote the i-th column by
a vector X; indicating expression levels of i-th gene over
N samples, and we also let X = {Xj,...,X,} be a set
of variables (genes, features, node, and variable are inter-
changeably used in this paper). The goal of our work is
to not only identify the regulators given a target gene but
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also to define the confidence level of regulation as a weight
of the edge. In other words, we estimate the weight of all
possible regulations, which are directed edges between all
pairs of nodes {X;<X; : i, jeX} in the network, then select
only edges that have a higher weight than pre-defined
threshold 6. As a final result, therefore, a weight matrix
WeR™" is returned by the inference method, and Wji
represents a confidence level of the regulation when tar-
get gene i is connected to activator or suppressor gene j.
In the following sections, we present how the edge weight
is estimated by information theory, the LARF algorithm,
and the z-score from knockout data.

Overview

IMLARF and ISLARF

The first method we propose, IMLAREF, consists of three
steps. Figure 2a describes the overview of the pro-
posed method. First, a symmetric edge weight matrix
M is calculated by mutual information assuming that, if
two genes have a higher mutual dependency, they are
more likely to be in the regulation relationship. Second,
another edge weight matrix F is produced by the LARF
algorithm that consistently gives higher weight to the
true edge from regulator to target gene. Lastly, the two
weight matrices are combined by their entry-wise product
MoF = {M]’f . Ff|i,j = 1,...,n}. The second method,
ISLARE, is similar to IMLARF but using z-score matrix, S,
is used instead of MI matrix. If S¢ has higher value, gene i
is more likely to be regulated by gene j. So in the last step
S is combined with F by their entry-wise product SoF

Information theoretic approach

Mutual information matrix

The dependency of two genes, X; and Xj, can be measured
by MI defined as

p(Xh)(])

1(X;, X)) = X, X;) log 2207
(X)) = ) PO X)log oo 05

Xi,X;

1)

The strength of MI is the ability to measure non-linear
dependencies of genes, but the limitation in practice is
that the discretization of gene expression is required to
calculate the probability of X; and X;. Instead, if we assume
the Gaussian distribution of gene expression, MI can be
computed with its original continuous values by using
Gaussian mutual information [25] defined as

1 cov(X;, X;
1 xy = L1 lcov(X;, X;)|

og ) 2)
2 7 |eov(Xi, Xi)|cov(X), X))

where cov(X)) is the covariance matrix of variable Xj;, and
|cov| is the determinant of covariance matrix. The reader
is referred to [26] for more details. We build MI matrix in
which each element M indicates the dependency between
X; and X; which means that X; and X; are independent
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Expression data

STEP1: MI

Gene, - Gene; - Gene,
Gene,

STEP3: IMLARF
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Fig. 2 Overview of IMLARF and an example of LARF. a Overview of IMLARF. The algorithm consists of three steps, the construction of matrix (i) M
and (i) F and (jii) pairwise product of M and F. In ISLARF, the matrix M in step 1 is simply replaced with the matrix S (Section “Statistical approach”).
b An example of procedures of LARF. It shows how the row vector F! of frequency matrix F given target gene G1 and 8 other candidate requlators
(G2~G9). By a predefined a, four random features are selected among eight genes in each iteration. In the beginning, F' is not increased and four
random features are selected without sparsity since A is not increased enough yet. The more A is increased, the more the number of selected
features (blue-colored cells) is decreased. If no feature is selected due to a highly increased 2, the iteration and frequency measure is finished

Itera 5 1 1 p1 g1 g1
oo 2 s 15 55
1 G4 G7 G8 G9 o001 G4 G7 G8 G9 0 O O O O O O O

2 G2 G3 G5 G6
3 G2 G4 G5 G9

0002 G2 G3 G5 G6 0 0 0O O O O O O
003 G2 G4 G5 G9 0 0 0 O O O O O

128 G2 G5 G7 G8 0128 G2 G5 GZ7 G8 0 0O O O O O O O
129 G3 G6 G8 G9 0129 G3 G6 G8 0 1 0 O 1 O 1 O
130 G5 G6 G7 G9 0130 G5 G6 GZ 0 1 0 1 2 1 1 0
561 G4 G6 G7 G9 os61 G6 G9 82 54 12 233 274 112 104 77
562 G3 G5 G7 G8 o562 G5 G7 82 54 12 234 274113 104 77
563 G1 G2 G5 G6 0563 G6 82 54 12 234275 113 104 77
564 G2 G5 G8 G9 0564 G5 82 54 12 235275113 104 77
601 G2 G4 G8 G9 oso1 G8 85 55 12 254299 122 112 79
602 G2 G3 G4 G9 o602 85 55 12 254 299 122 112 79

if M;
Networks with the edges whose M}’ are higher than the
heuristic threshold are referred to as relevance networks.
Two critical limitations of relevance networks, however,
are that firstly, MI does not provide the direction of edges
due to M; = Mé, and secondly, the high co-expression and
indirect regulation may cause false positives.

0 or M]’ is relatively lower than other edges.

Statistical approach

Z-score and gene knockout data

We note that knockout data implies cause-effect informa-
tion. The gene expression level after the perturbation of
another certain gene provides the chance to observe if the
gene is downstream of the perturbed gene. For example, if
the variation between wild type of gene j (X}"t) and gene
j expression measured after gene i is knocked out is high,
gene j is likely to be regulated by gene i. The variation
matrix D is defined as

D;i = Xj—i - X" (3)

. Dl — UD;
S=|21—= )
op;

where Xj_’ is the expression level of gene j after knocking
gene i out, and D; and op; is mean and standard deviation

of j-th column vector D; of variation matrix D respectively.
As the z-score of DI’. over Dj is the weight of regulation

edge Gi — Gj, the z-score of D! is equivalent to S]L: of
edge weight matrix S. The limitation of this criterion is the
availability only in knockout data.

Algorithm 1 LARF algorithm

1: procedure LARF(X, a, r, stepsize, t)

2 fori < 1,ndo

3 for i < 1,tdo

4 A < stepsize

5 repeat

6: Xegndom <  RandomFeatures(X\,
(n—1) x o)

7: X' < RandomSamples(X,N x r)

Xselected < LﬂSSO(X,{r X}/"cmdom’ A)

9: if 0 < | Xgpiecteqd| < m X a then

10: F)l(selected < F)L(selected + 1

11: end if

12: A < X + stepsize

13: until Xepecteq = 0

14: end for

15: F! < Normalization(F)

16: end for

17: return F

18: end procedure
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LARF algorithm

The third approach for complementary integration of
inference methods is based on Lj-regularized linear
regression (lasso) defined as

argming||X; — X\ - Bil13 + MIBilly ()

where coefficient column vector §; represents regulation
relationships between the target gene i and others. More
precisely, after §; is optimized to minimize the objective
function (5), then if the j-th element of §; is zero, gene
j does not regulate gene i, otherwise it does. The opti-
mization is performed for each target gene i, i € X.
Coefficient matrix B = {1, ..., B4} is equivalent to adja-
cency matrix where non-zero Bj; is the regulation edge
from regulator gene j to target gene i. The tuning param-
eter A in lasso is used to enforce network sparsity, so the
number of selected (non-zero coefficient) variables varies
with different A. In our works, we regard variable selec-
tion of lasso as a feature selection to predict a target gene’s
expression level.

To overcome the overfitting problem and the strong
indirect regulation problem, lasso is iteratively performed
over different A with randomly pre-defined candidate fea-
tures rather than random samples like bootstrapping.
More precisely, the basic idea of LARF is that lasso is iter-
atively performed with only randomly selected candidate
features while increasing the tuning parameter, then giv-
ing weight to each feature by counting how many times
each feature is selected in the iterations. We predefine the
fraction of the number of all possible features as a param-
etera (0 < o < 1) for the candidate features. For example,
when the number of all possible regulators is #=100, ®=0.2
means that only 20 random candidate genes are used in a
single iteration of lasso. After random featuring, random
sampling is performed with parameter » which decides
how many samples are used from the original data. For
instance, when the original sample size is N=200 and
r=0.7, only 140 random samples are used in each iteration
of lasso. With randomly (uniform distribution) selected
features and samples by parameter «, we iteratively run
lasso over increasing tuning parameter A until lasso does
not select any features due to a certain high A. In each
iteration, random candidate features and samples are re-
defined again. Tuning parameter starts from zero and
increases by the parameter stepsize that should be small
enough, (e.g 0.001). Otherwise, both re-featuring and re-
sampling will be biased. For each iteration, the frequency
matrix F is updated. The i-th row of F is the frequency
of feature selection for target gene i (F! is supposed to be
zero). For example, Fig. 1b describes how the F' is mea-
sured. After finishing the iterations (repeat in line 5), we
iteratively perform ¢ times (¢=10 in our experiments) of
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the process from line 5 to 13 again, and then i-th row
vector of the frequency matrix is normalized by

i I
(G ©
7 max(F') — min(F")
where
FLi={F,j=1i-1i+1,...n}, (7)

and max(F?) and min(F-. ;) is maximum value of i-th row
vector of F and minimum of Fil-.

Results

We first evaluated the performance of IMLARF and
ISLARF on synthetic simulation data as compared to
the state of the art, and then explored the inferred net-
works with real gene microarray data for psychiatric dis-
orders. The synthetic, non-linear expression data is from
DREAMS3 In Silico Network challenge in which the data
is created with the subnetworks of well-known reference
networks for Yeast. To assess the edge weight matrix W
elicited by proposed methods, first the matrix is con-
verted to an edge list sorted by the confidence levels
(weight), then the top k confidence level edges are selected
to measure the accuracy criteria, such as true positive
(TP), false positive (FP), true negative (TN), and false neg-
ative (FN). The receiver operating characteristic (ROC)
curves as a parametric curve were traced over different
k = 1,.,n(n — 1) to examine the trade-off between
the true positive rate (TPR) and false positive rate (FPR).
The criteria to represent the performance are defined as
following:

e TPR=TP/(TP+FN)
e FPR=FP/(FP+TN)
o AUROC: the area under ROC curve.

We compared our method to each standalone method
without integrations and also other well known the state
of the art methods. The abbreviations of algorithms are
listed below:

e MI: edge is scored by mutual information

ZS: relative variation from wild type is measured by
z-score.

LAREF: lasso based random featuring and sampling.
IMLARE: integration of MI and LARF

ISLARE: integration of ZS and LARF

ZDR: top rank in DREAM 3 [23]

GENIE3: top rank in DREAM 4 [24]

TIGRESS: top rank in DREAM 5 [21]
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Evaluation on the DREAM3 benchmarks

Materials

The data for DREAMS3 In Silico Network challenge con-
sists of three differently sized networks, (10, 50, and 100
genes), and there are five gold-standard networks for each
size (total of 15 networks). The five networks are named
Ecolil, Ecoli2, Yeast1, Yeast2, and Yeast3. From each true
network, three different data types (knockdown, knock-
out perturbations, and time series data) are provided, and
the knockdown and knockout data includes a single wild
type sample. In our experiments, only knockout data is
used and 10-gene, 50-gene, 100-gene of Yeastl networks
are mainly tested.

Random sampling vs Random featuring

To evaluate how much more effectively LARF selects true
edges than random sampling, we compared them with 10-
gene Yeastl network in Fig. 3. Figure 3a is the result of
LARF with only random sampling («=1, r=0.5) and 3b is
with only random featuring («=0.5, r=1). The normalized
edge score is the average of 10 experiments and yellow
colored cells indicate true edges. In Fig. 3a, though G2’s
true regulator is G1, G2<«G3 is relatively higher than
G2 <Gl probably because of indirect regulation from G3
to G2 through G1. In Fig. 3b, G2<-G1 is correctly esti-
mated as true edge by random featuring. Similarly two
true edges (G4<—@G1 and G5<@Gl1) are inferred with the
highest weight in random featuring but random sam-
pling gives only 0.79 and 0.91 to two true edges (G4<G1
and G5<«-G1) due to another true edges (G4<«G6
and G5<«G3) have strong direct regulation (1 and
0.99).
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Setting parameters

Before we compare our methods to other methods, we
explored the optimal parameters that give the best results.
As described in Fig. 4, the mean and standard deviation
of AUROC are measured after LARF are 10 times per-
formed over different parameters, o and r, for 50-gene
Yeastl network. The range of parameter is 0.2~1 due to
too small number of feature and sample in 10-gene net-
work data. The best result (0.85014+0.0049) is recorded
with @=0.4 and r=1 for 50-gene Yeastl data. This indi-
cates that the random sampling rate does not necessarily
need to be applied to avoid overfitting once random fea-
turing is applied. In addition, the figure also shows that the
AUROC can be decreased with high standard deviation
if both parameters are too small. According to the result
of 10-gene and 100-gene Yeastl data, if the sample size is
small (N=10), the deviation is quite high in low « and r
though AUROC is high. As the best result for 10-gene and
100-gene Yeastl data, 0.92540.0125 and 0.8611+0.0046
were achieved with #=0.5, =1 and «=0.4, r=1 respectively.
It also shows the random sampling could not make an
improvement in both small and large sample sizes. There-
fore we applied fixed parameters «=0.5, r=1 to all data sets
in our experiments.

Effect of integration and performance comparisons

Table 1 presents the performance of integrative
approaches compared to a single method. In the case of
LARF-based methods, mean and deviation are measured
after each method is performed 10 times for Yeastl
network of DREAM3. The integration of more than two
methods is simply done by entry-wise product of edge

a
G1
G2
G3
G4
G5
G6
G7
G8
G9
G10

G1
G2
G3
G4
G5
G6
G7
G8
G9

Gl G2 G3 G4 G5 G6 G7 G8 G9 G10
0 052 1 035094 0 0.570.53 0.850.15
0.20 0 0.66 0.58 0 0.22 0.090.73 1 0.25
095092 0 0 0.910.600.73 0.64 0.30 1
079076 0 O0 061 1 0.48 0.750.67 0.24
0.91 0.140.77 021 0 065 1 0.10 0 0.39
0.03 0.35 0.27 092080 0 O0 0.04 1 047
0.08 0.04 0.00 0.29 065008 0 1 0 0.85
0.07 0.66 0.47 0.58 0.10 0 1.00 0 0.33 0.17
036 1 0.150.63 0 0.96 0.04 040 0 0.35
0 0.38 0.950.17 040 1 0.840.27030 O

Gl G2 G3 G4 G5 G6 G7 G8 G9 G10
0 0.64 092 1 0.67 0.12 0.20 0.04 0.02 0
1 0 0.79 0.60 0.32 0.01 0.16 0.08 0.84 0
083079 0 011 1 055026 0 0.58 0.13
0.96 048 0.25 0 033 1 0.08 0 0.20 0.21
1 020089020 0 O 0.870.10 0.15 0.33
0.76 0.21 080 1 0.17 0 049 0 0.450.52
041 0 0.050.01093056 0 0.920.03 1
0.70 0.23 051 0.09036 0 1 0 0.210.72
024 1 0910.980.54011053 0 0 0.73

G10 0.16 0 0.350.87 0.650.85 1 0.36 0.62 0

G8

™~

G3 G7

G10
G1

G6

G2

G4 /Gg

Fig. 3 Comparison of random sampling and featuring in LARF. a The result of LARF with only random sampling. b The result of LARF with only
random featuring. ¢ True network of 10-gene Yeast1 in DREAM3
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0.4
0.6

o, 0.8

0.8

0.2

Fig. 4 Mean and standard deviation of AUROC with different
parameters and 10 iterations of experiments for 50-gene Yeast1
network. (@) Mean and (b) standard deviation

score matrix. In TIGRESS-TE, the list of TF is provided
as TIGRESS is designed for DREAMS5 challenge data in
which TF is given. Asterisk(*)-marked methods require
knockout data. The integration of MI and LARF outper-
forms standalone MI and LARF except 50-gene. Similarly

Table 1 AUROC of standalone and integrative methods

Method 10-gene 50-gene 100-gene
GENIE3 09175 0.8427 0.8631

TIGRESS 0.7044 £ 0.0056 0.8179 £ 0.0025 0.7690 4 0.0023
TIGRESS-TF  0.8154 4 0.0037 0.9006 £ 0.0010 0.8777 4+ 0.0009
Ml 09312 0.8329 0.8586

LARF 0.9250 £ 0.0154 0.8489 + 0.0038 0.8610 £ 0.0039
IMLARF 0.9425 + 00047 0.8487+0.0032  0.8701 £ 0.0012
Z/DR* 0.8975 0.9223 0.8876

A 0.9725 0.9204 0.8870

ZS*+Ml 0.9775 0.8931 0.8925

ISLARF* 0.9892 £ 0.0021 0.9301 +0.0049  0.9065 + 0.0029
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the performance of ISLAREF is better than other integra-
tion such as ZS+MI and standalone ZS. If knockout data
is not available, IMLARF will be the best method as ZS is
not applicable. Since ZDR is based on knockout data, the
result shows that ZDR is quite better than other methods
such as IMLAREF except in a small size network. In Fig. 5,
the AUROC for proposed methods and the state of the art
methods with 10-gene Yeastl data are plotted after only
a single experiment. Overall results show that ISLARF is
the best method if knockout data is available, otherwise
IMLARE is superior to other methods.

Inference of GRN for psychiatric disorders

In this section, the proposed method is applied to real
gene expression data for psychiatric disorders. Through
the experiments, we evaluate how the method constructs
the network and explore what potential biomarkers of Psy-
chiatric disorders are in the inferred networks. Psychiatric
disorders data that are provided from the Stanley Medi-
cal Research Institute (SMRI) consist of gene expression
data of 25833 genes and 131 samples (43 controls and
88 cases) including bipolar disorder, schizophrenia, major
depression as three major psychiatric diseases.

To select genes possibly associated with psychiatric dis-
orders, two statistical tests, t-test and z-test [27], are
performed. In Fig. 6a, all genes are plotted by using
p-value of t-test for y-axis and z-test value for x-axis, and
the plot shows that two tests shows similar results in linear
patterns. From these two tests, we selected 1407 genes as
cut-off values are set to —log10(0.01) and £2.326 for ¢-test
(y-axis) and z-test (x-axis). To find a module of genes that
may interact to each other in Psychiatric disorders, we ini-
tially built a correlation matrix whose element of ith row
and jth column is absolute value of correlation between
expressions of ith and jth genes, and then clustering is per-
formed to the estimated correlation matrix as shown in
Fig. 6b. Based on the result of clustering, we manually set
8 groups of genes (yellow squares).

To analyze the relationship between clusters, first,
IMLARF was applied to all 1407 genes with setting 6 to
0.2. Figure 7 shows only the two largest components of
the inferred network where node color indicates a clus-
ter number after small components of the network are
removed from the figure. The result is consistent with the
correlation matrix in Fig. 6b showing the features as fol-
lows: (i) cluster 3, 6, and 8 in the network strongly and
exclusively interact to each other, (ii) cluster 2, 4, and
5 are complicatedly interacting together, (iii) cluster 7 is
widespread over the whole network.

To observe the strong regulation of the network, we
inferred network with all the genes again after setting 6
to 0.4. As a result, we displayed the second largest com-
ponent in the inferred network in Fig. 8a. Most nodes of
the network are genes of cluster 3 implying that cluster
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Fig. 5 ROC of the methods (@) without and (b) with gene deletion information in 10-gene network

3 is most exclusively and strongly interacting within the
cluster. It is noted that 7 genes, DAO [28], PRDX6 [29],
KCNNS3 [30], TCF7L2 [31], REX4 [32], FYN [33], and
B3GAT?2 [34] (yellow-colored nodes) , relevant to psychi-
atric disorders are involved and interestingly these genes
except B3GAT?2 constitute a connected subgraph. Blue-
colored nodes indicate the genes that have more than two
connection to yellow nodes supposing that these genes
are likely to be susceptible to psychiatric disorders (In this
paper we call yellow and blue gene reference gene and
susceptible gene respectively. We define a gene as a refer-
ence gene if a gene appears with a psychiatric disease in
the title of related literatures). There are 4 genes, SOX9,
HEPH, AQP1, and SDC3 as susceptible genes, and it was
already reported that SDC3 has a weak association with
schizophrenia in related GWAS [35].

Figure 8b is the inferred network for cluster 7, and a total
of 8 genes known as psychiatric disorder-related genes
in related literatures are found as following: TEF [36],
NR1D1 [37], KIF13A [38], ADCYAPIRI [39], MDGA1

[40], GNAZ [41], CNRI [42], and DCLK1 [43]. Addi-
tionally we defined 5 genes, ZBTB20, MAP7, ZBTBI16,
ANK?2, and MRAP2, as susceptible genes, and surprisingly
ZBTB20 [44], MAP7 [45], ZBTB16 [46], ANK2 [47] was
also reported as schizophrenia disorder-associated genes
in SNP and CNV-based studies. So we imply that it is
worth to investigate the genes that have only an edge to
reference gene as candidate genes associated with psychi-
atric disorder. In addition, reference genes in the network
tend to interact with each other directly or indirectly
though susceptible genes but they are not widely spread
implying they may work together or may be co-regulated
by another unknown biomarker.

The network inference result for the combination of
cluster 4 and 5 is shown in Fig. 8c consisting of two com-
ponents. There are 10 reference genes such as DLG4 [48]],
MIF [49], SLC6AS5 [50], GAD1 [51], GAD2 [52], GOT2
[53], RGS9 [54], HDACY [55], CDH7 [56], and BDNF
[57], and 3 susceptible genes such as PRMTS, KIT, and
ELAVL2. It is noted that ELAVL2 has connections to

12
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Fig. 6 Statistical test and clustering for gene selection. a t-test and z-test b clustered correlation matrix and 8 clusters (yellow squares)
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Fig. 7 Large components of network inferred with 1407 genes
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three reference nodes and was reported as schizophrenia-
related gene in recent GWAS [58].

Discussion
The difference between ZS and z-score of [23] is in
whether the absolute value of variation D} is taken before

z-scoring or original value of D]‘: is used. In our method,
we simply calculate the z-score to measure how many
deviations the observed variation is above or below while
the absolute value of variation ID;I is used for z-score.
Since we want to know how much the variation of a gene
is higher than another target gene after knockout of the
source gene, the use of D! rather than |Di| is more reason-
able and it is not guaranteed to select high-variant genes
if absolute value of D; is used. Since random featuring and
random sampling are performed in iterations of lasso, the
computational time is significantly increased especially in

finding optimal parameters. In implementation, the step
size, therefore, should be set to a reasonably small value,
and parallel processing (i.e. parfor in matlab) can reduce
the processing time in practice (In our case, eight local
cores are used). As a future work, we can integrate TF
information additionally in the inference so that we can
get more reliable results, and then also apply our method
to DREAMS5 challenge data for comparison to TIGRESS
that utilizes TF information.

Conclusion

We presented two integrative approaches for gene reg-
ulatory network inference combining two different algo-
rithms. First, IMLARF that we proposed is based on the
integration of MI and LARE, which is a novel regression-
based random featuring, to overcome the limitation
of random sampling and MI. Secondly, ISLARF is the
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combination of LARF and ZS that is based on the z-score
of variation of expression after the candidate regulator is
knocked out. Both integrative methods outperform the
standalone methods and the selected state of the art tech-
niques on DREAMS3 challenge data. In application to
inference of the gene regulation associated with psychi-
atric disorders, we applied IMLARF to gene expression
data and inferred the interactions between genes reported
known as psychiatric disorder-associated genes and sus-
ceptible genes defined by inferred networks.
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