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Abstract

Background: Inferring gene regulatory networks is one of the most interesting research areas in the systems
biology. Many inference methods have been developed by using a variety of computational models and approaches.
However, there are two issues to solve. First, depending on the structural or computational model of inference
method, the results tend to be inconsistent due to innately different advantages and limitations of the methods.
Therefore the combination of dissimilar approaches is demanded as an alternative way in order to overcome the
limitations of standalone methods through complementary integration. Second, sparse linear regression that is
penalized by the regularization parameter (lasso) and bootstrapping-based sparse linear regression methods were
suggested in state of the art methods for network inference but they are not effective for a small sample size data and
also a true regulator could be missed if the target gene is strongly affected by an indirect regulator with high
correlation or another true regulator.

Results: We present two novel network inference methods based on the integration of three different criteria, (i)
z-score to measure the variation of gene expression from knockout data, (ii) mutual information for the dependency
between two genes, and (iii) linear regression-based feature selection.
Based on these criterion, we propose a lasso-based random feature selection algorithm (LARF) to achieve better
performance overcoming the limitations of bootstrapping as mentioned above.

Conclusions: In this work, there are three main contributions. First, our z score-based method to measure gene
expression variations from knockout data is more effective than similar criteria of related works. Second, we confirmed
that the true regulator selection can be effectively improved by LARF. Lastly, we verified that an integrative approach
can clearly outperform a single method when two different methods are effectively jointed. In the experiments, our
methods were validated by outperforming the state of the art methods on DREAM challenge data, and then LARF was
applied to inferences of gene regulatory network associated with psychiatric disorders.
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Background
Inferring gene regulatory networks (GRN) from biolog-
ical data is currently the most interesting area of the
systems biology research aiming to elucidate cellular and
physiological mechanisms. GRN inference, which is often
referred to as reverse engineering, is a process in which
the network structure that best represents the regulation
relationship over gene expression data is estimated. An
inferred GRN consists of nodes and edges representing
genes and gene-gene regulatory interactions (activation or
suppression) respectively. Once the regulation maps are
constructed by identifying the interactions of genes from
high-throughput data such as gene microarray [1], we can
gain insight into complex biological process from the reg-
ulatory networks in order to discover biomarkers for a
target disease and apply further it to drug design [2, 3].
Basically the inference method should be determined

depending on both what kind of data such as gene expres-
sion, gene-Transcription Factor (TF) [4], or protein-
protein interaction (PPI) [5] are used to infer and which
type of network model, such as directed or indirected
graph [6], we assume. In addition, we have to consider
the case of data integration. Namely, not only individual
data but also multiple data types together (i.e. integra-
tion of gene expression and gene-TF data [7]) can be
used for more reliable inference [8, 9]. As an assump-
tion in this work, we limit our inference methods for
directed network with a single data type: gene expression
data. In order to decipher regulatory interactions with
gene microarray data, which provides the gene expression
level regulated by the other genes directly or indirectly,
the number of effective network inference methods have
been proposed by employing a variety of computational
and structural models based on boolean networks [10],
Bayesian networks [11], information theory [12], regres-
sion model [13], and so on. Depending on the different
approaches, however, the results tend to be irregular due
to inherently different advantages and limitations of each
of the inference solutions [14]. The results of the Dia-
logue on Reverse Engineering Assessment and Methods
(DREAM) project [15] describe well the pros and cons
of the different methods as well as how effectively they
can work together when the advantages of all meth-
ods are integrated (but it does not mean any combina-
tion always outperforms any other standalone method).
More specifically, we note that they conclude two points
through the experiments that (i) there is a limit to a single
criterion for continuous improvement of network infer-
ence research without the integration and (ii) specifically
the bootstrapping (re-sampling) based regression method
[16] is required to avoid overfitting in regression-based
methods [15].
As the motivation of our first strategy to this end,

we focus on an integration of Mutual Information (MI)

and L1 regularized linear regression referred to as lasso
[17] but we exclude the learning Bayesian network in
the integration. The learning structure of Bayesian net-
works is somewhat infeasible due to both the discretiza-
tion problem of a small sample size data and the high
cost of computational learning in large scale data. MI is
an information theoretic criteria that has been conven-
tionally used for learning large scale network structure
[18]. Although MI based approaches such as CLR [19]
and ARACNE [20] are limited to reconstructing only an
indirected graph unlike linear regression and Bayesian
networks, these methods have the popular advantages
of computational simplicity and non-linear dependency
enabler. In practice, the shortcoming of MI is that it is
prone to fail in differentiation between indirect regulation
and direct ones. For example, when there is a highly cor-
related indirect regulation from G1 to G3 like Fig. 1b, MI
tends to incorrectly predict feed-forward loops (Fig. 1a)
but not cascades (Fig. 1b). Lasso is also frequently used
to select the regulators of a given target gene assum-
ing sparseness of GRN in order to avoid the overfitting
of the least-squares problem. In contrast to MI, indi-
rect regulation edge in cascades could be pruned away
by lasso in which the objective function is penalized for
sparsity by a regularization parameter, called the tuning
parameter λ. However, a weakness of regression-based
method is that only a strong direct regulator is more
likely to be selected than another direct regulator in Feed-
forward loops. Therefore, the integration of two methods
is considered to deal with the trade-off. The motivation
of our second strategy is that the property of knockout
data allows us to measure statistical variations between
wild-type gene expression and perturbed gene expres-
sion after knocking them out to provide the cause-effect
information between those two genes. However, there is
the limitation that the method is only applicable to gene
knockout data.

Fig. 1 Example of network structures. a Feed-forward loops and b
Cascades. When G3 is a target gene, G1→G3 and G2→G3 of Cascades
are indirect and direct regulations respectively. In MI-based methods,
indirect regulations are likely to be selected incorrectly in Cascades. In
regression based method, strong direct regulators are more likely to
be selected than another direct regulator in Feed-forward loops
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In this paper, we propose two methods, IMLARF (inte-
gration of MI and LARF) and ISLARF (integration of
z-score and LARF). First, IMLARF indicates the integra-
tion of MI and LARF and consists of three steps. The first
step of IMLARF is to build a matrix where each element is
an edge score calculated by MI. In order to overcome the
limitation of MI as mentioned above, the second step is
to construct another edge score matrix using LARF, then
the two edge score matrices are combined as the last step.
In LARF, we regard a sparse linear regression as a feature
selection since our goal is to identify the regulators that
best predict the expression level of target genes. The prob-
lem is that features selected by lasso tend to be overfitted
to a given tuning parameter λ, and thus the unstabil-
ity problem caused by this overfitting can be solved by
using bootstrapping [12, 21] in which data is randomly re-
sampled so that a more stable selection can be achieved.
However, the limitation of re-sampling is that it could not
be effective in the case of a small sample size. Another
limitation of bootstrapping is that the true variable (reg-
ulator gene) is likely to be missed (false negative) when
strong indirect or direct regulators exist. LARF is sim-
ilar to bootstrapping but LARF selects variables among
randomly pre-selected candidate features in each iteration
over different tuning parameters of lasso optimization so
that true features weakly correlated to the target gene
could not be missed, excluding indirect or direct regula-
tors from the feature set. The second method we propose
is ISLARF, which integrates two criteria, ZS and LARF.
ZS is the name of the criteria that uses the z-score of
variation of the knocked out gene expression. Although
ISLARF is available only to knockout data, the perfor-
mance is highly superior to other z-score based similar
methods with knockout data in related works.
In the experimental evaluation, we validate the pro-

posed method on a dataset from the DREAM3 challenge
[22]. In addition, we explore the gene networks of Psychi-
atric disease with the related genes. The results shows that
the proposed method significantly outperforms the state-
of-the art [23, 24] and re-builds the known regulations of
genes possibly associated with Psychiatric Disorders.

Methods
Problem definition
We begin with a brief definition of problems and nota-
tions. The network we target is a directed graph that con-
sists of n nodes and n(n−1) edges representing genes and
regulations respectively. Given a matrix X∈RN×n where
N is number of samples, we denote the i-th column by
a vector xi indicating expression levels of i-th gene over
N samples, and we also let X = {X1, . . . ,Xn} be a set
of variables (genes, features, node, and variable are inter-
changeably used in this paper). The goal of our work is
to not only identify the regulators given a target gene but

also to define the confidence level of regulation as a weight
of the edge. In other words, we estimate the weight of all
possible regulations, which are directed edges between all
pairs of nodes {Xi←Xj : i, j∈X} in the network , then select
only edges that have a higher weight than pre-defined
threshold θ . As a final result, therefore, a weight matrix
W∈Rn×n is returned by the inference method, and Wi

j
represents a confidence level of the regulation when tar-
get gene i is connected to activator or suppressor gene j.
In the following sections, we present how the edge weight
is estimated by information theory, the LARF algorithm,
and the z-score from knockout data.

Overview
IMLARF and ISLARF
The first method we propose, IMLARF, consists of three
steps. Figure 2a describes the overview of the pro-
posed method. First, a symmetric edge weight matrix
M is calculated by mutual information assuming that, if
two genes have a higher mutual dependency, they are
more likely to be in the regulation relationship. Second,
another edge weight matrix F is produced by the LARF
algorithm that consistently gives higher weight to the
true edge from regulator to target gene. Lastly, the two
weight matrices are combined by their entry-wise product
M◦F = {Mi

j · Fi
j |i, j = 1, . . . , n}. The second method,

ISLARF, is similar to IMLARF but using z-score matrix, S,
is used instead of MI matrix. If Sij has higher value, gene i
is more likely to be regulated by gene j. So in the last step
S is combined with F by their entry-wise product S◦F

Information theoretic approach
Mutual informationmatrix
The dependency of two genes, Xi and Xj, can be measured
by MI defined as

I(Xi,Xj) =
∑

Xi,Xj

p(Xi,Xj) log
p(Xi,Xj)

p(Xi)p(Xj)
, (1)

The strength of MI is the ability to measure non-linear
dependencies of genes, but the limitation in practice is
that the discretization of gene expression is required to
calculate the probability ofXi andXj. Instead, if we assume
the Gaussian distribution of gene expression, MI can be
computed with its original continuous values by using
Gaussian mutual information [25] defined as

I(Xi,Xj) = −1
2
log

|cov(Xi,Xj)|
|cov(Xi,Xi)||cov(Xj,Xj)| , (2)

where cov(Xi) is the covariance matrix of variable Xi, and
|cov| is the determinant of covariance matrix. The reader
is referred to [26] for more details. We build MI matrix in
which each elementMi

j indicates the dependency between
Xi and Xj which means that Xi and Xj are independent
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a b

Fig. 2 Overview of IMLARF and an example of LARF. a Overview of IMLARF. The algorithm consists of three steps, the construction of matrix (i)M
and (ii) F and (iii) pairwise product ofM and F. In ISLARF, the matrixM in step 1 is simply replaced with the matrix S (Section “Statistical approach”).
b An example of procedures of LARF. It shows how the row vector F1 of frequency matrix F given target gene G1 and 8 other candidate regulators
(G2∼G9). By a predefined α, four random features are selected among eight genes in each iteration. In the beginning, F1 is not increased and four
random features are selected without sparsity since λ is not increased enough yet. The more λ is increased, the more the number of selected
features (blue-colored cells) is decreased. If no feature is selected due to a highly increased λ, the iteration and frequency measure is finished

if Mi
j = 0 or Mi

j is relatively lower than other edges.
Networks with the edges whose Mi

j are higher than the
heuristic threshold are referred to as relevance networks.
Two critical limitations of relevance networks, however,
are that firstly, MI does not provide the direction of edges
due toMi

j = Mj
i, and secondly, the high co-expression and

indirect regulation may cause false positives.

Statistical approach
Z-score and gene knockout data
We note that knockout data implies cause-effect informa-
tion. The gene expression level after the perturbation of
another certain gene provides the chance to observe if the
gene is downstream of the perturbed gene. For example, if
the variation between wild type of gene j (Xwt

j ) and gene
j expression measured after gene i is knocked out is high,
gene j is likely to be regulated by gene i. The variation
matrix D is defined as

Di
j = X−i

j − Xwt
j (3)

Sji =
∣∣∣∣∣
Di
j − μDj

σDj

∣∣∣∣∣ (4)

where X−i
j is the expression level of gene j after knocking

gene i out, andμDj and σDj is mean and standard deviation

of j-th column vectorDj of variationmatrixD respectively.
As the z-score of Di

j over Dj is the weight of regulation
edge Gi → Gj, the z-score of Di

j is equivalent to Sji of
edge weight matrix S. The limitation of this criterion is the
availability only in knockout data.

Algorithm 1 LARF algorithm
1: procedure LARF(X, α, r, stepsize, t)
2: for i ← 1, n do
3: for h ← 1, t do
4: λ ← stepsize
5: repeat
6: Xrandom ← RandomFeatures(X\i,

(n − 1) × α)

7: X′ ← RandomSamples(X,N × r)
8: Xselected ← Lasso(X′

i ,X′
random, λ)

9: if 0 < |Xselected| < n × α then
10: Fi

Xselected
← Fi

Xselected
+ 1

11: end if
12: λ ← λ + stepsize
13: until Xselected = ∅
14: end for
15: Fi ← Normalization(Fi)
16: end for
17: return F
18: end procedure
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LARF algorithm
The third approach for complementary integration of
inference methods is based on L1-regularized linear
regression (lasso) defined as

argminβ ||Xi − X\i · βi||22 + λ||βi||1 (5)

where coefficient column vector βi represents regulation
relationships between the target gene i and others. More
precisely, after βi is optimized to minimize the objective
function (5), then if the j-th element of βi is zero, gene
j does not regulate gene i, otherwise it does. The opti-
mization is performed for each target gene i, i ∈ X.
Coefficient matrix B = {β1, . . . ,βn}T is equivalent to adja-
cency matrix where non-zero Bij is the regulation edge
from regulator gene j to target gene i. The tuning param-
eter λ in lasso is used to enforce network sparsity, so the
number of selected (non-zero coefficient) variables varies
with different λ. In our works, we regard variable selec-
tion of lasso as a feature selection to predict a target gene’s
expression level.
To overcome the overfitting problem and the strong

indirect regulation problem, lasso is iteratively performed
over different λ with randomly pre-defined candidate fea-
tures rather than random samples like bootstrapping.
More precisely, the basic idea of LARF is that lasso is iter-
atively performed with only randomly selected candidate
features while increasing the tuning parameter, then giv-
ing weight to each feature by counting how many times
each feature is selected in the iterations. We predefine the
fraction of the number of all possible features as a param-
eter α (0 < α < 1) for the candidate features. For example,
when the number of all possible regulators is n=100, α=0.2
means that only 20 random candidate genes are used in a
single iteration of lasso. After random featuring, random
sampling is performed with parameter r which decides
how many samples are used from the original data. For
instance, when the original sample size is N=200 and
r=0.7, only 140 random samples are used in each iteration
of lasso. With randomly (uniform distribution) selected
features and samples by parameter α, we iteratively run
lasso over increasing tuning parameter λ until lasso does
not select any features due to a certain high λ. In each
iteration, random candidate features and samples are re-
defined again. Tuning parameter starts from zero and
increases by the parameter stepsize that should be small
enough, (e.g 0.001). Otherwise, both re-featuring and re-
sampling will be biased. For each iteration, the frequency
matrix F is updated. The i-th row of F is the frequency
of feature selection for target gene i (Fi

i is supposed to be
zero). For example, Fig. 1b describes how the Fi is mea-
sured. After finishing the iterations (repeat in line 5), we
iteratively perform t times (t=10 in our experiments) of

the process from line 5 to 13 again, and then i-th row
vector of the frequency matrix is normalized by

Fi
j = (Fi

j − min(Fi−i)

max(Fi) − min(Fi−i)
, (6)

where

Fi−i = {Fi
j , j = 1, i − 1, i + 1, . . . n}, (7)

and max(Fi) and min(Fi−i) is maximum value of i-th row
vector of F and minimum of Fi−i.

Results
We first evaluated the performance of IMLARF and
ISLARF on synthetic simulation data as compared to
the state of the art, and then explored the inferred net-
works with real gene microarray data for psychiatric dis-
orders. The synthetic, non-linear expression data is from
DREAM3 In Silico Network challenge in which the data
is created with the subnetworks of well-known reference
networks for Yeast. To assess the edge weight matrix W
elicited by proposed methods, first the matrix is con-
verted to an edge list sorted by the confidence levels
(weight), then the top k confidence level edges are selected
to measure the accuracy criteria, such as true positive
(TP), false positive (FP), true negative (TN), and false neg-
ative (FN). The receiver operating characteristic (ROC)
curves as a parametric curve were traced over different
k = 1, ..., n(n − 1) to examine the trade-off between
the true positive rate (TPR) and false positive rate (FPR).
The criteria to represent the performance are defined as
following:

• TPR=TP/(TP+FN)
• FPR=FP/(FP+TN)
• AUROC: the area under ROC curve.

We compared our method to each standalone method
without integrations and also other well known the state
of the art methods. The abbreviations of algorithms are
listed below:

• MI: edge is scored by mutual information
• ZS: relative variation from wild type is measured by

z-score.
• LARF: lasso based random featuring and sampling.
• IMLARF: integration of MI and LARF
• ISLARF: integration of ZS and LARF
• ZDR: top rank in DREAM 3 [23]
• GENIE3: top rank in DREAM 4 [24]
• TIGRESS: top rank in DREAM 5 [21]
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Evaluation on the DREAM3 benchmarks
Materials
The data for DREAM3 In Silico Network challenge con-
sists of three differently sized networks, (10, 50, and 100
genes), and there are five gold-standard networks for each
size (total of 15 networks). The five networks are named
Ecoli1, Ecoli2, Yeast1, Yeast2, and Yeast3. From each true
network, three different data types (knockdown, knock-
out perturbations, and time series data) are provided, and
the knockdown and knockout data includes a single wild
type sample. In our experiments, only knockout data is
used and 10-gene, 50-gene, 100-gene of Yeast1 networks
are mainly tested.

Random sampling vs Random featuring
To evaluate how much more effectively LARF selects true
edges than random sampling, we compared them with 10-
gene Yeast1 network in Fig. 3. Figure 3a is the result of
LARF with only random sampling (α=1, r=0.5) and 3b is
with only random featuring (α=0.5, r=1). The normalized
edge score is the average of 10 experiments and yellow
colored cells indicate true edges. In Fig. 3a, though G2’s
true regulator is G1, G2←G3 is relatively higher than
G2←G1 probably because of indirect regulation from G3
to G2 through G1. In Fig. 3b, G2←G1 is correctly esti-
mated as true edge by random featuring. Similarly two
true edges (G4←G1 and G5←G1) are inferred with the
highest weight in random featuring but random sam-
pling gives only 0.79 and 0.91 to two true edges (G4←G1
and G5←G1) due to another true edges (G4←G6
and G5←G3) have strong direct regulation (1 and
0.99).

Setting parameters
Before we compare our methods to other methods, we
explored the optimal parameters that give the best results.
As described in Fig. 4, the mean and standard deviation
of AUROC are measured after LARF are 10 times per-
formed over different parameters, α and r, for 50-gene
Yeast1 network. The range of parameter is 0.2∼1 due to
too small number of feature and sample in 10-gene net-
work data. The best result (0.8501±0.0049) is recorded
with α=0.4 and r=1 for 50-gene Yeast1 data. This indi-
cates that the random sampling rate does not necessarily
need to be applied to avoid overfitting once random fea-
turing is applied. In addition, the figure also shows that the
AUROC can be decreased with high standard deviation
if both parameters are too small. According to the result
of 10-gene and 100-gene Yeast1 data, if the sample size is
small (N=10), the deviation is quite high in low α and r
though AUROC is high. As the best result for 10-gene and
100-gene Yeast1 data, 0.925±0.0125 and 0.8611±0.0046
were achievedwith α=0.5, r=1 and α=0.4, r=1 respectively.
It also shows the random sampling could not make an
improvement in both small and large sample sizes. There-
fore we applied fixed parameters α=0.5, r=1 to all data sets
in our experiments.

Effect of integration and performance comparisons
Table 1 presents the performance of integrative
approaches compared to a single method. In the case of
LARF-based methods, mean and deviation are measured
after each method is performed 10 times for Yeast1
network of DREAM3. The integration of more than two
methods is simply done by entry-wise product of edge

a c

b

Fig. 3 Comparison of random sampling and featuring in LARF. a The result of LARF with only random sampling. b The result of LARF with only
random featuring. c True network of 10-gene Yeast1 in DREAM3
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Fig. 4Mean and standard deviation of AUROC with different
parameters and 10 iterations of experiments for 50-gene Yeast1
network. (a) Mean and (b) standard deviation

score matrix. In TIGRESS-TF, the list of TF is provided
as TIGRESS is designed for DREAM5 challenge data in
which TF is given. Asterisk(*)-marked methods require
knockout data. The integration of MI and LARF outper-
forms standalone MI and LARF except 50-gene. Similarly

Table 1 AUROC of standalone and integrative methods

Method 10-gene 50-gene 100-gene

GENIE3 0.9175 0.8427 0.8631

TIGRESS 0.7044 ± 0.0056 0.8179 ± 0.0025 0.7690 ± 0.0023

TIGRESS-TF 0.8154 ± 0.0037 0.9006 ± 0.0010 0.8777 ± 0.0009

MI 0.9312 0.8329 0.8586

LARF 0.9250 ± 0.0154 0.8489 ± 0.0038 0.8610 ± 0.0039

IMLARF 0.9425 ± 0.0047 0.8487 ± 0.0032 0.8701 ± 0.0012

ZDR∗ 0.8975 0.9223 0.8876

ZS∗ 0.9725 0.9204 0.8870

ZS∗+MI 0.9775 0.8931 0.8925

ISLARF∗ 0.9892 ± 0.0021 0.9301 ± 0.0049 0.9065 ± 0.0029

the performance of ISLARF is better than other integra-
tion such as ZS+MI and standalone ZS. If knockout data
is not available, IMLARF will be the best method as ZS is
not applicable. Since ZDR is based on knockout data, the
result shows that ZDR is quite better than other methods
such as IMLARF except in a small size network. In Fig. 5,
the AUROC for proposed methods and the state of the art
methods with 10-gene Yeast1 data are plotted after only
a single experiment. Overall results show that ISLARF is
the best method if knockout data is available, otherwise
IMLARF is superior to other methods.

Inference of GRN for psychiatric disorders
In this section, the proposed method is applied to real
gene expression data for psychiatric disorders. Through
the experiments, we evaluate how the method constructs
the network and explore what potential biomarkers of Psy-
chiatric disorders are in the inferred networks. Psychiatric
disorders data that are provided from the Stanley Medi-
cal Research Institute (SMRI) consist of gene expression
data of 25833 genes and 131 samples (43 controls and
88 cases) including bipolar disorder, schizophrenia, major
depression as three major psychiatric diseases.
To select genes possibly associated with psychiatric dis-

orders, two statistical tests, t-test and z-test [27], are
performed. In Fig. 6a, all genes are plotted by using
p-value of t-test for y-axis and z-test value for x-axis, and
the plot shows that two tests shows similar results in linear
patterns. From these two tests, we selected 1407 genes as
cut-off values are set to −log10(0.01) and ±2.326 for t-test
(y-axis) and z-test (x-axis). To find a module of genes that
may interact to each other in Psychiatric disorders, we ini-
tially built a correlation matrix whose element of ith row
and jth column is absolute value of correlation between
expressions of ith and jth genes, and then clustering is per-
formed to the estimated correlation matrix as shown in
Fig. 6b. Based on the result of clustering, we manually set
8 groups of genes (yellow squares).
To analyze the relationship between clusters, first,

IMLARF was applied to all 1407 genes with setting θ to
0.2. Figure 7 shows only the two largest components of
the inferred network where node color indicates a clus-
ter number after small components of the network are
removed from the figure. The result is consistent with the
correlation matrix in Fig. 6b showing the features as fol-
lows: (i) cluster 3, 6, and 8 in the network strongly and
exclusively interact to each other, (ii) cluster 2, 4, and
5 are complicatedly interacting together, (iii) cluster 7 is
widespread over the whole network.
To observe the strong regulation of the network, we

inferred network with all the genes again after setting θ

to 0.4. As a result, we displayed the second largest com-
ponent in the inferred network in Fig. 8a. Most nodes of
the network are genes of cluster 3 implying that cluster
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Fig. 5 ROC of the methods (a) without and (b) with gene deletion information in 10-gene network

3 is most exclusively and strongly interacting within the
cluster. It is noted that 7 genes, DAO [28], PRDX6 [29],
KCNN3 [30], TCF7L2 [31], RFX4 [32], FYN [33], and
B3GAT2 [34] (yellow-colored nodes) , relevant to psychi-
atric disorders are involved and interestingly these genes
except B3GAT2 constitute a connected subgraph. Blue-
colored nodes indicate the genes that have more than two
connection to yellow nodes supposing that these genes
are likely to be susceptible to psychiatric disorders (In this
paper we call yellow and blue gene reference gene and
susceptible gene respectively. We define a gene as a refer-
ence gene if a gene appears with a psychiatric disease in
the title of related literatures). There are 4 genes, SOX9,
HEPH, AQP1, and SDC3 as susceptible genes, and it was
already reported that SDC3 has a weak association with
schizophrenia in related GWAS [35].
Figure 8b is the inferred network for cluster 7, and a total

of 8 genes known as psychiatric disorder-related genes
in related literatures are found as following: TEF [36],
NR1D1 [37], KIF13A [38], ADCYAP1R1 [39], MDGA1

[40], GNAZ [41], CNR1 [42], and DCLK1 [43]. Addi-
tionally we defined 5 genes, ZBTB20, MAP7, ZBTB16,
ANK2, andMRAP2, as susceptible genes, and surprisingly
ZBTB20 [44], MAP7 [45], ZBTB16 [46], ANK2 [47] was
also reported as schizophrenia disorder-associated genes
in SNP and CNV-based studies. So we imply that it is
worth to investigate the genes that have only an edge to
reference gene as candidate genes associated with psychi-
atric disorder. In addition, reference genes in the network
tend to interact with each other directly or indirectly
though susceptible genes but they are not widely spread
implying they may work together or may be co-regulated
by another unknown biomarker.
The network inference result for the combination of

cluster 4 and 5 is shown in Fig. 8c consisting of two com-
ponents. There are 10 reference genes such as DLG4 [48]],
MIF [49], SLC6A5 [50], GAD1 [51], GAD2 [52], GOT2
[53], RGS9 [54], HDAC9 [55], CDH7 [56], and BDNF
[57], and 3 susceptible genes such as PRMT8, KIT, and
ELAVL2. It is noted that ELAVL2 has connections to
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Fig. 7 Large components of network inferred with 1407 genes

three reference nodes and was reported as schizophrenia-
related gene in recent GWAS [58].

Discussion
The difference between ZS and z-score of [23] is in
whether the absolute value of variation Di

j is taken before
z-scoring or original value of Di

j is used. In our method,
we simply calculate the z-score to measure how many
deviations the observed variation is above or below while
the absolute value of variation |Di

j| is used for z-score.
Since we want to know how much the variation of a gene
is higher than another target gene after knockout of the
source gene, the use of Di

j rather than |Di
j| is more reason-

able and it is not guaranteed to select high-variant genes
if absolute value of Di

j is used. Since random featuring and
random sampling are performed in iterations of lasso, the
computational time is significantly increased especially in

finding optimal parameters. In implementation, the step
size, therefore, should be set to a reasonably small value,
and parallel processing (i.e. parfor in matlab) can reduce
the processing time in practice (In our case, eight local
cores are used). As a future work, we can integrate TF
information additionally in the inference so that we can
get more reliable results, and then also apply our method
to DREAM5 challenge data for comparison to TIGRESS
that utilizes TF information.

Conclusion
We presented two integrative approaches for gene reg-
ulatory network inference combining two different algo-
rithms. First, IMLARF that we proposed is based on the
integration of MI and LARF, which is a novel regression-
based random featuring, to overcome the limitation
of random sampling and MI. Secondly, ISLARF is the
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a b

c

Fig. 8 Inferred gene regulatory networks for psychiatric disorder. a Cluster 3 b Cluster 7 c Cluster 4 and 5. Yellow-colored nodes indicate the genes
known as psychiatric disorder genes in the literatures. Blue-colored nodes are the genes that are connected to more than two yellow genes

combination of LARF and ZS that is based on the z-score
of variation of expression after the candidate regulator is
knocked out. Both integrative methods outperform the
standalone methods and the selected state of the art tech-
niques on DREAM3 challenge data. In application to
inference of the gene regulation associated with psychi-
atric disorders, we applied IMLARF to gene expression
data and inferred the interactions between genes reported
known as psychiatric disorder-associated genes and sus-
ceptible genes defined by inferred networks.
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