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Abstract

Background: Detection of disease-associated markers plays a crucial role in gene screening for biological studies.
Two-sample test statistics, such as the t-statistic, are widely used to rank genes based on gene expression data.
However, the resultant gene ranking is often not reproducible among different data sets. Such irreproducibility may
be caused by disease heterogeneity.

Results: When we divided data into two subsets, we found that the signs of the two t-statistics were often reversed.
Focusing on such instability, we proposed a sign-sum statistic that counts the signs of the t-statistics for all possible
subsets. The proposed method excludes genes affected by heterogeneity, thereby improving the reproducibility of
gene ranking. We compared the sign-sum statistic with the t-statistic by a theoretical evaluation of the upper
confidence limit. Through simulations and applications to real data sets, we show that the sign-sum statistic exhibits
superior performance.

Conclusion: We derive the sign-sum statistic for getting a robust gene ranking. The sign-sum statistic gives more
reproducible ranking than the t-statistic. Using simulated data sets we show that the sign-sum statistic excludes
hetero-type genes well. Also for the real data sets, the sign-sum statistic performs well in a viewpoint of ranking
reproducibility.

Keywords: Gene expression analysis, Genes screening, Heterogeneity, Subsampling method, Two-sample test,
U-statistic

Background
Detection of disease-associated markers plays a crucial
role in gene screening for biological studies. In this field,
statisticians seek to identify informative genes as candi-
dates for further investigation. To this end, it is desirable to
correctly rank genes according to their degree of differen-
tial expression. In such efforts, two-sample test statistics,
such as the t-statistic andWilcoxon sum-rank statistic, are
widely used to rank genes based on gene expression data.
However, the resultant gene rankings are often not

reproducible among different data sets. Such irrepro-
ducibility may be caused by disease heterogeneity [1]. In
fact, we can easily confirm this ranking irreproducibility in
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the microarray data used by [2] (see Application for more
detail). That data set contains 51 non-metastatic samples
and 46 metastatic samples from patients with breast can-
cer, a disease that is heterogeneous due to the existence
of multiple subtypes [3]. We divided the full data into
two independent sets (data1 and data2), transformed each
data set such that the t-scores of data1 were positive with-
out loss of generality, and then ranked genes using the
t-statistic in data1 and data2 separately. Figure 1 shows the
correspondence of these ranking scores. Some genes that
were top-ranked in data1 had rather low scores in data2.
Moreover, for many genes, even the signs of the t-scores
were mismatched. This may be due to statistical variations
caused by a sample size or heterogeneous factors in breast
cancer. Thus, the simple t-statistic or correlation results
in an unstable estimation that strongly depends on the
dataset used.
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Fig. 1 Scores for two independent data sets obtained using the t-statistic. The relative importance are evaluated based on the absolute values. Red
points under the vertical line denotes the sign mismatched genes between the two data sets

Such heterogeneity was also discussed in a context of
cancer outlier [4, 5] which developed the methods using
the two-sample test statistic to detect genes that are over
or down expressed in the subset of the disease group
compared with the normal group. In this paper, we focus
not on the subset but rather on the whole set. That is,
our main aim is to detect the genes that are differen-
tially expressed entirely in the disease group. Thus we
develop the ranking method which has robustness for the
heterogeneity.
Novel methods such as lasso are able to determine

both highly ranked genes and classifiers simultaneously.
However, [6] supported the importance of choosing a fil-
tering method that yields a gene ranking corresponding
to feature selection, rather than to the classification in
machine-learning theory. In other words, pre-selection
and evaluation of the resultant gene set must be separated
from the classifier’s performance. Moreover, each top-
ranked gene in itself must be informative or effective in
some sense, e.g., robustness with respect to heterogeneity
focused in this paper. Therefore we consider the rank-
ing score independently derived for each gene, unlike [7],
which took correlations between genes into consideration.
Because t-statistics and correlations strongly fluctuate

due to sample variation, combining a sampling method
with a two-sample test statistic should improve repro-
ducibility. The effects of sampling method have been
demonstrated by multiple studies, both theoretical [8]
and applied [9]. Meanwhile, [10] presented counterar-
guments: several approaches to feature selection with
ensemble learning by the sampling method are ineffective
in terms of predictive ability, stability, and interpretability.
Those authors concluded that the simple Student’s t-test
exhibits superior performance in these regards. Dabney
[11] also argued that the simple t-statistic is more accu-
rate than the modified t-statistic and shrunken centroids.
However, those authors’ conclusions are based on empir-
ical studies in the context of particular data. We argue
that the sampling method is effective from the standpoint
of robustness with respect to heterogeneous factors; this
is because heterogeneity represents a mixture of two or

more classes, and we can easily imagine that sampling is
the best way to capture heterogeneity to integrate infor-
mation from many small subsample sets. To stabilize the
performance of the simple t-statistic, we derived a sign-
sum statistic that improves ranking reproducibility. This
novel statistic repeatedly counts the sign of mean differ-
ence between subsets of the normal and disease groups.
The sign-sum statistic is an extension of the Wilcoxon
sum-rank statistic, which itself has superior robustness
but an inferior power relative to the t-statistic [12]. We
show the probabilistic result of the sign-sum statistic, and
demonstrate its superior performance through simula-
tions and applications to real data in this paper.

Methods
Derivation
Let Xij be gene expression levels for samples i = 1, · · · , n,
genes j = 1, . . . , p. We assume that all samples fall into
either of two groups, 0 or 1, which denote normal and dis-
ease groups consisting of n0 and n1 samples respectively.
Then, a two-sample t-statistic is defined by

Tj =
√
n

(
X̄j1 − X̄j0

)
sj

, (1)

where X̄jy is the sample mean of group y for gene j.
There are two options for sj, a pooled Student’s type or a
non-pooled Welch’s type. In this paper, we use Welch’s t-
statistic; therefore, sj is written as sj =

√
s21j/π̂1 + s20j/π̂0,

where syj is the sample standard deviation of gene j and
π̂y = ny/n for group y. Without loss of generality, we can
assume that X̄j1 − X̄j0 ≥ 0.
However, as discussed in Background, the t-statistics

can fluctuate between two divided data sets, and even
the signs of t-statistics can be mismatched. Therefore, we
focus our attention to the signs of the t-statistics. If the
t-statistics are evaluated by the full sample, the signs are
positive over all genes by the assumption above. However,
if the t-statistics are evaluated by subsets of the full sam-
ple, the signs may change, as shown in Fig. 1. Therefore,
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we derived a sign-sum statistic to count the signs of the
t-statistics for all possible subsets.
We pick samples of sizes a and b from groups 1 and 0

respectively; thus, there are
(n1
a
)
and

(n0
b
)
combinations of

subsets from each class. The sign-sum statistic is defined
as

US
j = 1

k0k1

k1∑
l=1

k0∑
m=1

H(X̄j1l − X̄j0m), (2)

where k1 = (n1
a
)
, k0 = (n0

b
)
, H(x) is a Heaviside-step func-

tion that takes the value 0 if x < 0 or 1 otherwise, and X̄jyt
is the sample mean of gene j in the t-th subset of group
y. A larger value of the sign-sum statistic means that the
signs of the t-statistics evaluated by subsamples are more
stably positive. We can show that the sign-sum statistic is
an extension of Wilcoxon’s sum-rank statistic; in fact, if a
and b are equal to 1, then they are equivalent.
For comparison, we derived a t-statistic evaluated by

subsamples. In a manner similar to the derivation of the
sign-sum statistic, it is defined as

UT
j = 1

k0k1

k1∑
l=1

k0∑
m=1

√
a + b (X̄j1l − X̄j0m)

sj
. (3)

These statistics are described by the character U
because they are members of t-statistics, as shown in
Additional file 1. We compare the sign-sum statistic (2)
with the t-statistic evaluated by subsamples (3) from the
perspective of t-statistics in the next subsection.
By the assumption X̄j1 − X̄j0 ≥ 0, the gene which has

a larger score of the statistic is regarded as more infor-
mative for the detection of differentially expressed genes;
thus, the gene ranking is obtained by sorting the values of
the statistics in descending order over all genes.

Robustness for heterogeneity
Heterogeneous disease factors can cause a mixture of two
or more classes in some gene expression levels in the
disease group. We call genes affected by such factors as
“hetero genes”, and unaffected genes as “homo genes”. The
sign-sum statistic can effectively detect such heterogene-
ity. To demonstrate this, here we provide a theorem about
asymptotic confidence intervals.
Let U be a general two-sample U-statistic (we drop

the gene index for simplicity). Because the U-statistic
has the property of asymptotic normality, the asymptotic
confidence interval is described as E[U]±(σU/

√
n)Zα/2,

where σ 2
U is an asymptotic variance of U and Zα/2 is the

100α/2 upper percentile of a standard normal distribu-
tion. Because UT and US are members of U-statistics,
these statistics are evaluated by the interval estimators as
shown in Theorem 1.

Theorem 1

1. The asymptotic confidence interval of the t-statistic
evaluated by subsamples with level α is

√
a + b (μ1 − μ0)√

σ 2
1

π1
+ σ 2

0
π0

± Zα/2
(a + b)1/2√

n
(4)

if π̂1 → π1 and π̂0 → π0, where π1 + π0 = 1 and
Zα/2 is 100α/2 upper percentile of a standard normal
distribution.

2. The asymptotic confidence interval of the sign-sum
statistic (2) with level α is

E[US]±Zα/2
σ̃√
n
, (5)

if π̂1 → π1 and π̂0 → π0, where Zα/2 is 100α/2 upper
percentile of a standard normal distribution, and

E[US] = E[G1(V1)] , (6)

σ̃ 2 = a2

π1
Var[G1(V1)]+ b2

π0
Var[G0(V0)] , (7)

where Gy(v) = Pr(Wy ≤ v) for y = 0, 1, and

V1 = 1
a
X11,W1 = −1

a

a∑
i=2

X1i + 1
b

b∑
j=1

X0j,

V0 = −1
b
X01,W0 = −1

a

a∑
i=1

X1i + 1
b

b∑
j=2

X0j.

Here X1s and X0s are independently distributed with
F1 and F0, which denote the distribution functions of
gene expression levels of the disease and normal
groups, respectively.

A proof of the Theorem 1 is given in Additional file 1.
We note that V1 − W1 and V0 − W0 represent the mean
differences in the disease and normal groups, respectively.
A property ofU-statistics allows us to evaluate the asymp-
totic variance of the sign-sum statistic by the conditional
distribution of Wy given Vy for each group y. The differ-
ence between these two statistics is mainly due to the fact
that the sign-sum statistic is the sum of the non-linear
functions of the t-statistic evaluated by subsamples. As a
result, information about F1 and F0 is strongly reflected in
the sign-sum statistic as a result of changing a and b. We
can discriminate hetero genes from homo genes by this
property, as shown in the next subsection.

The effects of different setting of parameters
Here we aim to remove heterogeneous factors by choosing
a and b used in the sign-sum statistic, or equivalently con-
trolling the subsample sizes from the disease and normal
groups. If the t-value of a homo gene is larger than that of
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a hetero gene, then the t-statistic easily distinguishes the
homo gene from the hetero gene. However, if the t-values
of the two genes are equal, then the t-statistic will con-
fuse these genes, because their confidence intervals are
equal. Such confusing homo genes will be top-ranked by
the sign-sum statistic if we find a and b such that

UT
homo = UT

hetero, U
S
homo > US

hetero. (8)

The difficulty and importance of considering such het-
ero genes is also discussed in [13] in the context of the false
positive rate. The sign-sum statistic repeatedly counts the
sign of the difference between the means of the disease
and normal groups. Hence, the sign mismatches due to
heterogeneity in the disease group would be effectively
detected by a small a value, chosen such that the sample
mean of the disease group fluctuates. This consideration
is supported through numerical evaluations of specific
situations, as described below.
Let all gene expression levels in the normal group follow

N(0, 1) without loss of generality. Then, the homo gene
expression levels of the disease group follow N(μ1, σ 2

1 ),
and the hetero gene expression levels follow τ1N(m1, v21)+
τ2N(m2, v22), where τ1 and τ2 are mixing proportions with
τ1 + τ2 = 1. Moreover, we constrain expectations of the
t-statistics of these genes by equality in the limiting sense
of probability convergence. That is,

μ1 − μ0√
σ 2
1

π1
+ σ 2

0
π0

= μ∗
1 − μ0√

σ ∗2
1
π1

+ σ 2
0

π0

, (9)

where π1,π0,μ∗
1, and σ ∗

1 are the sample ratio of the disease
group, the sample ratio of the normal groups, the expected
mean, and the expected standard deviation of the het-
ero gene. The ranking by t-statistics fluctuates because
the interval estimators of the hetero and homo genes are
almost overlapping.
The asymptotic confidence interval of the sign-sum

statistic is not evaluated analytically because it has an inte-
gral form. In some situations, we can confirm that upper
confidence limits of the sign-sum statistic differ between
the homo and hetero genes. Figure 2 shows one such
situation in the same setting as simulation (I) in Simula-
tion. Thus, the sign-sum statistic can distinguish homo
and hetero genes, whereas the t-statistic cannot. Figure 2
shows that (i) for each fixed value of a (sampling size
from normal group), a larger value of b (sampling size
from disease group) is better at discriminating these sce-
narios, and (ii) a smaller value of a tends to be superior.
This is because disease heterogeneity affects the differ-
ence between a sensitive estimator of the mean in the
disease group and a stable estimator of the mean in the
normal group. Although it would be ideal to obtain an
optimal setting for the sampling size in general situations,
based on these observations we fixed a as 1 and allowed

b to be 1, 5, or 10 below. Below, the sign-sum statistic for
each a and b is described as sa,b.

Simulation
We carried out simple simulation studies to evaluate the
performance of the sign-sum statistic. With the number
of genes set at 1000, we generated expression levels for
100 homo genes and 100 hetero genes; the remaining 800
were non-informative genes whose expression level dis-
tributions were equal in the disease and normal groups.
Gene expression levels in the normal group were assumed
to be drawn from a standard normal distribution N(0, 1)
without loss of generality. Homo gene expression levels
in the disease group were drawn from a normal distri-
bution N(1, σ 2

1 ), and hetero gene expression levels in the
disease group were drawn from a normal mixture distri-
bution τ1N(0, 1) + τ2N(m2, 1), where τ1, τ2 are positive
values with τ1 + τ2 = 1. The mixture model suggests that
a proportion τ1 of gene expression levels in the disease
group cannot be discriminated from those in the normal
group, as in real data.
We considered three situations in which the t-statistic

confuses the homo and hetero genes by the constraint as
(9) with different parameters: (I) σ 2

1 = 1, τ1 = 0.5, (II)
σ 2
1 = 4, τ1 = 0.75 and (III) σ 2

1 = 1, τ1 = 0.25, with
sample size n = 200, 1000 with equal n0 and n1. We
compared the gene rankings among three statistics: sim-
ple t-statistic with subsamples, simple t-statistic without
subsamples, and sign-sum statistic with 100 repetitions.
The sampling sizes were fixed as a = 1 and b = 1 for
the t-statistic, and as a = 1 and b = 1, 5 and 10 for the
sign-sum statistic. Robustness with respect to heterogene-
ity was calculated based on the number of homo genes in
the top 100 ranking. Although UT

j and US
j are defined by

all possible subsets, in this case we only need to evaluate
sufficient combinations to achieve convergence of the top
100 rankings as written in Additional file 2.

Application
We compared the t-statistic with the sign-sum statistic
using five real data sets [2, 14–17]. The data set in [2]
(breast cancer data) contains 97 gene expression subjects
for primary breast tumors in which 46 subjects are in
relapsed group and 51 subjects are in relapse-free group
for 5 years.We applied the same filtering used in [2], yield-
ing a final full data set consisting of 97 samples and 5420
genes. The data set in [14] (cohort data) combine 454 gene
expression samples from different diseases. We picked 32
samples from lung cancer tumors, 45 samples from pan-
creatic ductal adenocarcinoma tumors, and 70 samples
from unaffected individuals, yielding a final full data set
consisting of 147 samples and 863 genes. The data set in
[15] (prostate cancer data) contains 6144 gene expressions
for 455 prostate cancer tumors in which 103 subjects are
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Fig. 2 Difference in the 95 % upper confidence limits between homo and hetero genes. Each bounds is evaluated by (4) when π1 = π0 = 0.5,
σ 2
1 = 1, and τ1 = τ0 = 0.5

determined as fusion status-positive and 352 subjects are
determined as fusion status-negative. The data set in [16]
(breast cancer data2) contains 17489 gene expressions for
286 breast cancer tumors in which 107 subjects are in
relapsed group and 179 subjects are in relapse-free group
within 5 years. The data set in [17] (leukemia data) con-
tains 7129 gene expressions for 72 leukemia samples in
which 47 subjects are in acute lymphoid leukemia group
and 25 subjects are in acute myelogenous leukemia group.
For these data, the measure of reproducibility is given

below. First, we divided the original data randomly into
two data sets while maintaining the sample ratio of the
disease and normal groups at the same value as in the
full data set. After gene rankings were performed by the
t-statistic and the sign-sum statistic, we selected the top-
ranked 100 genes and counted the genes that overlapped
between the two selections. This procedure was repeated
for 100 trials, so we compared the t-statistic with the sign-
sum statistic based on the mean and standard deviation
of the overlapping counts. To account for the difference in
sample sizes of the two datasets we also usedORRS (Over-
lap Ratio to Random Selection). For p genes, theORRS for
the top k-ranking is defined as

1
T

T∑
t=1

|S1t ∩ S2t|
Np,k

, (10)

where Np,k = ∑k
i=0 i

(k
i
)(p−k

k−i
)
/
(p
k
)= k2/p, S1t and S2t are

the top k-ranked genes sets for two divided data on the t-
th trial; in this case, k = 100 and T = 100. Np,k refers to
the expected overlap in gene number for a random selec-
tion. A largerORRS value means that the selection is more
reproducible than the random selection.

Results and discussion
The performance of the sign-sum statistic
Table 1 shows the simulation results. We observe that
the sign-sum statistic selected more homo genes highly
associated with the class labels than the t-statistic. Over-
all, s1,10, the sign-sum statistic with sampling size 1 from
the disease group and 10 from the normal group, per-
formed the best in Situations (I) and (II). s1,1, s1,5, s1,10 were
competitive and performed better than the t-statistic in
Situation (III). These results confirmed the stable behav-
ior of the sign-sum statistic, as shown in Fig. 2. Figure 3
also illustrates the superior performance of the sign-sum
statistic, which shows one of the resulting ranking scores
from the 100 trials. Homo and hetero genes were well
discriminated by sign-sum statistic, but confused by the

Table 1 The number of homo genes in the top 100 ranking:
these are obtained using the t and sign-sum statistics. Means(sd)
from 100 repetitions for each situations and sample size is written

n = 200

t t1,1 s1,1 s1,5 s1,10

Situation I 50.0 (4.12) 49.7 (3.67) 61.7 (3.20) 80.8 (2.56) 83.1 (2.36)

Situation II 49.9 (3.50) 49.3 (3.49) 48.9 (3.19) 56.5 (3.16) 57.8 (3.23)

Situation III 49.7 (3.09) 49.4 (3.31) 72.1 (2.77) 73.3 (3.12) 72.4 (3.14)

n = 1000

t t1,1 s1,1 s1,5 s1,10

Situation I 49.9 (4.19) 49.9 (4.08) 75.2 (2.98) 97.3 (1.20) 98.2 (1.00)

Situation II 50.1 (3.58) 49.9 (3.86) 47.6 (3.48) 64.0 (3.07) 67.2 (3.13)

Situation III 50.2 (3.65) 50.3 (3.82) 90.7 (2.19) 92.6 (2.04) 92.4 (1.98)

Two small subscripts for each statistic denote sampling sizes from the disease and
normal groups in this order
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Fig. 3 Scores obtained using the t-statistic, Wilcoxon sum-rank statistic, and sign-sum statistic with two sampling sizes. From left to right, n = 200
(upper), n = 1000 (lower). Horizontal axis denotes the gene indices. Vertical label denotes the ranking score. High score indicates relative importance
for discrimination of class labels. The first 100 genes are homo informative genes, the next 100 are the hetero informative genes, and the last 800
genes are the non-informative genes

t-statistic. The ranking yielded better results in a large
sample size (n = 1000) than in a small sample size (n =
200). When the sample size is 1000, almost all homo genes
were ranked higher than hetero genes. Table 2 shows
the application results, which indicated that the sign-sum
statistic performed better with respect to these repro-
ducibility measures. Overall, s1,10 performed the best, and
this result corresponds to the simulation study, as shown
in Table 1.

Discussion
Gene ranking procedures are not reproducible among dif-
ferent studies [18]. To obtain a robust ranking, ensemble

or resampling methods are effective [8, 9]. Counterin-
tuitively, however, resampling methods do not improve
reproducibility [10]. In this paper, we evaluated a resam-
pling method for robustness with respect to heterogeneity
in a microarray study. We focused on the sign mismatch
of t-scores in the context of a classification problem. We
often found that the genes with large t-scores in the train-
ing data had small or sign-reversed t-scores in the test
data. The sign-sum statistic was developed based on these
two motivations. Using numerical simulation, we proved
that the sign-sum statistic improves the robustness with
respect to heterogeneity relative to the t-statistic. Fur-
thermore, the sign-sum statistic allowed us to obtain a
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Table 2 Reproducibility and ORRS: these values indicate mean(sd) and were evaluated by 100 random separations of the full data

Reproducibility t t1,1 s1,1 s1,5 s1,10

Breast cancer data 3.78 (1.92) 3.68 (1.99) 4.33 (2.13) 6.70 (2.77) 7.39 (3.37)

Cohort data 23.7 (4.94) 23.5 (4.86) 27.5 (5.70) 43.4 (5.39) 42.6 (5.28)

Prostate cancer data 33.4 (4.29) 32.6 (4.69) 39.6 (4.76) 31.4 (4.64) 29.4 (4.23)

Breast cancer data2 1.39 (1.35) 1.42 (1.31) 1.00 (1.10) 3.33 (1.80) 3.82 (1.91)

Leukemia data 32.3 (4.47) 31.8 (4.41) 34.2 (4.59) 37.4 (4.30) 37.1 (4.22)

ORRS t t1,1 s1,1 s1,5 s1,10

Breast cancer data 2.20 (1.11) 2.14 (1.16) 2.52 (1.24) 3.90 (1.62) 4.30 (1.96)

Cohort data 2.02 (0.42) 2.01 (0.42) 2.35 (0.49) 3.71 (0.46) 3.63 (0.45)

Prostate cancer data 20.0 (2.57) 19.5 (2.81) 23.7 (2.85) 18.8 (2.78) 17.6 (2.54)

Breast cancer data2 2.73 (2.64) 2.78 (2.57) 1.96 (2.16) 6.53 (3.53) 7.49 (3.75)

Leukemia data 19.3 (2.68) 19.1 (2.64) 20.5 (2.75) 22.4 (2.57) 22.2 (2.53)

reproducible ranking in applications to real data. These
conclusions were validated by an evaluation of the upper
confidence limit (Theorem 1).
In the context of gene screening, FDR (False Discovery

Rate) has been studied by novel methods such as SAM

[19] and ranking procedure by q-values [20] for decisions
about the cut-off value for gene ranking. It is lessmeaning-
ful to focus on the cut-off value until we have a correct and
stable gene ranking. Therefore, in this study, we focused
on obtaining a reproducible gene ranking. Obtaining the

Table 3 Test AUC for four real data sets: each predictor is constructed by the DLDA rule. These values indicate mean(sd) and were
evaluated by 100 random separations of the full data

breast cancer data AUC of the test data by DLDA

t t1,1 s1,1 s1,5 s1,10

10 genes 0.698 (0.058) 0.698 (0.058) 0.698 (0.060) 0.684 (0.065) 0.679 (0.069)

50 genes 0.705 (0.046) 0.705 (0.047) 0.707 (0.050) 0.712 (0.051) 0.712 (0.050)

100 genes 0.711 (0.045) 0.710 (0.045) 0.712 (0.047) 0.718 (0.045) 0.718 (0.045)

Cohort data AUC of the test data by DLDA

t t1,1 s1,1 s1,5 s1,10

10 genes 0.744 (0.061) 0.743 (0.061) 0.751 (0.064) 0.755 (0.064) 0.771 (0.063)

50 genes 0.779 (0.057) 0.778 (0.057) 0.773 (0.053) 0.784 (0.053) 0.789 (0.054)

100 genes 0.782 (0.056) 0.781 (0.057) 0.778 (0.054) 0.781 (0.052) 0.784 (0.051)

Prostate cancer data AUC of the test data by DLDA

t t1,1 s1,1 s1,5 s1,10

10 genes 0.835 (0.025) 0.835 (0.026) 0.832 (0.025) 0.823 (0.027) 0.808 (0.032)

50 genes 0.846 (0.023) 0.845 (0.024) 0.847 (0.022) 0.836 (0.029) 0.829 (0.033)

100 genes 0.844 (0.024) 0.842 (0.025) 0.848 (0.021) 0.829 (0.030) 0.822 (0.033)

Breast cancer data2 AUC of the test data by DLDA

t t1,1 s1,1 s1,5 s1,10

10 genes 0.612 (0.044) 0.614 (0.041) 0.611 (0.043) 0.595 (0.042) 0.581 (0.044)

50 genes 0.634 (0.040) 0.633 (0.040) 0.630 (0.042) 0.623 (0.039) 0.619 (0.040)

100 genes 0.637 (0.040) 0.636 (0.038) 0.636 (0.416) 0.630 (0.037) 0.626 (0.038)

Leukemia data AUC of the test data by DLDA

t t1,1 s1,1 s1,5 s1,10

10 genes 0.981 (0.017) 0.982 (0.017) 0.986 (0.014) 0.991 (0.012) 0.990 (0.016)

50 genes 0.992 (0.014) 0.992 (0.014) 0.988 (0.013) 0.994 (0.008) 0.994 (0.008)

100 genes 0.992 (0.016) 0.991 (0.017) 0.989 (0.013) 0.995 (0.006) 0.995 (0.009)
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cut-off value of the sign-sum statistic is a goal for future
work.
In this paper, we focused on robustness with respect

to heterogeneity. However, we should still confirm that
resulting genes are informative. In fact, the cancer out-
lier methods, which focus on the hetero genes, provide
high reproducibility. However, we consider that the top-
ranked differentially expressesd genes in any rankings
should be effective for the latter prediction problem.
Although further study is needed for such discussion,
we performed a simple examination to ensure a certain
degree of predictive power. Table 3 shows thepredictive
performance of DLDA (Diagonal Linear Discriminant
Analysis) measured by AUC (Area Under the Curve).
The AUC was calculated for all 100 trials used in
Application, regarding randomly two divided datasets as
training and test data. The scores were based on the top
10, 50 or 100 genes in every ranking. In particular, it shows
that the t-statistic and sign-sum statistic have compara-
ble predictive performance, although the DLDA predictor
is constructed from each t-value for all genes. Thus the
sign-sum statistic improves the ranking reproducibility
without loss of predictive performance of the resultant
genes.
Gene ranking is an essential in biological investiga-

tions. In this study, we were motivated by the desire
to identify robust and predictive biomarkers. Hetero
genes may be informative for some patients, but unin-
formative in others. In this sense, hetero genes should
be extracted from gene rankings if these predictive
performance is eqaul to or less than that of homo
genes.

Conclusions
The t-statistic confuses homo and hetero genes as shown
in the simulation study. The ranking irreproducibility
would be caused by such heterogeneity also in the real
data analysis. In fact, even the signs of t-statistics of many
genes mismatch in the real data. We present the sign-sum
statistic for getting robust ranking. Robustness for hetero-
geneity of the sign-sum statistic is shown by the evaluation
of the upper confidence limit. We can get more repro-
ducible ranking by the sign-sum statistic for simulated
data which assumes that there are heterogeneous factors,
for the breast cancer data which is known as the het-
ero disease and the data which includes different disease
statuses.
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