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Abstract

Background: Epithelial to mesenchymal transition, and mimicking processes, contribute to cancer invasion and
metastasis, and are known to be responsible for resistance to various therapeutic agents in many cancers. While a
number of studies have proposed molecular signatures that characterize the spectrum of such transition, more
work is needed to understand how the mesenchymal signature (MS) is regulated in non-epithelial cancers like
gliomas, to identify markers with the most prognostic significance, and potential for therapeutic targeting.

Results: Computational analysis of 275 glioma samples from “The Cancer Genome Atlas” was used to identify the
regulatory changes between low grade gliomas with little expression of MS, and high grade glioblastomas with
high expression of MS. TF (transcription factor)-gene regulatory networks were constructed for each of the
cohorts, and 5 major pathways and 118 transcription factors were identified as involved in the differential
regulation of the networks. The most significant pathway - Extracellular matrix organization - was further analyzed
for prognostic relevance. A 20-gene signature was identified as having prognostic significance (HR (hazard ratio)
3.2, 95% CI (confidence interval) = 1.53–8.33), after controlling for known prognostic factors (age, and glioma
grade). The signature’s significance was validated in an independent data set. The putative stem cell marker CD44
was biologically validated in glioma cell lines and brain tissue samples.

Conclusions: Our results suggest that the differences between low grade gliomas and high grade glioblastoma
are associated with differential expression of the signature genes, raising the possibility that targeting these
genes might prolong survival in glioma patients.
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Background
Gliomas are tumors of the central nervous system and are
classified based on histologic type and malignancy grade.
Most diffuse gliomas are classified into four histological
grades: Grades I and II (low grade), III (anaplastic), or IV
(glioblastoma) [1]. Among gliomas, low grade gliomas are
typically the least aggressive, with longer, indolent clinical
course; glioblastomas (GBMs) on the other hand are highly
aggressive cancers with a median survival of 12–18 months’

post diagnosis [2]. The differences in clinical course suggest
that low grade gliomas have distinctive genetic features and
molecular pathogenesis relative to high grade gliomas [3].
Until recently, histologic diagnosis was the gold standard
for the classification of gliomas, forming the basis for clin-
ical diagnosis, prognosis and treatment management [4].
Histologic diagnosis is problematic for cases with mixed
histology; worse, it cannot account for the vast molecular
heterogeneity found in gliomas. Recent identification of
molecular biomarkers for different subsets of gliomas has
enabled introduction of molecular characteristics, alongside
histopathological features, in the definition and diagnosis of
gliomas [5]. These molecular characteristics include: genetic
profiling, proteomics, epigenetic changes, and molecular
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signatures of processes such as epithelial to mesenchymal
transition (EMT) [6–10].
Processes that mimic EMT, a normal development

process, are often adapted by cancer cells to remodel the
extracellular matrix when invading and metastasizing [11].
Such processes are also thought to confer resistance to
radiotherapy and chemotherapy [12, 13]. The factors that
induce EMT in other cancers may also activate mesenchy-
mal features in gliomas. Furthermore, EMT is an important
inducer of the cancer stem cell phenotype [14]. The mesen-
chymal subtype of glioblastoma typically expresses neural
stem cell markers and is associated with an aggressive
phenotype [6, 15, 16]. Glioma cells that express stem cell
markers are highly invasive and resistant to chemotherapy
and radiotherapy in vitro [17–19] and in the clinical setting
[20]. Therefore, a better understanding of the molecular
mechanism of mesenchymal signature (MS) may help iden-
tify and rationally design therapeutic regimes for patient
subgroups that may benefit from additional treatments [21].
Progress has been made through in vitro and in vivo

animal models in understanding the molecular processes
of EMT. However, the dynamics between tumor cells,
stem cells, and tumor microenvironment are complex and
nonlinear. In the context of non-epithelial tumors, like gli-
omas, the manifestation of mesenchymal transition is even
less understood. Computational modeling and bioinfor-
matics approaches are increasingly proving helpful in
obtaining biological insight in the field of oncology [22].
Recently, Cheng et al. evaluated a 64-gene MS signature,
previously identified as a marker of aggression and inva-
siveness in a multi-cancer computational analysis, and
found that its expression was associated with prolonged
time to recurrence in GBMs [23, 24]. In another report, a
16-gene signature was shown to distinguish anaplastic as-
trocytoma from GBM [25].
In this study, we hypothesized that high grade gliomas

(HGG) (Grade IV) express a distinct mesenchymal sig-
nature (MS) compared to low grade gliomas (LGG)
(Grade I + II), and investigated the transcription-factor
regulation of the signature. Using a combination of com-
putational modeling and bioinformatics approaches, we
analyzed 151 primary untreated GBM samples, and 124
primary untreated Grade II LGG samples from The
Cancer Genome Atlas (TCGA) to extract the MS, and
transcription factors involved in its regulation. Here, we
report our findings from the TCGA data. We validated
our results in silico in an independent dataset. We also
biologically validated CD44 - one of the signature genes
- in GBM tumor cells and brain tissue samples.

Methods
Our approach to the analysis consists of the following
primary steps with input and output results shown in
parenthesis:

1. Selection of cohorts with low and high expression of
MS (In: 275 samples; out: 138 samples).

2. Extraction of key differentially regulated genes,
transcription factor networks, and pathways
enrichment analysis between the low and high
MS cohorts (In: 20500 genes; out: 57 genes)

3. Extraction of a prognostic signature among the
key differentially regulated genes (In: 57 genes;
out: 20 genes).

4. Validation of the prognostic power of the signature
with independent data (276 samples).

5. Validation of biological features of one of the signature
genes in vitro (2 GBM cells; 3 Stem cells) and glioma
patient tissue samples (57 samples and 4 normal
control samples).

The rest of this section elaborates on these steps.

Selection of cohorts with low and high expression of MS
RNASeqV2 Level-3 gene expression data (MapSplice and
RSEM computed) and clinical data were downloaded with
TCGA Assembler [26] using build of 06/06/2014. We se-
lected 275 samples, with 151 primary untreated Grade IV
GBM samples and 124 primary untreated Grade II LGG
samples (40 astrocytomas, and 84 oligodendrogliomas) in
the analysis. The expression data were normalized using
variance stabilized transformation with R’s DESeq2 package.
Molecular classification and characteristics of the sam-

ples were downloaded from the TCGA landscape publica-
tions, Brennan et al. [9], and Brat et al. [27]. A summary
of clinical and molecular characteristics is shown in
Table 1.
Our starting point was a MS of 64 genes extracted in a

multi-cancer setting and associated with reduced time to
recurrence in GBM [23, 24]. The gene expression values
for the 64-gene profile for each sample were averaged to
form a single value for each tumor, termed a metagene
score, as described in Cheng et al. [24]. Each of the 275
(GBM + LGG) samples were ordered according to the
metagene score, with higher metagene scores represent-
ing samples with higher degrees of transition into the
mesenchymal phenotype and, therefore, expected to
have more aggressive phenotypes and more unfavorable
outcomes. Quantile based selection resulted in 138 sam-
ples, with 69 samples in each cohort with 75% high/un-
favorable metagene scores designated as high MS vs 25%
low/favorable score designated as low MS.

Extraction of key differentially genes between low and
high MS cohorts
Differential gene expression
Differential gene expression between the High vs. Low
MS cohorts was determined using R’s DESeq2 package.
Five thousand six hundred sixty genes with |log2FC| ≥1
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and FDR adjusted p-value ≤ 0.05 were selected for con-
struction of regulatory networks.

Construction of transcription-factor regulatory networks
Passing messages between biological networks to refine
predicted interactions (PANDA) [28] method was used
to construct and compare (transcription factor) regula-
tory networks for the Low and High MT cohorts. The
inputs to PANDA are two gene expression matrices,
Transcription factor (TF)-gene motif data, and Protein-
Protein Interaction (PPI) data; the last is optional. The
Low and High MS expression data for the 5660 differen-
tially expressed genes were used as expression matrices.
The TF-gene motif data were generated using HAY-
STACK software [29]. PANDA integrates expression
data, TF-gene motif data, and PPI data to estimate bio-
logical networks where “effector” TFs can, through inter-
actions with promoter regions, influence the expression
of the “affected” gene targets. The estimated networks
are represented in terms of TF-target edges weighted ac-
cording to the agreement between the different data
types - the weights can be positive, measuring the confi-
dence in the existence of an edge in a network, but also
negative, measuring the confidence in the lack of exist-
ence of an edge in a network.
We used PANDA with leave-1-out Jacknifing approach

following Glass et al. [30]. For each of the conditions
(Low/High MS), PANDA was run 69 times on expres-
sion matrices where one of the samples was left out to
generate an ensemble of 69 regulatory networks. Each
ensemble of networks was aggregated into a single

network, by averaging the weights of the network edges.
The edges were also assigned FDR (false discovery rate)
-adjusted p-values by running t-tests between the
weights of the edge in each of the condition. The net-
works were filtered by keeping edges that had a differ-
ence in weight of at least 1 between the two conditions,
and an adjusted -log10 FDR of larger than 25; these pa-
rameters were chosen based on the distribution of the
edge weights and -log10 FDRs. The resulting networks
were analyzed by PANDA to summarize which subnet-
works were uniquely regulated in each of the conditions.
Following Glass et al. [30] we also set out to compare

the networks’ characteristics with networks generated by
randomly permuting the gene labels of one, or both gene
expression matrices. This resulted in a decrease in the size
of the networks satisfying the mentioned edge-filtering
criteria. Permutation of the gene labels for the High MS
gene expression matrix had a larger effect in the reduction
of the network. Permutation of the gene labels of both
gene expression matrices resulted in no edges satisfying
the criteria. PANDA also enables comparison of networks
to determine which genes are differentially regulated be-
tween the networks, in the sense that the indegree - the
number of regulatory edges going into a gene - is signifi-
cantly different in one of the networks versus the others.
Genes with indegree changes (1157), with p-value < = 0.05
were considered differentially regulated between the two
networks.

Pathway enrichment of differentially regulated genes
R’s reactomePA library was used to perform pathway en-
richment of 1157 differentially regulated genes. Extracellu-
lar Matrix Organization (EMO) is one of the top five
pathways enriched with differentially regulated genes. We
focused on the set of EMO genes (35 genes), expanded
with the TFs regulating them (22 genes) - these are TFs
connected by edges in the regulatory network of one or
both phenotypes, a total of 57 genes were further analyzed
for prognostic significance.

Extraction of a prognostic signature among the key
differentially regulated genes
LASSO [31] is a penalized regression method suited for
constructing models with potentially large number of
covariates, and can be used even when the number of
covariates exceeds the number of samples. LASSO im-
plemented in R’s penalized package was used to perform
Cox Proportional Hazards Regression on the EMO
genes. Age and type (LGG versus GBM) were also used
as covariates in the model, since they are known prog-
nostic markers. The output of LASSO regression is a set
of 20 genes with non-zero coefficients, which we further
call LASSO-prioritized genes.

Table 1 Clinical data summary

GBM (Grade IV) LGG (Grade II)

Total High MS Total Low MS

Cases 151 69 124 69

Histological Type

Primary GBM 151 (100%) 69 (100%)

Astrocytoma 40 (32.3%) 19 (31.9%)

Oligodendroglioma 84 (67.7%) 50 (68.1%)

Age at Diagnosis (Years)

Mean 60.8 62.2 41.6 41

Gender

Female 54 (35.8%) 27 (39.1%) 57 (46%) 35 (50.7%)

Male 97 (64.2%) 42 (60.9%) 67 (54%) 34 (49.3%)

Vital Status

Alive 52 (34.4%) 22 (31.9%) 111 (89.5%) 67 (97.1%)

Deceased 98 (64.9%) 47 (68.1%) 13 (10.5%) 2 (2.9%)

< NA> 1 (0.7%)

Survival (Days)

Mean 338 307 800 754
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We evaluated the combined prognostic power of the
LASSO-prioritized genes using a “prognostic index” (PI)
approach [32]. PI, also known as the risk score, is com-

puted as the linear component of the Cox model, PI ¼
β̂1x1 þ β̂2x2 þ… þ β̂nxn where xi is the expression value

of the i-th gene and β̂i is the corresponding coefficient
from the Cox fitting. The fitting was performed using R’s
survival package. The PI scores were used to determine
risk groups, by stratifying the samples down the median
of the PI value (higher values for higher risk). For the
resulting two groups, a log-rank test was performed.

Validation of the prognostic power of the signature with
independent data
GSE16011 data set was used for independent analysis.
The data set consists of Affymetrix GeneChip Human
Genome U133 Plus 2.0 Array data for 276 glioma sam-
ples with Grade I-IV, and 8 (normal adult brain) control
samples. R’s GEOquery package was used to download
the data from the Gene Expression Omnibus (GEO). A
summary of clinical characteristics is shown in
Additional file 1: Table S1. To show validation the of 20
gene LASSO prioritized genes in the validation data, we
performed unsupervised hierarchical clustering, PCA
(principal component analysis) (with R’s made4 pack-
age), and multi-gene Cox-Proportional Hazards analysis.

Validation of biological features of one of the signature
genes
Cell lines
The U-87 MG, LN18 (ATCC, Manassas, VA) and the
U251 (National Cancer Institute Frederick Tumor Reposi-
tory) human GBM cell lines were grown in Dulbecco’s
Modified Eagle Medium (DMEM) (Invitrogen, Carlsbad,
CA) with 10% fetal bovine serum (FBS), and maintained at
37 °C, 5% CO2. Cells were authenticated by the supplier
using STR profiling, isoenzyme analysis, karyotype ana-
lysis, morphologic analysis, contamination testing and
were used within 6 months.
U251-GFP cells were created by transducing with lenti-

viral particles expressing green fluorescent protein (sc-
108084, Santa Cruz) and selecting using puromycin
dihydrochloride.
Four neurosphere-forming cells were isolated from hu-

man GBM surgical specimens: GBMJ1 and GBAM1;
NSC2326 (kindly provided by Dr. Frederick Lang, MD
Anderson Cancer Center), and 0923 (kindly provided by
Dr. Howard Fine, NCI, NIH). Neurospheres were main-
tained in stem cell medium consisting of DMEM/F-12
(Invitrogen), B27 supplement (1X) (Invitrogen), and hu-
man recombinant bFGF and EGF (50 ng/mL each)
(Sigma). All cultures were maintained at 37 °C in an at-
mosphere of 5% CO2.

siRNA-based transfection
CD44 gene is a well-known marker and shown to ex-
press in many cancers to play a significant role in the
MS phenotype. To test the role of CD44 inhibition, we
used gene specific siRNAs. For siRNA transfections, 2-
pmol of either siCD44_1 (5′-CTGAAATTAGGGCC-
CAATTAA-3′, SI00012775) or siCD44_5 (5′-AACTC-
CATCTGTGCAGCAAAC -3′, S100299705) (Qiagen
Inc., Germantown, MD) was complexed with RNAi Max
lipid transfection reagent (Invitrogen) in DMEM media for
15 min at ambient temperature. Two thousand cells sus-
pended in DMEM supplemented with 20% FBS were then
added. Plates were maintained at ambient temperature for
15 min before being placed at 37 °C/5% CO2. Cell viability
was assessed 24 and 48 h post siRNA transfection through
quantification of ATP (CellTiter-Glo luminescent Reagent,
Promega, Madison, WI). Untransfected cells and wells
transfected with negative (All star siNegative [siNeg], Qia-
gen) and positive (All star siCelldeath, Qiagen) control siR-
NAs were used as controls. Protein for Western blot
analysis was harvested 6 or 24 h post siRNA transfection.

Western blot analysis
Gene expression was analyzed using western blot analysis.
Cell pellets were lysed on ice in RIPA buffer (Pierce, Rock-
ford, IL) supplemented with Complete Mini EDTA-free
Protease Inhibitor Cocktail (Roche, Indianapolis, IN) and
Phosphatase Inhibitor Cocktail (Sigma, St. Louis, MO).
Protein concentrations were determined by Bradford assay
(Bio-Rad, Hercules, CA). Protein (40 μg) was diluted 1:5
in 5X protein loading buffer (Fermentas, Glen Burnie,
MD), boiled at 80 °C for 5 min, electrophoresed on a 4–
20% Tris-Glycine gel, and transferred using a Trans-Blot
Turbo Transfer System (Bio-Rad, Hercules, CA). Mem-
branes were blocked in 5% Non-fat milk powder (BioRad),
incubated with primary antibody overnight at 4 °C, incu-
bated with HRP-coupled secondary antibody 1 h at room
temperature, developed with Visualizer Western Blot De-
tection Kit (Millipore, Billerica, MA), and visualized on a
LAS-4000 imager (Fujifilm, Edison, NJ). The following
antibodies were used at 1: 1000 dilutions: human anti-
CD44 (#3570S, Cell Signaling Technology) and mouse
anti-actin (MAB 1501R, Millipore). Secondary antibody,
anti-mouse-HRP (Santa Cruz Biotechnology, Santa Cruz,
CA) was used at 1:10,000 dilutions.

Scratch assay for migration
To study the role of CD44 in cellular migration, scratch
assay was used. U251 GFP cells were transfected in
10 cm dishes. Twenty-four hours post-transfection, cells
trypsinized and were seeded into 24-well cell culture
plates to create a confluent monolayer. Reference mark-
ing was created by scratching the outer surface of the
well with a needle. Using a p200 pipet tip a scratch was
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made perpendicular to the reference mark onto the cell
monolayer. Wells were washed twice with PBS and re-
placed with the desired medium. Fluorescence images
were obtained for the same scratched region until the
scratch closed completely.

Boyden chamber assay for invasion
The role of CD44 in cellular invasion was assessed using
the Boyden chamber assay. U251 GFP cells were trans-
fected in 10 cm dishes. Twenty-four hours post-
transfection, cells trypsinized and were used for invasion
assay using the matrigel coated Boyden chambers
(#354480, BD Biosciences). U251GFP cells either trans-
fected with siNeg, or siCD44 were placed in the upper
well of a Boyden migration chamber which is separated
from the lower well by a porous filter coated with base-
ment membrane matrix, matrigel. Media containing 1%
FBS was placed in the lower well as a chemoattractant to
facilitate cell invasion. After 24-h incubation, cells from
the top surface were scraped off, membranes were de-
tached, and cells invaded to the bottom surface were
photographed (In Cell Analyzer 2000, GE Healthcare Life
Sciences). The fluorescent intensity was measured using
the Synergy/H1 microplate reader (BioTek, Vermont).
For GBM stem cell invasion assay; NSC11 stem cells

as single cells were placed in the upper well of a Boyden
migration chamber. The lower chamber was seeded with
U251 cells either transfected with siNeg, or siCD44.
DMEM media containing 1% FBS was used as a chemo-
attractant to facilitate stem cell invasion.

Clonogenic survival assay
The clonogenic potential of cells with downregulated
CD44 expresson was analyzed using the clonogenic sur-
vival assay. Cells were transfected in 10 cm dishes.
Twenty-four hours post-transfection, cells trypsinized
and were seeded into six-well tissue culture plates.
Twelve days after seeding, colonies were stained with
crystal violet. The number of colonies containing at least
50 cells was determined and the surviving fractions were
calculated.

Immunohistochemistry
To test the clinical correlation of CD44 expression, we
used immunohistochemical analysis in glioma patient
tumor samples. Tissue microarray (TMA) slides were
purchased from US Biomax, Inc. (Cat. # BS17017a,
Rockville, MD). There were a total of 30 cases of astro-
cytoma (20 Grade I-II, 10 Grade III), 27 glioblastoma
(GBM), and 4 adjacent normal brain tissues. One case
among astrocytoma specimens was mixed with grade 4
and considered subsequently as a GBM case in the ana-
lysis. The TMA sections were baked at 60 °C for 30 min
and then deparaffinized with xylene and dehydrated

through a graded ethanol series. Antigen retrieval was
achieved for 20 min in heat-activated antigen retrieval
pH 9.0 (Dako, Carpinteria, CA) using a pressure cooker
(Dako). Endogenous peroxidase activity was quenched
with 3% H2O2 in water for 15 min. The sections were in-
cubated with mouse monoclonal anti-CD44 antibodies
(Dako; Clone DF1485) at 1:100 for 1 h. Subsequently,
antigen-antibody reaction was detected with EnVision +
Dual Link System-HRP (Dako) and visualized with DAB
+ (3, 3′-Diaminobenzidine; Dako). Tissue sections were
lightly counterstained with hematoxylin and then exam-
ined by light microscopy. Negative controls (substitution
of primary antibody with TBS) were run simultaneously.
Positive controls included human breast carcinoma for
CD44 antibodies.
Immunohistochemically stained sections were digitalized

using the NanoZoomer 2.0 HT (Hamamatsu Photonics
K.K., Japan) at × 20 objective magnification. The images
were analyzed using Visiopharm software v4.5.1.324 (Visio-
pharm, Horsholm, Denmark). The intensity of staining was
categorized as 0, 1+, 2+, and 3+ according to the distribu-
tion pattern across the TMA cores. The final histoscore
was calculated by multiplying the intensity and percentage
of staining resulting in score of 0 to 300 [33]. CD44 expres-
sion value was dichotomized (positive vs. negative) with the
cut-off value (median).

Statistical analysis
Biological validation data presented are the mean ± the
standard deviation from three independent experiments
unless indicated otherwise. All statistical tests were two-
sided. A Student’s t test was used for between-group
comparisons. The χ2 test was used to determine whether
CD44 expression was associated with clinicopathological
characteristics, with protein expression data recoded
into binary variables. Statistical analyses were performed
using SPSS version 21.0 (SPSS Inc., Chicago, IL). A value
of p < 0.05 was considered statistically significant.

Results
Cohort characteristics
A summary of the clinical (Table 1) and molecular char-
acteristics (Tables 2 and 3) are shown for the cohorts.
To assess potential selection bias, we show characteris-
tics for the full cohort of LGGs (124) and GBMs (151),
as well as the cohorts selected as the Low MS quartile
(69) and the High MS quartile (69).
Clinical data (Table 1) included histological type, age,

gender, vital status and overall survival of the patients.
LGGs, as expected, have a younger age at diagnosis (mean
41.6 versus 60.8). The MS quartiles have similar age at diag-
nosis to that of the full cohort of the corresponding type
(LGG versus GBM). Overall survival of LGGs is signifi-
cantly longer than for GBMs (mean of 800 versus 338 days
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for deceased patients, and only 10.5% versus 64.9% patients
were deceased at last time of follow up). The MS does not
select towards better/worse overall survival for deceased
patients within each grade: Low MS quartile patients’ over-
all survival is 754 versus 800 days for the full LGG cohort,
and High MS quartile patients’ overall survival is 307 versus
338 days for the full GBM cohort. However, the Low MS
quartile does select for more living patients (97.1% versus
89.5% for the full LGG cohort), and the High MS quartile
for a slightly larger percentage of deceased patients (68.1%
versus 64.9% for the full GBM cohort).
The full cohort GBMs display the following Verhaak et

al. [6] subtypes (as updated in Brennan et al. [9]) (Table 1B):
classical (25.8%), mesenchymal (32.5%), neural (17.2%), pro-
neural (17.9%), and G-CIMP (5.3%). The High MS cohort
subtypes are classical (15.9%), mesenchymal (55.1%), neural
(14.5%), and proneural (13%), with a larger percentage of
samples being mesenchymal, and none of the samples with
G-CIMP phenotype.
The molecular characteristics of the LGGs according

to Brat et al.’s characterization [27] (Table 1C) are as fol-
lows. The full cohort LGGs subtype distribution over
Cluster of Clusters (COC) is: COC1 (40.3%), COC2
(4%), COC3 (34.7%), and COC4 (21%). Low MSs are
similarly distributed: COC1 (39.1%), COC2 (0%), COC3
(39.1%), and COC4 (21.7%), with the main difference
being the lack of samples from COC2.

Mesenchymal signature profiles of high and low grade
gliomas
Mesenchymal phenotype is associated with clinical ag-
gressiveness and stem-like properties in epithelial

cancers [17, 34–36]. In GBM, stem-like cells were as-
sociated with tumor initiation and treatment resist-
ance [20]. We investigated and confirmed an
association between patients expressing high MS sig-
nature and poor survival. Cohort selection of patients
was performed by stratifying patients (GBM and
LGG) by meta gene expression of the mesenchymal
transition 64-gene signature shown by Cheng et al.

Table 2 Molecular profile of GBMsa

Total GBMs High MS

Expression subclass

Classical 39 (25.8%) 11 (15.9%)

Mesenchymal 49 (32.5%) 38 (55.1%)

Neural 26 (17.2%) 10 (14.5%)

Proneural 27 (17.9%) 9 (13%)

G-CIMP 8 (5.3%) 0 (0%)

< NA> 2 (1.3%) 1 (1.4%)

MGMT methylation status

Methylated 53 (35.1%) 20 (29%)

Unmethylated 66 (43.7%) 31 (44.9%)

< NA> 32 (21.2%) 18 (26.1%)

IDH mutation status

IDH wt 140 (92.7%) 68 (98.6%)

IDH mut (R132H) 7 (4.6%) 0 (0%)

< NA> 4 (2.6%) 1 (1.4%)
aadapted from [9]

Table 3 Molecular profile of LGGsa

Total LGGs Low MS

Cluster of Clusters (CoC)

COC1 50 (40.3%) 27 (39.1%)

COC2 5 (4%) 0 (0%)

COC3 43 (34.7%) 27 (39.1%)

< NA> 26 (21%) 15 (21.7%)

IDH and 1p/19q codel

IDH wt 11 (8.9%) 3 (4.3%)

IDH mut 43 (34.7%) 24 (34.8%)

IDH mut, 1p/19q codel 39 (31.5%) 24 (34.8%)

< NA> 31 (25%) 18 (26.1%)

Methylation cluster

M1 8 (6.5%) 4 (5.8%)

M2 10 (8.1%) 9 (13%)

M3 46 (37.1%) 24 (34.8%)

M4 3 (2.4%) 0 (0%)

M5 31 (25%) 17 (24.6%)

< NA> 26 (21%) 15 (21.7%)

miRNA Cluster

mi1 25 (20.2%) 14 (20.3%)

mi2 69 (55.6%) 40 (58%)

mi3 2 (1.6%) 0 (0%)

mi4 2 (1.6%) 0 (0%)

<NA> 26 (21%) 15 (21.7%)

RNASeq Cluster

R1 29 (23.4%) 15 (21.7%)

R2 8 (6.5%) 0 (0%)

R3 12 (9.7%) 8 (11.6%)

R4 33 (26.6%) 19 (27.5%)

< NA> 42 (33.9%) 27 (39.1%)

RPPA Cluster

P1 32 (25.8%) 18 (26.1%)

P2 26 (21%) 12 (17.4%)

P3 7 (5.6%) 1 (1.4%)

P4 19 (15.3%) 13 (18.8%)

< NA> 42 (33.9%) 25 (36.2%)
aadapted from [7]
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[24]. This gene set was shown to be associated with
poor prognosis in GBMs, and to represent biological
processes of MS applicable to solid cancers in a
multi-cancer setting [23, 24]. Patients stratified by
quantile analysis as described in methods, were sub-
jected to hierarchical cluster analysis. High and low
MS cohorts cluster into distinct groups (Fig. 1b). In
contrast, samples selected by non-specific high variant
genes fail to group into clear clusters (Fig. 1a). Pa-
tient samples within the low MS cohort consist exclu-
sively of LGG samples and include the majority of
the long term survivors (>2 years), while the high MS
cohort consists of GBM samples and the majority of
short term survivors (< 6 months). The threshold cut-
offs of < 6 m and > 2 years for short and long survival
have been reported before [37] and are used to show
differences between the survivors only in the
visualization plots. While the differences in survival
are not surprising (since LGGs are the least aggres-
sive among gliomas), we were interested in discover-
ing the regulatory machinery behind the expression of
distinct MS signatures, and the biological markers
conferring the most prognostic significance.

Regulatory differences between Low and High MS cohorts
To investigate the differences in regulatory networks be-
tween the two phenotypes, we used Glass et al.’s PANDA
approach [28]. For a given phenotype, PANDA integrates
gene expression, and interaction information (from se-
quence motif data, and optionally Protein-Protein inter-
action networks) to construct regulatory networks with
edges connecting transcription factors to stipulated gene
targets. The edges are weighted in units that reflect the
confidence level of the inferred regulatory relationship.
We constructed such networks for each of the low and
high MS phenotypes, and extracted the subnetworks
that are unique to each phenotype - in the sense that a
given TF-target relationship is predicted to exist in one
of the phenotypes but not the other. These unique sub-
networks (summarized in Additional file 2: Figure S1A-
B) resulted in 35 TFs uniquely targeting 985 genes in the
low MS cohort, and 113 TFs uniquely targeting 987
genes in the high MS cohort. 30 TFs and 65 gene targets
are common between the 2 subnetworks.
We used several cross validation features of PANDA, in-

cluding permutation of gene labels when constructing the
regulatory networks in order to compare the constructed

Fig. 1 Cohort selection. Unsupervised clustering of gene expressions was used to inspect how LGGs and GBMs clustered. a Expressions on the full
cohort were clustered according to the 500 genes most varied across samples. b Expression of Cheng et al.’s 64-gene was averaged to represent a
“metagene”; The (69) samples in the lowest metagene-expression quartile became the “Low MS” cohort, whereas the (69) samples in the highest
metagene-expression quartiles became the “High MS” cohort
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networks against a background of randomized networks
(Additional file 2: Figure S1C). As expected, permutation of
gene labels resulted in a decrease in the size of the net-
works satisfying the predetermined edge-filtering criteria.
PANDA also enables comparison of networks to deter-

mine which genes are differentially regulated between the
networks, in the sense that the indegree - the number of
regulatory edges going into a gene – is significantly differ-
ent in one of the networks versus the others. one thou-
sand one hundred fifty seven genes were considered
differentially regulated between the two networks (with
indegree changes p-value < = 0.05) and were submitted to
pathway enrichment analysis, which is shown in Fig. 2.

The top 5-enriched pathways (at p-value of enrichment <
= 0.005) are shown in Fig. 2a, and the network representa-
tion of the pathways is shown in Fig. 2b. The Extracellular
Matrix Organization (EMO) pathway is the most signifi-
cant pathway, and is comprised of 35 genes regulated by
22 TFs according to the network analysis. These 57 EMO
genes and TFs were then prioritized by LASSO in a Cox-
Proportional Hazards model for prognostic relevance. Co-
variates of age, and type (LGG versus GBM) were also in-
cluded in the model.
The LASSO analysis resulted in selection of a model with

significant prognostic value that consisted of 20 genes (with
non-zero coefficients), and age. As shown in Fig. 3a, 15

Fig. 2 Enrichment of differentially regulated genes. Genes differentially regulated between the regulatory networks for High/Low MS were analyzed
for enrichment of Reactome Pathways. a Pathways enriched at 0.005 p-value of enrichment are shown; Extracellular Matrix Organization is the top
enriched category. b The enriched pathways with genes colored according to differential expression between High/Low MS phenotypes
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genes (ADAMTS1, CD44, CTSS, EFEMP2, EGR1, IRF1,
ITGAL, ITGB2, ITGB4, LAMB1, NKX3-2, PDGFA,
PPARG, RUNX1, SPI1) were upregulated and 5 genes
(BMP2, DST, SREBF2, TNR, ZEB1) downregulated in the
high MS cohort (the underlined genes are TFs). Of these,
several TFs are known to be involved in the regulation of
mesenchymal transition. A Prognostic Index (PI) value was
derived using the 20 gene signature, and tested in a Cox re-
gression analysis along with age, and type (LGG versus
GBM) as additional covariates. As shown in Fig. 3b., the
impact of the 20-gene associated PI on survival is signifi-
cant (PI HR= 3.578), independently of the other two covar-
iates. As expected, LGGs have a reduced hazard compared
to GBMs (LGG type HR= 0.221), and age has a small but
significant impact on survival (age HR= 1.039).
To evaluate the impact of each of the 20 genes on sur-

vival, a Cox proportional hazards model was constructed
for each gene along with age and type (LGG versus GBM)
as covariates. All models were found to be significant
(model p-value = 0) (Additional file 3: Figure S2). How-
ever, only 9 of the genes had individual prognostic signifi-
cance: CD44, CTSS, IRF1, ITGB2, NKX3-2, PDGFA,
PPARG, SPI1, SREBF2 (the underlined genes are TFs).

Validation of 20-gene signature in independent data
We validated the prognostic significance of the 20-gene sig-
nature in an independent cohort of patient samples, using
the publicly available (GEO) microarray data set GSE16011.
GSE10611 included 8 normal, 8 Grade 1, 24 Grade 2, 85
Grade 3, and 159 Grade 4 glioma samples, as detailed in
Additional file 1: Table S1. We evaluated the discriminatory
power of the signature by performing unsupervised hier-
archical cluster analysis of the samples based on the LASSO
20 genes (Fig. 4a). We observed three main clusters: the first
dominated by Grade 3 and 4 glioma samples, the second

dominated by normal samples and samples from Grades 1–
3, and a third mixed cluster. PCA analysis is visually intui-
tive and an alternate way to cluster analysis in which new
variables called principal components were identified that
capture the highest spread of data from the linear combina-
tions of original variables. Using first 2 components, the
analysis further confirmed that the 20-gene signature can
distinguish normal and glioma grades (Fig. 4b). To test the
combined power of the 20-gene signature, we used the PI
index, with age and grade as additional covariates to con-
struct a Cox Proportional Hazards model. The analysis
(Fig. 4c) showed that PI (HR = 2.94, 95% CI = 2.155–4.01),
grade (HR = 2.304, 95% CI = 1.82–2.918), and age (HR =
1.032, 95% CI = 1.21–1.044) are all significant covariates.

Validation of CD44 gene as an EMT target
CD44 inhibition affects cell proliferation and clonogenic
potential in GBM cells
As we initially identified and then validated the 20-gene
signature in TCGA and GEO datasets respectively, one of
the genes included was gene CD44, a stem cell marker.
The survival analysis of LGG and GBM showed that
CD44 is an independent prognostic marker (CD44 HR =
1.82, in a model that included age and type; see Additional
file 3: Figure S2). Knowing the role of CD44 in tumor cell
migration, we validated this function in GBM tumor cells
and stem cells.
First we examined CD44 expression in a number of

GBM tumor cells and stem cells (Fig. 5a). GBM tumor
cells expressed CD44 whereas the GBM stem cells tested
had minimal to no CD44 expression. Next, to study the
effect of CD44 on GBM tumor cell phenotype, using
siRNA methodology, CD44 expression was downregu-
lated in U251 tumor cells with two different siRNAs.
We observed a substantial decrease in CD44 protein

Fig. 3 Survival-prioritized EMO genes. EMO genes (and transcription factors regulating them) were prioritized according to their impact on survival.
LASSO Penalized Regression was used for Cox-survival prioritization. a Expression profiles of 20 genes with non-zero regression coefficients: ADAMTS1,
BMP2, CD44, CTSS, DST, EFEMP2, EGR1, IRF1, ITGAL, ITGB2, ITGB4, LAMB1, NKX3-2, PDGFA, PPARG, RUNX1, SPI1, SREBF2, TNR, ZEB1. TFs are labeled in
green. b Survival analysis based on a multi-gene prognostic index stratification. Age and type (LGG versus GBM) were also included in the model
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levels, 24 h post-transfection (Fig. 5b). Moreover, the de-
crease in CD44 levels, was associated with a significant
reduction in the viability of the GBM cell line U251
(Fig. 5c). Further, downregulation of CD44 in GBM cells,
inhibited its long term clonogenic survival ability
(Fig. 5d). These results indicate that, CD44 expression
could be necessary for GBM cell survival.

CD44 plays an important role in cell migration and invasion
Next we confirmed role of CD44 in two EMT specific
characteristics; tumor cell migration and invasion. Mi-
gration was assessed by a scratch assay in U251 GBM
cells transfected with siNeg/siCD44 (Fig. 5e). Migration
of individual cells in the leading edge of the scratch was
followed for 24 h. At 24 h most of the wounds had
closed in U251 cells transfected with siNeg. However,
cells transfected with siCD44 migrated at a slower rate
in the leading edge of the scratch.
To confirm further, we used Boyden chamber assay to

assess the invasive properties of GBM U251 tumor cells.
This in vitro test allows the rapid and quantitative assess-
ment of invasiveness. Using a chemoattractant (1% FBS),
we observed that inhibition of CD44 expression abrogated

the tumor cell ability to invade through a matrigel coated
membrane (Fig. 5f and g). Representative images of U251
migration through the madrigel coated membrane are
shown in Fig. 5f with bar plots showing quantitative data
(Fig. 5g).
As we observed minimal to no expression of CD44 in

our stem cell lines (Fig. 5a), we wanted to examine if
GBM tumor cells mediate stem cell migration. To test
that we examined invasion of NSC11 GBM stem cells to-
wards the tumor cells. This was achieved by plating stem
cells on the top chamber and measuring their migration/
invasion in the lower chamber in the presence of U251
tumor cells (Fig. 5h). U251 cells transfected with siNeg.
control, attracted a sufficient number of stem cells across
the membrane. However, U251 cells with downregulated
CD44 expression attracted significantly less stem cells
across the matrigel coated membrane (Fig. 5g).

CD44 is overexpressed in GBM tissues
Next, we assess the levels of CD44 expression in patient
clinical samples. The level and pattern of CD44 expression
in normal brain tissues and brain tumor tissues was exam-
ined by immunohistochemical staining. CD44 expression

B

A

C

PC1

P
C

2

Fig. 4 Validation with independent data. GSE16011 data set was used to validate the Lasso-20 signature with respect to impact on survival. The dataset
included glioma grades I-IV, and 8 controls. To show the relevance of using all grades, we have included grade III samples in the validation. a Unsupervised
expression clustering. b Principal Component Analysis showing the first two components. Each dot represents a sample plotted against expression levels
of 20 genes. Samples are colored according to the grade, green being the normal controls. c Cox proportional hazards survival analysis for grades I, II, IV.
The model includes age, and grade as covariates, and the 20-gene Prognostic Index
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was primarily observed in the membrane of glioblastoma
cells. Representative immunohistochemical staining im-
ages of CD44 are presented in Fig. 6a. Of 59 gliomas, 24
(40.7%) were categorized as positive membrane staining.
When compared with normal brain tissues, CD44 expres-
sion was significantly overexpressed in brain tumor tissues
(Fig. 6b, p < 0.001). Furthermore, CD44 expression was
significantly associated with the glioma grade; 5% in LGG
versus 46% in GBMs (Fig. 6c).

Discussion
The seminal feature of gliomas is their diffuse infiltrative
nature, which renders them incurable by the existing

standard of care. Infiltrating glioma cells exist in close prox-
imity with components of the tumor microenvironment,
including extracellular matrix components in the brain.
GBM cells undergo a series of molecular and conform-
ational changes shifting the tumor toward mesenchymal
traits, including extracellular matrix remodeling, cytoskel-
etal re-patterning, and stem-like trait acquisition [38]. EMT
is considered a major modulator of metastasis in epithelial
solid tumors; EMT(-like) processes have been reported in
the case of tumors of neuroepithelial origin [39]. A deeper
understanding of the mechanisms driving and regulating
infiltration represents the first step toward successful treat-
ment of this pathology. In the current study, we address
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Chemoattractants were FBS and stem cell growth factors (bFGF and EGF)
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this issue by integrating publically available data using a
number of computational approaches in search of a prog-
nostic index gene signature for gliomas. Identification of
predictive markers of survival in gliomas could optimize
and individualize therapy by prospectively identifying the
patients that will benefit the most from standard therapy,
and identifying novel therapeutic targets based on the mo-
lecular profiles of the patients that are refractory to stand-
ard therapy.
Studies have demonstrated that bioinformatics ap-

proaches in general, and systems biology in particular, are
powerful in identifying metastasis specific gene signatures,
predicting disease outcome, and elucidating mechanisms
of cancer progression [35]. In the current study, we used
these approaches to elucidate differentially regulated genes
and transcription factors in low grade and high grade gli-
omas. We started out with a hypothesis that the high MS
cohort is characterized by distinct gene expression pat-
terns compared to the low MS cohort. We used the 64-
gene mesenchymal transition metagene signature [24] to
stratify patients into high and low MS cohorts, and looked
for additional functions in these cohorts related to long
term survival. We performed regulatory network and
pathway analyses. Not-surprisingly, we found that the
most differentially regulated pathways were related to the
extracellular matrix organization (EMO). To evaluate the
prognostic relevance of EMO we prioritized the EMO as-
sociated genes and TFs using LASSO with Cox regression

option, which resulted in a 20 gene set (15 genes and 5
TFs). The TFs include ZEB1, EGR1, IRF1, RUNX1, and
SPI1. Several genes of this subset were found to be indi-
vidually associated with cancer. RUNX1 has been identi-
fied as a key regulator of tumorigenesis in various
epithelial cancers [34] including breast [40] and lung can-
cers [41]. IRF1 has been implicated in bevacizumab-
resistant tumors [42]. EGR1 has important functions in
the regulation of growth and differentiation, and is highly
expressed in brain. It was demonstrated that EGR1 posi-
tively regulates the activity of the FN gene, and that cell
adhesion and migration were greatly increased in the
EGR1-expressing glioblastoma cells [43]. ZEB1, a zinc-
finger protein, is an inducer of EMT, through downregula-
tion of E-cadherin and upregulation of vimentin [44]. It is
also a transcriptional repressor of cell-adhesion genes and
several microRNAs, particularly members of miR-200
family, which function not only as strong inducers of
mesenchymal-epithelial transition (MET) but also inhibit
undifferentiated stem cell properties [45]. However, in our
cohort, ZEB1 was overexpressed in LGGs, as compared to
HGGs. The Cox model with ZEB1, age, and type as covari-
ates showed no significant differences in survival based on
the ZEB1 expression alone. We explored the relationship
of ZEB1 expression and survival for each GBM subtype
using GBM-BioDP [32] and found that for the proneural
GBM, higher expressions of ZEB1 are associated with
better prognosis.
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Fig. 6 CD44 expression in brain tumor tissues. a Representative images of immunohistochemical staining of CD44 in brain tissues from normal,
low grade glioma (LGG), and high grade glioma (HGG). The boxed regions are displayed at high magnification in the inset (scale bar: 100 μm).
b Box plot depiction of immunohistochemical staining data. The histoscores were computed based on intensity and tissue area of positive
staining. Error bar represents mean ± s.d. c High CD44 expression was strongly associated with advanced stage of brain tumors. We analyzed only
58 cases with available grade information. LGG, low grade glioma (grade I + II); HGG, high grade glioma (grade IV)
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Our cohort selection was initially based on a 64 gene
signature. Our focus was on regulatory differences be-
tween the two cohorts, and additional functions associ-
ated with survival length, resulting in a 20 gene
signature with no overlap with the original 64 gene sig-
nature. A possible reason for the lack of overlap is that
Chen et al tested for “time to recurrence” [24]. Recur-
rence is the biological outcome of many processes, with
MS being only one of them. Our 20-gene signature can
be used as a better classifier of the MS process than the
64-gene signature. Moreover, Cheng and co-workers
found that the 64 gene signature is strongly correlated in
gliomas with the putative stem cell marker CD44, and is
highly enriched among the differentially expressed genes
in glioblastomas vs. lower grade gliomas. This finding
correlates with our identification of CD44 gene being
one of the targets in our study population.
CD44 gene has been shown to play a significant role in

the EMT phenotype in various cancers. It is a complex
transmembrane glycoprotein that serves as a receptor for
the extracellular component hyalouronic acid. CD44 ex-
pression was implicated to be elevated in tumor-initiating
cells in many kinds of cancers [46]. Thus, CD44 is thought
to be a biomarker for cancer stem cells (CSCs) [47]. Func-
tional studies have shown that CD44 is involved in
tumorigenesis and metastasis in many cancer types such
as colon [48–50], bladder [51], gastric [52], breast, [53],
and GBM [54]. Recently, overexpression of CD44 was as-
sociated with significantly worse overall survival in breast
cancer patients [55]. Given the role of CD44 in human
cancers, we validated our computational modeling results
in various experimental settings. We measured CD44, ex-
pression levels in low grade gliomas (grade1 and 2) and
high (grade 44) GBM. Our analysis revealed a strong asso-
ciation of CD44 overexpression with clinicopathological
features, including the histological grade in GBM patient
samples. Downregulation of CD44 expression decreased
GBM cell proliferation and their invasion and migration
properties. Downregulation of CD44 also inhibited the
GBM cells’ long term clonogenic survival ability. GBM
tumor cells expressing CD44 could attract stem cells,
however inhibition of CD44 expression abrogated tumor
cell mediated chemotactic activity towards the stem cells.
This is important, as stem cells in tumor niches are re-
sponsible for chemo- and -radioresistance. As a proof of
principle, the results reported here indicate the validity of
our computational modeling in predicting the prognostic
index for high grade gliomas.
The biomarkers were validated using an independent

dataset. The 20-gene signature not only separated LGG and
HGG, but also the normal and various glioma grades from
each other. Thus the additional validation of the signature
in independent patient samples suggests the robustness of
the signature in identifying patients transitioning to

aggressive mesenchymal phenotype. Our finding that the
20-gene expression could discriminate long term vs. short
term survivors raises the possibility of using their expres-
sion signature to develop rapid and accurate molecular
diagnostic test to predict survival length in gliomas. Fur-
thermore, our integrated model provides us with new in-
sights into the molecular determinants of mesenchymal
transition kinetics in GBM. Functional characterization of
this signature in in-vivo experiments with cell lines and
mouse models will shed light on their biological importance
in GBM progression. Further development of computa-
tional tools could bridge one of the critical missing links be-
tween in vitro drug screening and in vivo drug activity.

Conclusion
Our study on computational analysis of mesenchymal sig-
nature (MS) in gliomas reveals a differential expression of
gene networks and transcription factors between low grade
and high grade gliomas. We identified a core group of can-
didate MS driver genes over-expressed in high grade gli-
omas and shown to be strongly associated with poor
survival. This computational network based strategy of
identifying MS signature genes is validated in an independ-
ent data set and potentially, a valuable tool to identify func-
tional or mechanistic gene differences in cancer. Ultimately
this has the potential to transform our understanding of
how the grade IV glioblastomas are formed and maintained,
a question that is fundamental to GBM biology.
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