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Abstract

Background: Identification of prognostic gene expression markers from clinical cohorts might help to better
understand disease etiology. A set of potentially important markers can be automatically selected when linking gene
expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation.
However, this is hampered by instability due to selection from many measurements. Stability can be assessed by
resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific
endpoint definition.

Methods: We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint
updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with
end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden
cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out
how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions.

Results: For markers such as the potentially prognostic platelet glycoprotein Iib, the endpoint definition, in
combination with the signature building approach is seen to have the largest impact. Removal of outliers, as
identified by the proposed strategy, is also seen to considerably improve stability.

Conclusions: As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the
stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results,
which are unstable, i.e. not reproducible.

Keywords: Prognostic signature, Stability, Clinical endpoint, Outlier

Background
Several studies have established the association between

15-20 % [2]. More than 50 % of patient deaths are caused
by cardiovascular events [3, 4], and the two-year mortal-

chronic kidney disease (CKD) and cardiovascular dis-
ease (CVD), including sudden death, stroke, congestive
heart failure and myocardial infarction [1]. Once patients
reach end-stage renal disease (ESRD) and require
renal replacement therapy, the yearly mortality exceeds
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ity rate after myocardial infarction among patients with
ESRD is twice the mortality rate compared to myocardial
infarction in the general population [5]. Cardiovascular
disease in ESRD has largely been attributed to the signif-
icant co-morbidity such as advanced age, hypertension
and diabetes mellitus, i.e. conditions often associated
with both chronic renal failure and cardiovascular dis-
ease. However, these clinical risk factors alone cannot
explain the high incidence of cardiovascular events
particularly in younger ESRD patients. To obtain further

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-016-0210-9-x&domain=pdf
mailto: binderh@uni-mainz.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Binder et al. BMC Medical Genomics (2016) 9:43

insight in the etiology of cardiovascular disease in ESRD,
we investigated the link between the gene expression
profiles of 321 hemodialysis patients and the incidence
of cardiovascular events over a two-year observation
period.

There are many issues that can affect performance of
prognostic models in such an application, such as the
measurement platform (e.g. microarrays vs. RNA-seq [6]),
the type of sample (e.g. fresh frozen vs. paraffin embedded
[7]), and early preprocessing steps [8]. In the following, we
focus on issues arising in subsequent modeling steps. The
ESRD application has several features that make it inter-
esting for illustrating a stability strategy that we propose
for prognostic signature development. First, the number
of events of interest, i.e. the cardiovascular events, will be
relatively small even for the relatively large cohort consid-
ered here. This makes it challenging to develop a stable
prognostic signature. Specifically, the set of genes to be
selected for a signature will vary considerably when signa-
tures would be developed repeatedly in different cohorts,
even if reasonable prediction performance is obtained
in each single cohort [9]. As larger cohorts or longer
follow-up (for increasing the number of observed events)
might not be feasible, we propose a strategy for identi-
fying factors affecting signature stability in the cohort at
hand. A second challenge arises from the complex time-
to-event endpoint structure. As discussed in more detail
in Section “Material and methods’, it is difficult to deter-
mine the exact time point for cardiovascular events not
leading to death during an observation period, only the
endpoint “death after cardiovascular event” can be consid-
ered in our application. In addition, there is the competing
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event/risk “death without prior cardiovascular event” This
leaves at least two options for modeling the time-to-event
endpoint of interest, either via the cumulative incidence
of death after cardiovascular events, i.e. the observed
proportion in the course of time, or the cause-specific
hazard [10, 11]. As a third challenge, there are actu-
ally two endpoint definitions in the present application,
the original endpoint information, and revised endpoint
information from an update performed at a later time. As
such endpoint updates are typical for cohorts with longer
follow-up, it will be interesting to judge the potential
effect of these on signature stability, in particular rela-
tive to the effects of different bioinformatic approaches for
signature building. For the latter, we consider univariate
gene selection vs. a multivariable regularized regression
approach [10].

The building blocks of the proposed strategy for judg-
ing effects on stability are illustrated in Fig. 1. The basis
for all steps is provided by resampling techniques. Stabil-
ity will be quantified by resampling inclusion frequency,
which has already been suggested some time ago [12-14],
but has recently received renewed attention due to stabil-
ity path approaches that potentially allow to control false
discovery rates [15, 16]. We will specifically build on the
idea of cross-tabulation of inclusion frequencies [14] for
identifying outliers, and subsequently quantify the effect
of such outliers relative to the factors influencing stability
indicated above. This is particularly important, as outliers
might not only severely hamper analysis of microarray
data (as in the present application), but can also drastically
impact performance of signatures based on RNA-seq
measurements [17].

cross-tabs and scatter
plots for outlier detection

Perform all T
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Fig. 1 Strategy building blocks for investigating and improving signature stability. All steps are based on resampling data sets, which serve as a
foundation. Subsequent steps involving all model building steps, e.g. cross-validation for model complexity selection, are indicated in white, steps
based on fixed complexity levels in gray. Of the latter, steps for identifying outliers are indicated by light gray, steps for investigating different

modeling strategies are indicated by darker gray shading
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The effects of different modeling decisions on resam-
pling inclusion frequencies, i.e. selection stability, will be
quantified by regression models and contrasted to predic-
tion performance of different models. This will highlight
what can be gained by moving focus from prediction per-
formance to stability for judging the reliability of poten-
tial etiological insight. We will also consider selection
(in-)stability for one specific marker (platelet glycopro-
tein IIb), which we identified and deemed interesting in a
first analysis, for indicating potentially detrimental effects
of specific modeling choices on selection of interesting
markers that might have only moderate effect.

Methods

Study design and population

This study was designed to identify a potential link
between the gene profiles of circulating blood cells of
hemodialysis patients and the occurrence of cardio-
vascular events over a 2-year observation period. The
institutional ethics committee at the University Hospi-
tal Freiburg approved the protocol; the study was con-
ducted in accordance with the Declaration of Helsinki at
four outpatient hemodialysis centers in Germany. After
obtaining informed consent, blood samples were collected
from 324 hemodialysis patients immediately before dial-
ysis treatment following a two-day dialysis-free interval;
3 samples were excluded due to poor RNA quality, the
remaining 321 samples were processed as outlined below.
Nineteen covariates, including age, sex, duration of dial-
ysis, and previous cardiovascular events, were recorded
at the time of enrollment; clinical chemistry, includ-
ing lipid profile and hematological parameters, were
extracted from the patients’ records (Table 1). Patients
were subsequently followed for two years. As we could
not directly observe the time of cardiovascular events,
patients were monitored for two other types of events
that allow for an indirect link of gene profiles to cardio-
vascular events: We monitored for death, an used patient
records for identifying whether a patient had a cardio-
vascular event prior to death (without requiring a casual
link). Thus, we effectively monitored patients for “death
with prior cardiovascular event” and “death without prior
cardiovascular event”.

Time-to-event regression models

In the following we briefly sketch the theory of the
hazard-based time-to-event regression models in a com-
peting risks setting, before discussing their use in the
present application (for details see, e.g., [11]). Observa-
tions are given as (7}, Aje;, X;),i = 1,...,n, where T;
is the observed time, A; is a censoring indicator taking
value 1 if an event has been observed at time 7; and
value O otherwise, and ¢; € {1,...,K} is the event type.
The covariate vector X; = (Xj1,...,Xj,)’ contains clinical

Page30f13

Table 1 Clinical data of 321 ESRD patients on chronic

intermittent hemodialysis

Patients

Age (yrs) 66.3 (£ 17.3)
Sex (Male (%) / Female (%)) 197 (61) /124 (39)
BMI (kg/m?) 252 (£5.1)
Dialysis

Time on dialysis at inclusion (months) 49 (£ 46)
Dialysis treatment duration per week (hrs) 12.7 (& 2.5)
Kt/V (mean of last three 127 (£ 0.34)
measurements before inclusion)

Renal disease

Diabetic nephropathy (%) 85 (26)
Glomerulonephritis (%) 75 (23)
Hypertensive/Vascular (%) 48 (15)
ADPKD (%) 26 (8)

Other (%) 46 (14)
Unknown (%) 41 (13)
Clinical chemistry

Total cholesterol (mg/dL) 177 (£ 43)
Triglycerides (mg/dL) 197 (£ 145)
Hemoglobin (g/dL) 11.7 (£ 1.5)
CRP (mg/L) 30.5(£71.5)
Urea before dialysis (mg/dL) 121 (£ 43)
Phosphate (mean of three predialysis 56(£1.7)
measurements, mg/dL)

Total Calcium (corrected for albumin (mmol/L)) 23(£03)
Calcium x Phosphate product 50 (& 14)
Parathormon, in patients not 158 (£ 201)
parathyroidectomized (pg/ml)

Ferritin (ng/mL) 540 (£ 332)
Albumin (g/dl) 40 (£ 06)

BMI: Body mass index; ACE-I: Angiotensin-converting enzyme inhibitor; ARB:

Angiotensin receptor blocker; MI: Myocardial infarction

covariates as well as potential molecular markers, such as

gene expression measurements.

For investigating effects of the latter on an event type of
interest, e.g. € = 1, the cause-specific hazard

Pt<T<t+de=1)

hcsl ® = (%i% s

can be linked to the covariates via a Cox proportional

hazards model

hcsl (th) = hO,csl (t) eXP(X//S):
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where kg (51 (£) is an unspecified baseline hazard, and 8 is a

parameter vector of length p, each element specifying the

influence of one clinical covariate or molecular marker.
Alternatively, the cumulative incidence

Fi(t) = (T < t,e = 1)

can be considered for analysis. Specifically, the Fine-Gray
model

g1 (£1X) = hogn (¢) exp(X'B)

has been suggested for analyzing effects on the subdistri-
bution hazard

_ dF(t)/dt

T R®

which is directly linked to the cumulative incidence [18].

In the present application, the time of cardiovascular
events could not be observed exactly. Therefore, an indi-
rect analysis was performed with Cox models for the
events “death with prior cardiovascular event” and “death
without prior cardiovascular event” We differentiated
between the states (1) “patient alive without cardiovascu-
lar event’, (2) “patient alive with cardiovascular event’, (3)
“death after cardiovascular event’, and (4) “death without
prior cardiovascular event’, where in state (3) the cardio-
vascular event does not necessarily have to be the cause of
death. While the exact time points for reaching state (3) or
(4) can be recorded, this is not the case for the transition
between (1) and (2). However, each patient entering state
(3) has to pass through state (2). Therefore, the cumula-
tive incidence of (3), i.e. the proportion of observed deaths
after a cardiovascular event in the course of time, is the
cumulative incidence for (2) multiplied by the probabil-
ity of dying of any cause. If a gene is linked to (3), this
could either be due to a linkage to (2), or due to a link-
age to death in general. To distinguish between these two
possibilities, we considered two types of statistical mod-
els. The first model investigated the connection between
gene expression and the cumulative incidence for state (3).
The second model linked gene expression to the risk for
reaching state (4). If a gene had an effect only in the first
type of model, but not in the second, it had to be linked
to the transition from state (1) to state (2), but not to the
transition between (2) and (3). Therefore, the gene had to
be linked to cardiovascular events. As an alternative we
consider cause-specific hazard models for the event “death
after cardiovascular event”.

Componentwise boosting

To identify differentially regulated genes linked to future
cardiovascular events, all genes were considered simulta-
neously in a multivariable model that takes correlations
between genes into account. Specifically, we used com-
ponentwise likelihood-based boosting [10] for estimating
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the parameter vectors in the regression models above. By
performing regularized estimation, i.e., forcing estimates
towards zero, this boosting approach not only performs
variable selection, but also allows to select a relatively
large number of genes for a risk prediction signature with
an effective number of parameters that is much smaller
than the number of included genes, thus avoiding overfit-
ting. Briefly, this is achieved by starting with an estimated
parameter vector equal to zero, and updating its elements
in a potentially large number of boosting steps. In each
step only one element is updated (by a shrunken maxi-
mum partial likelihood estimate), chosen to to maximize
the partial likelihood. The number of boosting steps in the
present application was either chosen by 10-fold cross-
validation, when considering prediction performance, or
a fixed number of 100 boosting steps was used for stability
analyses.

In the present analysis, age and prior cardiovascular
events were included as mandatory covariates to com-
pare the prediction performance of this approach with
a purely clinical model that incorporated only the clini-
cal covariates. Componentwise likelihood-based boosting
is one of the few approaches that has been adapted for
competing risks setting with a readily available implemen-
tation, and at the same time allows for inclusion of such
mandatory covariates. Furthermore, it is computationally
fast compared to other high-dimensional multivariable
approaches, which is advantageous when large numbers of
repeated model fits have to be performed, as in the present
application.

To adjust for effects of other differences in patient char-
acteristics, the following baseline clinical covariates were
initially considered as candidates for model inclusion, i.e.
given the chance for selection just as the gene expres-
sion measurements: gender, smoking, adiposity, low HDL
cholesterol, hypercholesterolemia high CRP, high homo-
cysteine level, prior coronary artery disease, arterial
hypertension, diabetes, diabetic nephropathy, secondary
hyperparathyroidism, parathyroidectomy, acidosis, hype-
ruricemia, duration of dialysis and family history of car-
diovascular disease. However, as these were not selected
by componentwise boosting, i.e. they do not seem to have
a strong effect, we did not consider them for subsequent
analyses.

Model fitting as well as estimation of prediction per-
formance was performed in the statistical environment R
(version 3.1.2), using the package CoxBoost (version 2.0)
for the boosting approach.

.632+ prediction error curve estimates

Although prediction performance of the fitted subdistri-
bution hazard model is usually evaluated on a separate set
of patients, this reduces the number of observations avail-
able for model fitting, decreasing the power to identify
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important genes. Therefore, we used all available patient
data to fit the model. To evaluate the prediction per-
formance for new patients, we employed a resampling
technique. Briefly, 500 bootstrap data sets were generated,
each containing a random sample of 0.632n patients of
the original data [19]. Model development for the Fine-
Gray model was performed for each resampling data set,
including 10-fold cross-validation. The prediction perfor-
mance was evaluated by “bootstrap 0.632+” estimates;
the latter provides reliable estimates of prediction per-
formance for new patients in a time-to-event setting
[10, 19]. The Brier score, i.e. the squared difference
between the predicted probability that a cardiovascular
event will occur and the true status, was calculated and
tracked over time, resulting in prediction error-curve esti-
mates. In particular, the Brier score was chosen as a
performance measure, as it simultaneously evaluates dis-
crimination and calibration, and the Brier score difference
between two models indicates the difference in precisions
(see [20], for example). Thus, when comparing the Brier
score of a model including gene expression model to the
Brier score of some benchmark approach, the difference
directly indicates by what amount the predicted prob-
abilities of suffering a cardiovascular event up to some
specific time get closer to the true patient status. The
Aalen-Johansen estimator of the cumulative incidence,
a performance reference that does not employ covariate
information, was used as a null model. Furthermore, a
Fine-Gray regression model was fitted that contains only
clinical covariates age and prior cardiovascular events.

RNA preparation

Whole blood specimens were collected in 2 x 2.5
ml PAXgene™ tubes from each subject, incubated at
room temperature for 3 h to ensure complete lysis, and
then stored at <80 degree C. RNA was extracted from
whole blood using the PAXgene™ Blood RNA System
(PreAnalytiX GmbH, Belgium), following the manufac-
turer’s instructions. The quality of the purified RNA was
verified on an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA). RNA concentrations were deter-
mined using a GeneQuant II RNA / DNA Calculator
(Pharmacia).

Microarray processing

Each RNA sample was amplified using the MessageAmp
II aRNA kit (Ambion, Austin TX), using 1 ug of total
RNA according to the manufacturer’s instructions. In
addition, Universal Human Reference RNA (Stratagene)
was amplified and pooled as a reference for all hybridiza-
tions. cDNA microarrays were produced and processed
essentially according to the Stanford protocol described
by Eisen and Brown [21]. Approximately 38,000 anno-
tated genes (Human Unigene Set - RZPD 3.1) from the
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RZPD (Resource Center and Primary Database, Berlin,
Germany) were obtained as bacterial stocks, and ampli-
fied by polymerase chain reaction (PCR). PCR products
were purified and transferred into 384-well plates. Print-
ing was performed on aminosilane-coated slides (CMT-
GAP 1I Slides, Corning, NY), using a Qarray2 arrayer
from Genetix Ltd. (http://www.genetix.com/en/home/
index.html). Post-processing was performed according
to the Stanford protocol (http://brownlab.stanford.edu/).
Hybridizations were performed in the presence of an
equal amount of amplified reference RNA (Stratagene,
La Jolla, CA, USA) as published [22]. All other steps,
including hybridization, were performed following the
Brown protocol. Signal intensities of the hybridized slides
were quantified using an Axon 4000A scanner in com-
bination with the GenePix Pro 6.0.1.17 image processing
software (Axon Instruments, Union City, USA). After
background subtraction, the log2 of the medians of the
pixel intensity ratios Cy5/Cy3 within a spot were used
to measure the expression of a gene relative to its abun-
dance in the Universal Human Reference RNA. The
Locally Weighted Scatterplot Smoothing (LOWESS) algo-
rithm with a smoothing parameter of 0.2 was applied
to adjust for the intensity-dependent bias between the
two fluorophores [23]. Print-tip effects were corrected by
a block-wise normalization procedure [24]. The Gene-
data Expressionist Refiner Pro 4.0 software (Genedata AG,
Basel, Switzerland) was used for quality control.

Quantitative RT-PCR

Quantitative RT-PCR experiments were performed using
the Roche real-time PCR master mix (Lightcycler 480
Probes Master) in combination with the Roche Univer-
sal Probe Library (UPL) assays. All measurements were
performed using the Roche Light Cycler 480 (Roche).
Ribosomal protein L32 (RPL32) was used as a housekeep-
ing gene (5'ccaccgtcccttctetctt3’; 5'gggettcacaaggggtct3’)
to quantify the expression of ITGA2B (5’gagacacccatgt-
gcagga3’; Sagctggggcacacatacg3’), and PF4 (5’agcctggag-
gtgatcaaggl’; 5'gaagaccacctcccaggted’); all measurements
were carried out in triplicates. Negative controls included
a sample without reverse transcriptase and a sample with-
out template. The regulation of genes was calculated using
the normalized data derived from the relative quantifica-
tion analysis.

Results

Patient survival

Informed consent and blood samples were obtained from
324 patients suffering from ESRD; three samples were dis-
carded due to insufficient RNA quality. For the remaining
321 patients (Table 1), all relevant data were collected over
a 2-year observation period. The mean age was 66 years
(61 % male; 39 % female). As predicted from other studies,
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the one-year mortality in this population exceeded 15 %.
Within follow-up, 30 deaths with and 71 deaths with-
out prior cardiovascular event were observed. A later
update of the endpoint information resulted in 39 deaths
with prior cardiovascular event (three patients reclassi-
fied from no event and two from death without prior
cardiovascular event), and 48 patients without prior car-
diovascular event (11 reclassified from no event and 14
from death with prior cardiovascular event).

Prediction performance using multivariable Fine-Gray
regression

For a first analysis we consider separate Cox proportional
hazards models for each of the 26323 features obtained
from a ¢cDNA microarray (after quality control and pre-
processing), adjusted for age and prior cardiovascular
events. Fitting Fine-Gray models [10] for directly assess-
ing effects on the cumulative incidence of death with
prior cardiovascular events, results in 236 genes with
false discovery rate [25] below or equal to 5 %. While
such a set could also be subjected to post processing
steps, such as pathway analysis, we are primarily inter-
ested as to whether already the original data analysis can
point out genes that provide insight into disease etiology.
Correspondingly, we turned to an approach that could
provide automated selection of markers in multivariable
regression models. Specifically, we used componentwise
likelhood-based boosting, as it is available for Fine-Gray
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regression modeling [10]. Adjusting for age and prior car-
diovascular events, selection of the number of boosting
steps (which determines the size of the signature) by 10-
fold cross-validation, resulted in a signature comprising
12 microarray features. Of these, six were found to be
rather stably selected, i.e. in at least 20 % of resampling
data sets when repeating the signature building approach,
as described subsequently (names indicated by boldface in
Table 2). There was no overlap between the genes iden-
tified using this model and genes identified from a Cox
regression model linking genes to “death without prior
cardiovascular event’, suggesting that all genes identi-
fied from Fine-Gray regression are directly related to the
occurrence of cardiovascular events.

Among these there is ITGA2B (BX281671), a compo-
nent of the platelet glycoprotein (GP) IIb/Illa complex
that mediates adhesion to extracellular matrix proteins
and activation of platelets. While ITGA2B (integrin alpha
2b; CD41) mutations cause Glanzmann thrombasthenia
[26], activation of the glycoproteins IIb/IIIa complex trig-
gered by conformational changes plays a central role in
thrombus formation and acute myocardial infarction [27].
Quantitative RT-PCR (RT-qPCR) was performed to val-
idate the microarray data. Using RPL32 as a housekeep-
ing gene [28], RT-qPCR revealed an increasing risk with
higher levels of ITGA2B in a Fine-Gray model for this gene
(p = 0.050). We also considered Platelet Factor 4 (PF4),
as another platelet-specific protein [29], which was not

Table 2 Inclusion frequencies for microarray features selected in at least 20 % of subsampling data sets by any of the approaches (sh:

Fine-Gray regression; csh: cause-specific hazard model)

Feature Original endpoint Updated endpoint Min Max

All observations w/o outlier All observations w/o outlier

Multi uni multi Multi Uni multi

sh csh sh csh sh csh sh csh sh csh sh csh
H57987 0.30 0.38 0.31 0.50 033 0.40 0.31 0.37 0.41 0.50 0.33 0.38 0.30 0.50
BX094448 0.22 022 0.32 0.29 017 0.15 0.13 0.15 0.14 0.23 0.08 0.10 0.10 0.32
R36623 0.11 0.10 0 0.12 0.10 0.09 0.25 0.28 0.01 0.29 0.25 0.28 0 0.29
R88065 (VPS72) 0.23 0.20 0.10 0.17 0.27 025 0.07 0.10 0.11 0.15 0.10 0.13 0.07 0.27
BX104205 0.19 0.18 0.03 0.04 0 0 0.36 033 0.19 0.19 0 0 0 036
BX100481 0.14 0.10 0.05 0.01 0.09 0.06 0.26 0.24 0.12 0.04 0.19 0.17 0.01 0.26
BM918155 0 0 0 0 0 0 0.27 0.28 0.13 0.01 0.31 0.32 0 0.32
R00274 0.03 0.03 0.33 0.33 0.04 0.05 0.01 0.01 0.16 0.18 0.01 0.02 0.01 0.33
BX281671 (ITGA2B) 0.19 0.23 0.03 0.12 0.21 0.27 0.02 0.02 0 0.01 0.03 0.04 0 0.23
R10279 0.07 0.05 0.11 0.18 0.06 0.04 0.11 0.10 0.11 022 0.04 0.04 0.04 0.22
AA027034 0.04 0.03 0.17 0.05 0.04 0.03 0.04 0.04 0.25 0.07 0.04 0.04 0.03 0.25
AF086244 0 0 0 0 0 0 0.14 0.13 0.05 0.08 020 0.20 0 020
AA001661 0.04 0.03 0.16 0.22 0.04 0.03 0.01 0.01 0.06 0.17 0.01 0.01 0.01 022
R06860 0.21 0.11 0 0.03 0.17 0.09 0.01 0.01 0 0 0.01 0.01 0 0.21

Minimum and maximum inclusion frequencies are given in the two rightmost columns. Names of microarray features contained in the original signature are indicated by
boldface
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represented on our microarray, but found no effect (p =
0.610).

Notable, in the ordered list of univariate p-values,
ITGA2B occupies only position 43, i.e. would probably
not have been considered for further analysis, despite
its potential biological relevance. Therefore, one ques-
tion is whether, such a gene from the middle field of the
list of genes significant according to univariate analysis
p-values can more reliably be identified by a multivariable
approach for a short list of important genes. Another can-
didate for such considerations might be VPS72 (R88065),
vacuolar protein sorting 72 homolog, which has recently
been associated with thrombopoietin-mediated mainte-
nance of hematopoietic stem cells [30].

As a first step for judging the evidence supporting
these genes, we considered prediction performance on
new data, as evaluated by .632+ prediction error curve
estimates [10]. Models utilizing clinical data were better
than the null model not using any covariate informa-
tion (left panel of Fig. 2). However, the Fine-Gray model
combining clinical and microarrays performed superior
to the clinical model alone, supporting the hypothesis
that the gene expression data contains prognostic value
beyond the clinical covariates. To provide an indication of
whether the difference is statistically significant, we calcu-
lated the integral of the difference between the respective
resampling cross-validation error estimates, which are
the basis for the .632+ estimates. A Wilcoxon test indi-
cated that this difference is significantly different from
zero across resampling data sets (p < 0.001). To fur-
thermore check whether there might be an interaction
between clinical an microarray covariates, we separately
extracted the linear predictors for the clinical and the
microarray covariates, and entered them as covariates
into a new Fine-Gray regression model that included an
interaction term between the two. The latter term was
found to be significant (p = 0.039), indicating that the
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clinical+microarray model might be improved further by
incorporating interaction terms, but we will not pursue
this in the following.

Prediction performance might be problematic as a sole
criterion for judging prognostic signatures. To illustrate
this, the right panel of Fig. 2 indicates the prediction
performance obtained when applying the componentwise
likelihood-based boosting approach for the updated end-
point information. While there seems to be some decrease
of prediction performance relative to the null model, the
overall picture of the clinical model performing better
than the null model, and the combined model performing
even better, stays similar. Still, a Wilcoxon test no longer
indicated a significant difference between the clinical and
the clinical+microarray model (p = 0.268). The boosting
approach for the latter on the full data set now selects
a prognostic signature of 19 genes, which contains only
three of the microarray feature (BX094448, H57987, and
R10279) selected by boosting for the original endpoints.
Notably, ITGA2B and VPS72 are absent.

This calls for a different set of tools for judging whether
identification of ITGA2B and VPS72 was just an artifact.
Before introducing such tools for stability analysis based
on resampling inclusion frequencies, we use the inclusion
frequencies for identifying potential outliers that might
affect selection of genes for a prognostic signature, due to
artificial correlation.

Identifying potential outliers affecting selection

To quantify stability, we performed signature selection
repeatedly in 10,000 subsamples half the size of the orig-
inal data, drawn without replacement. Along the lines of
stability selection [15], boosting was performed in each
of these subsampling data sets with a fixed number of
boosting steps, i.e. a fixed level of model complexity.
Specifically, 100 boosting steps were performed. In theory,
this would allow for up to 100 signature genes (as one

null model
- = clinical
—— clinical+microarray

prediction error
0.00 0.02 0.04 0.06 0.08 0.10 0.12

prediction error
0.00 0.02 0.04 0.06 0.08 0.10 0.12

null model
- = clinical
clinical+microarray

T T T T T T T T
0 100 200 300 400 500 600 700
time (days)

model as a benchmark

Fig. 2 Prediction error curves. .632+ prediction error curve estimates for the microarray signature for the original (left panel) und the updated
endpoint information (right panel), considering an Aalen-Johansen estimator (which doe not use any patient information), and a purely clinical
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0 100 200 300 400 500 600 700
time (days)
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non-zero coefficient of the regression model can be added
or updated in each boosting step). However, on average
only 11 genes were selected, i.e. the regression parame-
ter of each of of these genes received several updates. To
mimic similar selection, p-values from univariate models,
i.e. per gene, were also calculated in each of the sub-
sampling data sets, and the 11 microarray features with
the smallest p-values were considered as selected. Resam-
pling inclusion frequencies were obtained by determining
for each gene the proportion of subsampling data sets
where the respective gene was selected to be part of the
signature.

To investigate whether there might be observations,
such as outliers, that particularly influence signature
selection, we consider a set of genes with at least mod-
erate inclusion frequency. Specifically, there are 15 genes
that are selected in at least 10 % of the subsampling
data sets by the boosting approach for the original end-
point information (most frequently selected genes shown
in Table 2). For these we calculated pairwise cross-tables
with respect to signature inclusion. The rationale behind
this is that correlation structure may lead to strong effects
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of inclusion of one covariate in a regression model con-
ditional on the in- or exclusion of another covariate
[14]. While such behavior of automated variable selec-
tion approaches might be desirable for avoiding groups of
genes in signatures that essentially carry the same infor-
mation, some of this might also be due to few influential
observations such as outliers.

Figure 3 indicates the pairwise odds ratios from the
pairwise cross-tables. There seems to be a cluster of
five genes in the bottom left corner that facilitate inclu-
sion of each other, with a core set of three microarray
features (BX090200, BX104205, and BX118389). Pres-
ence of one of these three microarray features frequently
seems to coincide with exclusion of other microarray fea-
tures, as indicated my many darkly colored fields in the
corresponding rows and columns. To investigate corre-
lation of these three features with ITGA2B (BX281671)
and VPS72 (R88065), which might lead to potential
exclusion, we consider pairwise scatter plots of (stan-
dardized) log2 expression values in Fig. 4. There are
three observations with rather large value for BX104205.
One of these three also has a rather large value for

R88065

BX093741 BX118196 BX090200 BX104205 BX118389 BC029055 R36623 AA994630 BX100481 BX113185 BX094448 H57987 BX281671  R06860

BX093741 BX118196 BX090200 BX104205 BX118389 BC029055

R36623  AA994630 BX100481 BX113185 BX094448  H57987

Fig. 3 Joint selection. Odds ratios of joint selection for microarray features with inclusion frequency larger or equal to 0.1. Blue color indicates odds
ratios < 1, i.e. alternative selection, red colors > 1, i.e. joint selection, with more intense color indicating more extreme effects

BX281671  R06860  R88065




Binder et al. BMIC Medical Genomics (2016) 9:43

Page 90of 13

o -
© -
o ¥ N A
<}
IS4
<
S o ]
x
o
o
INg
)
T T T T T I
-6 -4 -2 0 2 4
BX281671 (ITGA2B)
o
© -
< S

BX104205

R88065 (VPS72)

Fig. 4 Outlier detection. Scatter plots of standardized log2 expression values of some microarray features with strong conditional signature
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BX118389. For both microarray features, these extreme
values, which might be outliers, are not in line with a
potential linear trend between BX104205/BX118389 and
BX281671/R88065 respectively. Therefore, we consider
exclusion of these three observations for subsequent sta-
bility analysis.

Impact of modeling choices on stability

For stability analysis, we consider the following model-
ing choices: (1) The type of bioinformatic approach for
signature selection (per-gene Cox models vs. boosting
for fitting a multivariable model), (2) exclusion of (the
three) potential outliers vs. analysis using all observa-
tions, (3) the type of the endpoint approach, Fine-Gray
regression vs. Cox regression for cause-specific hazards,
and (4) using the original endpoint vs. the updated end-
point information. Many of the possible 16 combina-
tions were performed in each of the 10,000 subsampling
data sets.

Table 2 shows the inclusion frequencies for all genes
that received an inclusion frequency of at least 20 % in at
least one of the considered modeling choices. Generally,
the inclusion frequencies are considerably smaller com-
pared to what might be expected in a low-dimensional

regression setting, where variables can be selected more
reliably, but comparable to other applications to gene
expression data [14]. There are rather stably selected
microarray features, such as H57987, which are identified
regardless of the specific modeling choice. For other genes
the inclusion frequencies vary widely. The choice between
Fine-Gray regression (indicated by “sh”) and Cox regres-
sion for cause-specific hazards (indicated by “csh”) leads
to changes in inclusion frequencies of up to 20 %. There is
no clear tendency towards larger inclusion frequencies for
one of the two modeling approaches, but some genes seem
to be selected more stably when using Fine-Gray regres-
sion, e.g. R06860, and some by cause-specific modeling,
e.g. ITGA2B (BX281671). For the latter gene, choice of
the endpoint seems to be more important for stable selec-
tion than choice of the specific regression model. This
this is also the case for VPS72 (R88065). For these genes,
use of cause-specific hazard boosting together with the
original endpoint and exclusion of the potential outliers
drastically improves selection stability (from less than 1
to 27 % BX281671). This is remarkable, as the different
modeling approaches do not directly optimize for selec-
tion stability, prediction performance being the primary
criterion.
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To more formally evaluate the effect of modeling
choices, we fit a binomial regression model for the per-
gene inclusion frequencies conditional on the combina-
tions of different modeling choices. This model includes
main effects for the four modeling choices above, and
two-way interactions (Up to four-way interactions were
considered in preliminary analyses but turned up no
strong effects beyond two-way interactions). The results
for ITGA2B are shown in Table 3. Using the original vs. the
updated endpoint information has the largest impact. Use
of per-gene models vs. boosting for multivariable mod-
eling is seen to have an impact comparable to that of
excluding the three potential outliers. The specific type of
regression model (cause-specific vs. Fine-Gray) is seen to
have the least impact when combined with the boosting
approach. For the per-gene approach, the type of hazard
model seems to have a much larger impact (term “sh x
univariate” in Table 3). One explanation might be that
there is much stronger competition for the top 11 spots in
the list of p-value sorted genes, and changes in the hazard
model shift the balance between genes. In contrast, the
boosting approach is directly optimized for picking only
few genes, leaving room for some genes that might only be
relevant for a specific hazard setting.

The impact of the modeling choices on selection with
respect to all genes is assessed by fitting a separate bino-
mial regression model for the signature inclusion of each
gene that has an inclusion larger or equal to 0.1 for
any of the modeling approaches. After Bonferroni cor-
rection, the endpoint update and the type of approach
for signature selection are seen to have an effect on the

Table 3 Binomial regression model for signature inclusion of
microarray feature BX281671 (ITGA2B) in different modeling
approaches (sh: Fine-Gray regression; csh: cause-specific hazard
model)

Term ITGA2B All features
estimate p-value  sig- sig+
Intercept —382 <0001 - -
shvs.csh —-0.16 0013 24 16
Outlier excluded 058 <0001 29 19
Original endpoint 263 <0001 30 23

Univariate model —-098 <0001 31 23

sh x outlier excluded —-001 0798 0 0
sh x original endpoint —-012 0056 19 17
sh x univariate —1.27 <0.001 31 25

—-043 <0001 19 N

0055 21 14

Outlier excluded x original endpoint

Original endpoint x univariate 0.15

The numbers of significant effects (5 % level after Bonferroni correction) for all 58
microarray features with inclusion frequency larger or equal to 0.1 in any of the
approaches are indicated in the two rightmost columns, separately by positive and
negative signs
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largest number of genes (highlighted by boldface in the
two rightmost columns of Table 3). Similar to the effect
seen for ITGA2B, the per-gene approach seems to result
in decreased stability, as compared to the multivariable
approach (term “univariate” in Table 3).

The overall contribution of different analysis compo-
nents for more comprehensively judging the effects of
genes is exemplarily illustrated for ITGA2B in Fig. 5. Using
boosting for obtaining two gene signatures, for the orig-
inal endpoint and the new endpoint respectively, already
indicated that detection of ITGA2B might considerably
depend on model choice. Still, this result might have been
due to random variability, as signatures are known to be
highly unstable [9]. As indicated above, we leveraged sev-
eral resampling-based building blocks for getting more
firm conclusions. Estimates of prediction error indicated
that there actually might be prognostic information in the
gene expression measurements, warranting further inves-
tigation of gene signatures. Pairwise resampling inclusion
frequencies allowed for detection of potential outliers,
expanding model choices by outlier exclusion. Finally, per
gene inclusion frequencies allowed to judge the effect of
the different modeling choices, in particular concerning
the original result on the model choice effect on selection
of ITGA2B.

Discussion

The high cardiovascular morbidity and mortality
in patients with ESRD and chronic maintenance-
hemodialysis remains an unsolved problem. The grim
prognosis of ESRD, particular during the first year, has
not significantly changed over the past years [31]; despite
significant technological advances and use of extensive
resources, dialysis patients suffer a >20 % annual mor-
tality rate in most countries [32]. It is remarkable that
even young patients, typically not at risk for cardiovas-
cular disease, face a dramatic increase in mortality once
exposed to hemodialysis [33]. Another concerning aspect
is the complete failure of lipid-lowering drugs, typically
powerful agents to combat cardiovascular disease, to
improve the survival of hemodialysis patients [34, 35].
Moreover, anticoagulation and platelet inhibitors nega-
tively affect survival of hemodialysis patients; in a large
meta-analysis, patients exposed to warfarin, clopidogrel,
and/or aspirin had significantly increased mortality rates
[36, 37]. These observations suggest that the prevalence
of cardiovascular disease is only partly explained by con-
ventional risk factors, and that the mechanisms causing
cardiovascular disease and death in hemodialysis patients
differ from other populations [38]. This urgent medical
problem motivated us to tackle development of a prog-
nostic gene expression signature for identifying targets to
predict or treat cardiovascular disease in hemodialysis.
We speculated that the gene profile of peripheral blood
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Fig. 5 Data and analysis flow. Use of original data and resampling data sets for different analyses, specifically, for obtaining signatures, estimating
prediction performance, identifying outliers and judging stability of selection, exemplarily illustrated for ITGA2B

cells might mirror some of the pathological changes that
lead to cardiovascular disease in this population.

Prediction performance of signatures developed by a
multivariable regression approach showed improved pre-
diction performance compared to a purely clinical model,
indicating that there might be some relevant prognos-
tic information in the gene expression measurements.
Well aware that prognostic signature development might
nevertheless be highly unstable due to the small num-
ber of events [9], we developed a strategy for not only
identifying a signature, but quantifying stability and the
influence of different modeling choices on stability. While
selection stability will generally be not as good as in low-
dimensional applications [14], changes in stability might
nevertheless be useful for guiding modeling.

Our approach is based on resampling inclusion frequen-
cies, and not only allows to quantify stability, but also
helped to flag potential outliers that might affect signa-
ture building. The effect of three such potential outliers
on selection stability was seen to be on a level similar to
the impact of choosing a specific bioinformatic approach
for gene selection. The largest impact on stability was
seen for an update of endpoint information, which might
be frequently performed in cohort studies with long fol-
low up, i.e. there is a high likelihood that in many studies

signature stability might be affected by issues with end-
point information.

A disadvantage of such a resampling approach for sta-
ble selection of genes is that it no longer results in a gene
signature (as originally provided by the underlying multi-
variable regression technique), but just a list of genes with
resampling inclusion frequencies. Still, using a cutoff on
the latter, a set of genes could be selected and combined
into a rule for risk stratification, e.g. by weighting the
genes according to the average of estimated regression
coefficients from the resampling data sets, or by a simpler
scoring rule where 1 point in a risk stratification score is
assigned (or deducted) for each over-expressed gene.

One particular gene whose identification was affected
by the specific modeling choices was ITGA2B. Our
strategy allowed us to better judge whether this gene
might truly be associated with cardiovascular events. In
addition, such effects also are biologically plausible. In
myocardial infarction, the platelet glycoprotein (GP) IIb of
the IIb/IIla complex is activated, and accelerates platelet
aggregation and thrombosis by acting as a receptor for
fibrinogen; conversely, inhibition of the GP IIb/IIla com-
plex has been shown to ameliorate the outcome of cardiac
ischemia [27, 39]. Our results now indicate that ESRD
patients with an increased ITGA2B expression after a
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two-day dialysis-free interval have an increased risk to
develop a cardiovascular event over an observation period
of two years. The surface of resting platelets typically
contains 500 to 800 GP IIb/Illa complexes [40]. Our
results suggests that GP IIb/I1la complexes accumulate on
platelets of hemodialysis patients with high cardiovascu-
lar risk. Accelerated GP IIb/Illa-mediated cross-linking of
platelets during ischemia may facilitate rapid thrombus
formation, and perhaps contributes to the high frequency
of sudden cardiac death and unfavorable outcome after
myocardial infarction in ESRD patients. Platelet activation
and the formation of platelet-leukocyte aggregates during
hemodialysis have been utilized to determine the biocom-
patibility of a renal replacement modality for several years
[41]. However, more recently, the presence of platelet-
monocyte aggregates has been linked to an increased
cardiovascular risk in patients with ESRD irrespective of
the dialysis modality [42].

A limitation of the present study is that there is no
external data for validation of increased risk. While
the proposed .632+ resampling approach repeatedly
performs signature selection and risk assessment on
separate subsets of the data to estimate performance
on new data, this cannot fully replace real external
validation data. For example, the latter will typically
exhibit some structural differences, which cannot be
anticipated by the resampling approach. Also, while
biologically plausible, results were seen to be strongly
affected by the different modeling choices. Also, similar
to other gene expression applications, stability of gene
selection generally was rather low, making it difficult to
reliably pinpoint single genes for subsequent validation.
Therefore, additional studies are needed to validate
that increased expression of platelet markers predicts
an increased risk for cardiovascular events in ESRD
patients.

Conclusions

ESRD patients experience a high mortality rate due to
cardiovascular events that is poorly explained by conven-
tional risk factors. Gene profiling in combination with
clinical parameters revealed that abnormal expression of
platelet proteins might predict an increased risk for car-
diovascular disease. Oral GP IIb/IIla antagonists used in
the setting of acute myocardial infarction have gener-
ally been disappointing, and a meta-analysis suggested a
higher mortality for ESRD patients treated with clopido-
grel and/or aspirin [43]. However, our data suggest that
a preemptive therapy targeted against aberrant platelet
activation may be beneficial to ESRD patients at risk for
cardiovascular disease. Thus, it will important to evalu-
ate in prospective studies whether measures that prevent
platelet activation decrease the incidence of cardiovascu-
lar events in ESRD patients.
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The proposed strategy for analyzing prognostic signa-
ture selection stability allowed us to precisely quantify
the impact of modeling choices on the stability of marker
identification. Thus we suggest routine use also in other
applications to prevent analysis-specific results, which are
unstable, i.e. not reproducible.
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