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Pregnant women carrying microcephaly
foetuses and Zika virus contain potentially
pathogenic microbes and parasites in their
amniotic fluid
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Abstract

Background: Microcephaly has become a major public health problem in Brazil. The total number of newborns
with microcephaly was reported to be >4000 in June 2016. Studies suggest that Zika Virus is a major cause of new
microcephaly cases in Brazil. Inside the uterus, the foetus is surrounded by the Amniotic Fluid, a proximal fluid that
contains foetal and maternal cells as well as microorganisms and where Zika Virus was already found.

Case presentation: A previous study reported the presence of the Zika Virus in the amniotic fluid (collected in the
28th gestational week) of two pregnant women carrying microcephaly foetuses in Brazil. The virus was detected by
means of real-time PCR and metatranscriptomic analysis. We compared the microbiome of these two cases with
metatranscriptomic sequences from 16 pregnant women collected at various times in their pregnancies

Conclusion: Several strains of bacteria (e.g., Streptococcus and Propionibacterium) found in Amniotic Fluid may be
involved in neurological diseases. When the foetus is infected by the Zika Virus, due to neurological damage, they
do not move inside the uterus, thus changing the Amniotic Fluid environment, potentially leading to secondary
problems. Zika infection could also lead to an immunodeficient state, making bacterial colonization of the foetuses
easier. An altered microbial composition during pregnancy may also result in harmful secondary metabolite production
from certain microbes that further impair foetal brain development. However, these observations of potentially harmful
microbial species are correlations and thus cannot be assumed to be causative agents of (microcephaly) disease. In our
study, microbial and parasitic diversity of the Amniotic Fluid was lower in patients infected by ZIKV, compared to that
of Prenatal and Preterm controls. The present study was a first attempt to shed light on the microbial and parasitic
diversity associated with ZIKV-infected pregnant women bearing microcephaly foetuses, and the presence of diverse
microbial and parasite communities in the Amniotic Fluid suggests a poor health status of both the pregnant women
and the foetuses they carry.
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Background
Microcephaly has become a major public health problem
in Brazil. The total number of newborns with micro-
cephaly was reported to be >4000 in June 2016. Several
etiologic agents have been associated with microcephaly
including genetic disorders (e.g., autosomal recessive
microcephaly, Aicardi–Goutières syndrome, chromosomal
trisomy, Rett syndrome, and X-chromosomal microceph-
aly), maternal malnutrition, drug and chemical intoxica-
tion (e.g., alcohol, cocaine, antiepileptic drugs, lead/
mercury intoxication and radiation) and transplacental
infections by viruses or bacteria [1]. Recently, a study
showed that Zika Virus (ZIKV) induces cell death in hu-
man neural stem cells and thus impairs the formation of
neurospheres in culture. This finding suggests that ZIKV
is a major cause of new microcephaly cases in Brazil [2].
Inside the uterus, the foetus is surrounded by the Am-
niotic Fluid (AF), a proximal fluid that contains foetal
and maternal cells as well as microorganisms [3–8].
The most common bacterial species found in the AF of
women who undergo preterm labour with intact mem-
branes are Ureaplasma urealyticum, Fusobacterium sp.,
and Mycoplasma hominis [5]. DiGiulio [6] also reported
that Sneathia, Bacteroides, Prevotella, Streptococcus,
Leptotrichia, Peptostreptococcus, Escherichia, Gardner-
ella, Bacillus, Bergeyella, Citrobacter, Delftia, Lactoba-
cillus, Neisseria, Clostridiales and Staphylococcus were
identified in the AF of women in preterm labour.

Case presentation
A recent study has reported the presence of the Zika
Virus in the amniotic fluid (collected in the 28th gesta-
tional week) of two pregnant women carrying micro-
cephaly foetuses in Brazil [9]. The virus was detected by
means of real-time PCR and metatranscriptomic ana-
lysis. The aim of the present study was to analyse the
microbial (prokaryotic and eukaryotic) and parasitic
diversity in the AF of these two cases (patients 1 and
2). Additionally, we compared these two cases with
metatranscriptomic sequences from 16 pregnant
women collected at various times in their pregnancies
(four Prenatal samples [18–24 weeks], six late Preterm
samples [34–36] weeks, and six Term samples [39–40
weeks]) [8].
The Illumina sequences obtained from these two cases

[9] and the 16 metatranscriptomes used as controls [8]
were pre-processed using Prinseq software to remove
reads smaller than 35 bp and sequences with quality
scores lower than Phred 20. The PEAR program (Paired-
End read mergeR) [10] was used to merge and extend the
paired-end Illumina reads using the default parameters,
with max-overlap = 400 bp. To remove Human se-
quences, the extended reads were analysed using the
Deconseq program [11], against Human Genome

(Assembly version 37), with relaxed parameters (Iden-
tity and Coverage = 70%). The Non-human reads result-
ing from the previous step were analysed against the
non-redundant GenBank Nucleotide Database (nt-db)
(34,295,694 sequences), using BLASTn software (lim-
ited to the five best hits and e-value = 1e-5). The
BLASTn results were processed using MEGAN 6 soft-
ware, and the taxonomic assignment of the sequences
was obtained using the Last Common Ancestor method
with default parameters [12]. Sequences generated by
Kamath-Rayne and colleagues were used as the three
controls (I.E., Prenatal, Preterm and Term) [8]. Control
sequences were processed following the same protocol
used for the previous sequences (Patients 1 and 2). The
Shannon and Simpson indices were calculated using
the Vegan package from R language, using genus
counts. The statistical significance of the results was
evaluated using multiple T tests with a significance
level of alpha = 0.05. To test the hypothesis that the
taxonomic composition of the AF was the same in the
four sample types (two infected Zika patients, Prenatal,
Preterm and Term), Permutational Multivariate Ana-
lysis of Variance (PERMANOVA) was performed using
the “adonis” function of the Vegan package [13] (Bray-
Curtis distances and 999 permutations). A nonmetric
multidimensional scaling (NMDS) analysis of the tabu-
lated data (genus abundance) was performed using the
metaMDS function in the Vegan R package to deter-
mine if the samples would group together.
The Illumina sequencing of the AF from the two ZIKV

patients resulted in 7,504,100 and 8,235,773 pair-end se-
quences. After pre-processing, sequence collapse, and
removal of human sequences, the remaining 810,376
and 1,064,296 sequences were subjected to BLAST and
MEGAN analyses. Fractions of these sequences were
identified as Eukaryotes (157,075 and 253,852), Bacteria
(19,074 and 24,826), and Viruses (611 and 2004), for pa-
tients 1 and 2, respectively. The most abundant eukaryotic
group was the tapeworm Spirometra [3138 (1.99%) reads
from patient 1 and 3018 (1.19%) reads from patient 2]
(Fig. 1a; Additional file 1: Table S1); these sequences were
related to the sequences annotated and deposited by
Bennett and colleagues [14]. The tapeworm Spirometra
is responsible for sparganosis and human brain lesions
[15]. Spirometra is acquired by the ingestion of raw or
undercooked meat from snakes or frogs, untreated drink-
ing water, or raw flesh in traditional poultices. Sequences
related to other fungi and parasites (e.g., Onchocerca,
Wuchereria, and Enterobius) were also found. Except for
Onchocerca, which can cause blindness, none of these par-
asites appear to have neural tropism [16].
Bacillus was the most common group in the AF of pa-

tient 1 [4993 (26.2%) reads] (Fig. 1b). The five most abun-
dant groups found in both patients were Propionibacterium
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Fig. 1 Relative abudance of the major taxonomic groups identified by MEGAN. a Eukaryotic groups (microbes and parasites) and b Bacteria in
patients 1 (light blue); 2 (dark blue) and Controls (red collors). The Shannon and Simpson index calculated for Bacteria and Eukariotic domains,
using Vegan R package, are shown in a right upper box. Controls, mean (±Standard Deviation) obtained from AF samples of 16 pregnant women
collected in different times (“Prenatal”, “Late Preterm” and “Term”) deposited and available in SRA NCBI section (http://www.ncbi.nlm.nih.gov/
bioproject/PRJNA281986). The Shannon and Simpson index were calculated with “Vegan” package from R language, using genus counts. In total,
170,928 and 166,717 eukaryotic sequences showed no hits or were not taxonomically assigned by MEGAN in samples from the patients 1 and 2,
respectively. Unidentified Bacterial sequences were the most abundant group found in both samples (3483 reads in the sample from patient 1
and 6538 reads in the sample from patient 2). Shannon and Simpson indexes, for Eukariotic species (Fig. 1a), showed that Controls were more
diverse than the two Zika infected AF samples, altough only the comparissons between Zika patients and Term Control (considering Simpson index);
and Zika patients and Preterm Control (considering Shannon index) were statistically significant (Additional file 2: Table S2). The PERMANOVA analysis
showed a statistical diference in the Eukaryotic composition between the samples types (Additional file 3: Table S3). Zika positive AF patients 1 and 2
were more diverse (Shannon index = 2.578 and 2.678; Simpson index = 0,91 and 0,90) than Prenatal and Preterm Controls samples (Shannon
index = 2.44; Simpson index = 0.88 and Shannon index = 2.54; Simpson index = 0.9, respectivelly) (Fig. 1b). The Term samples were more
diverse than Zika samples (Shannon index = 3.19; Simpson index = 0.94), however the difference were not statically significant in any comparisson
(Additional file 2: Table S2). The PERMANOVA showed a statistical diference in the Bacterial species composition between the type of the samples
(Additional file 3: Table S3), even as the NMDS analysis also showed that Zika patients clustering together, a part from the three controls groups
(Additional file 4: Figure S1)
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[286 (1.5%) and 1183 (4.8%) reads], Burkholderia [280
(1.47%) and 713 (2.87%) reads], Flavobacterium [244
(1.28%) and 533 (2.15%) reads], Streptococcus [78 (0.41%)
and 515 (2.1%) reads], and Paucibacter [146 (0,77%) and
295 (1.19%) reads] (Fig. 1b). Enterobacteria phage phiX174
sequences were found in both patients [537 (87.9%) and
625 (31.19%) reads]. In contrast, Ralstonia was the most
abundant genus in the Controls [= ~ 2700 (= ~ 20%) reads].

Conclusions
Several strains of bacteria (e.g., Streptococcus and Propi-
onibacterium) found in AF may be involved in neuro-
logical diseases. Amniotic fluid and the placenta contain
different types of bacteria, particularly in pre-term birth
cases [7, 17]. A rich placental microbiome has been ob-
served in normal-term pregnancies. This microbiome
likely makes important metabolic and immune contribu-
tions to the growing foetus [18]. Due to neurological
damage, a foetus infected by the Zika Virus does not
move inside the uterus, thus changing the AF environ-
ment, potentially leading to secondary problems. Zika
infection could also lead to an immunodeficient state,
making bacterial colonization of the foetuses easier. In
prior studies, preterm infants with neonatal necrotizing
enterocolitis showed lower microbial diversity compared
to controls [19]. Similarly, disruption of the microbial
community by diarrhoea from Clostridium difficile also
resulted in a decrease in diversity in the faecal micro-
biome [20]. However, previous studies comparing the
bacterial diversity in patients with immuno-deficient
syndrome (HIV) showed that there is an increase in bac-
terial diversity in HIV-positive patients compared to
HIV-negative patients [21, 22]. In our study, microbial
and parasitic diversity of the AF was lower (p < 0.05) in
patients infected by ZIKV, compared to that of Prenatal
and Preterm controls (Additional file 2: Table S2;
Additional file 3: Table S3). Propionibacterium was
found in women with preterm premature rupture of
membranes during pregnancy [6]. This genus was the
second most abundant in patients 1 and 2, suggesting an
altered environment for foetal development. Moreover,
the AF from the two ZIKV patients clustered apart from
control samples in the present study (Additional file 4:
Figure S1). An altered microbial composition during
pregnancy may also result in harmful secondary metab-
olite production from certain microbes that further im-
pair foetal brain development. However, these
observations of potentially harmful microbial species are
correlations and thus cannot be assumed to be causative
agents of (microcephaly) disease. Differences in micro-
bial diversity could be attributed to changes in the AF
over the course of the pregnancy rather than to Zika in-
fection. The present study was a first attempt to shed
light on the microbial and parasitic diversity associated

with ZIKV-infected pregnant women bearing micro-
cephaly foetuses. The presence of diverse microbial and
parasite communities in the AF suggests a poor health
status of both the pregnant women and the foetuses they
carry.

Additional files

Additional file 1: Table S1. Similarity count table of sequences
classified as Spirometra. (XLSX 14 kb)

Additional file 2: Table S2. Multiple T Teste performed comparing the
diversity index (Shannon and Simpson) between AF Zika samples and
Controls Groups. (XLSX 11 kb)

Additional file 3: Table S3. Adonis (PERMANOVA) results of taxonomic
composition of AF metatranscriptomics (XLSX 11 kb)

Additional file 4: Figure S1. Nonmetric multidimensional scaling of
bacterial genus frequence of Zika AF and Controls Samples AF. There was
a distinction between the samples (Zika versus Controls), indicating that
there is a difference in genera composition between the samples.
(TIF 425 kb)

Abbreviations
AF: Amniotic fluid; HIV: Imuno-deficient syndrome; ZIKV: Zika Virus

Acknowledgments
We would like to thank CNPQ, CAPES, and FAPERJ for support. We thank the
comments of Renato Santana and Ana Bispo in previous versions of this paper.

Funding
These work was done using fundings from CNPq, CAPES, and FAPERJ.

Availability of data and materials
Data obtained in this study, from the two patients, is available at NCBI SRA
Experiment accession: SRX1830267.
Control samples: “Prenatal 1, 2, 3 and 4”, “Late Preterm 1, 2, 3, 4, 5 and 6”
and “Term 1, 2, 3, 4, 5, and 6”, were obtained from NCBI SRA section under
Bioproject id: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA281986

Authors’ contributions
DAT Processed, analyzed the sequence data and write the manuscript; LSO
carried out the sample sequences, participated in the sequence analysis and
drafted the manuscript; LL; participated in the sequence analysis and drafted
the manuscript; AT conceived of the study, and participated in its design
and coordination; FT conceived of the study, and participated in its design
and coordination, and draft the manuscript. All authors read and approved
the final manuscript;

Competing interests
The authors declare that they have no competing interests. Non-financial
competing interests.

Consent for publication
Written informed consent was obtained from the patient for publication of
this Case report and any accompanying data. A copy of the written consent
is available for review by the Editor of this journal.

Ethics approval and consent to participate
The study was approved by an ethical comission of the “Instituto de
Pesquisa Professor Joaquim Amorim Neto” and the anminiotic fluid were
collected following Brazilian health public recommendations. Written
informed consent to participate was obtained from the patient.

Author details
1Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A,
Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro
21941-902, Brazil. 2Laboratório de Sistemas Avançados de Gestão de
Produção-SAGE-COPPE, Centro de Gestão Tecnológica-CT2, UFRJ, Rio de

Tschoeke et al. BMC Medical Genomics  (2017) 10:5 Page 4 of 5

dx.doi.org/10.1186/s12920-016-0242-1
dx.doi.org/10.1186/s12920-016-0242-1
dx.doi.org/10.1186/s12920-016-0242-1
dx.doi.org/10.1186/s12920-016-0242-1
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA281986


Janeiro, RJ, Brazil. 3Instituto de Biologia, CCS, Laboratório de Virologia
Molecular, Bloco A, Ilha do Fundão, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil. 4Núcleo em Ecologia e Desenvolvimento
Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro,
Macaé, RJ, Brazil.

Received: 22 June 2016 Accepted: 27 December 2016

References
1. Von der Hagen M, Pivarcsi M, Liebe J, von Bernuth H, Didonato N,

Hennermann JB, et al. Diagnostic approach to microcephaly in childhood: A
two-center study and review of the literature. Dev Med Child Neurol. 2014;
56:732–41.

2. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R,
et al. Zika virus impairs growth in human neurospheres and brain organoids.
Science. 2016;352:816–8.

3. DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, et al.
Microbial prevalence, diversity and abundance in amniotic fluid during
preterm labor: A molecular and culture-based investigation. PLoS One.
2008;3:1–10.

4. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of
maternal microbial transmission. PLoS Biol. 2013;11:1–9.

5. Zhou X, Brotman RM, Gajer P, Abdo Z, Schüette U, Ma S, et al. Recent advances
in understanding the microbiology of the female reproductive tract and the
causes of premature birth. Infect Dis Obstet Gynecol. 2010;2010:737425.

6. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal
Med. 2012;17:2–11.

7. Payne MS, Bayatibojakhi S. Exploring preterm birth as a polymicrobial
disease: an overview of the uterine microbiome. Front Immunol. 2014;5:595.

8. Kamath-Rayne BD, Du Y, Hughes M, Wagner EA, Muglia LJ, DeFranco EA, et al.
Systems biology evaluation of cell-free amniotic fluid transcriptome of term
and preterm infants to detect fetal maturity. BMC Med Genomics. 2015;8:67.

9. Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, et al.
Detection and sequencing of Zika virus from amniotic fluid of fetuses with
microcephaly in Brazil: a case study. Lancet Infect Dis. 2016;16:653–660

10. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina
Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.

11. Schmieder R, Edwards R. Fast identification and removal of sequence
contamination from genomic and metagenomic datasets. PLoS One.
2011;6:e17288.

12. Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. Integrative analysis
of environmental sequences using MEGAN4. Genome Res. 2011;21:1552–60.

13. Oksanen, Kindt, O’Hara, J, R B. Vegan: R functions for vegetation ecologists.
2005. Available from: https://cran.r-project.org/web/packages/vegan/index.
html. Accesed 11 June 2016

14. Bennett HM, Mok HP, Gkrania-Klotsas E, Tsai IJ, Stanley EJ, Antoun NM, et al.
The genome of the sparganosis tapeworm Spirometra erinaceieuropaei
isolated from the biopsy of a migrating brain lesion. Genome Biol. 2014;15:510.

15. Liu Q, Li M-W, Wang Z-D, Zhao G-H, Zhu X-Q. Human sparganosis, a
neglected food borne zoonosis. Lancet Infect Dis. 2015;15:1226–35.

16. Allen JE, Adjei O, Bain O, Hoerauf A, Hoffmann WH, Makepeace BL, et al. Of
mice, cattle, and humans: The immunology and treatment of river
blindness. PLoS Negl Trop Dis. 2008;2(4):e217.

17. Cho I, Blaser MJ. The human microbiome: at the interface of health and
disease. Nat Rev Genet. 2012;13:260–70.

18. Romano-Keeler J, Weitkamp J-H. Maternal influences on fetal microbial
colonization and immune development. Pediatr Res. 2015;77:189–95.

19. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, et al. 16S rRNA
gene-based analysis of fecal microbiota from preterm infants with and
without necrotizing enterocolitis. ISME J. 2009;3:944–54. Nature Publishing
Group.

20. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, et
al. Decreased diversity of the fecal Mmicrobiome in recurrent Clostridium
difficile-associated diarrhea. J Infect Dis. 2008;197:435–8.

21. Dillon SM, Lee EJ, Kotter CV, Austin GL, Dong Z, Hecht DK, et al. An altered
intestinal mucosal microbiome in HIV-1 infection is associated with mucosal
and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;
7:983–94. Nature Publishing Group.

22. Saxena D, Li Y, Yang L, Pei Z, Poles M, Abrams WR, et al. Human
microbiome and HIV/AIDS. Curr HIV/AIDS Rep. 2012;9:44–51.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Tschoeke et al. BMC Medical Genomics  (2017) 10:5 Page 5 of 5


	Abstract
	Background
	Case presentation
	Conclusion

	Background
	Case presentation
	Conclusions
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

