
RESEARCH Open Access

Identification of epigenetic interactions
between miRNA and DNA methylation
associated with gene expression as
potential prognostic markers in bladder
cancer
Manu Shivakumar1†, Younghee Lee2†, Lisa Bang1, Tullika Garg3, Kyung-Ah Sohn4* and Dokyoon Kim1,5*

From The 6th Translational Bioinformatics Conference
Je Ju Island, Korea. 15-17 October 2016

Abstract

Background: One of the fundamental challenges in cancer is to detect the regulators of gene expression changes
during cancer progression. Through transcriptional silencing of critical cancer-related genes, epigenetic change such
as DNA methylation plays a crucial role in cancer. In addition, miRNA, another major component of epigenome, is also a
regulator at the post-transcriptional levels that modulate transcriptome changes. However, a mechanistic role of synergistic
interactions between DNA methylation and miRNA as epigenetic regulators on transcriptomic changes and its association
with clinical outcomes such as survival have remained largely unexplored in cancer.

Methods: In this study, we propose an integrative framework to identify epigenetic interactions between methylation and
miRNA associated with transcriptomic changes. To test the utility of the proposed framework, the bladder cancer data set,
including DNA methylation, miRNA expression, and gene expression data, from The Cancer Genome Atlas (TCGA) was
analyzed for this study.

Results: First, we found 120 genes associated with interactions between the two epigenomic components. Then, 11
significant epigenetic interactions between miRNA and methylation, which target E2F3, CCND1, UTP6, CDADC1, SLC35E3,
METRNL, TPCN2, NACC2, VGLL4, and PTEN, were found to be associated with survival. To this end, exploration of TCGA
bladder cancer data identified epigenetic interactions that are associated with survival as potential prognostic markers in
bladder cancer.

Conclusions: Given the importance and prevalence of these interactions of epigenetic events in bladder cancer it is
timely to understand further how different epigenetic components interact and influence each other.
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Background
Precision medicine, an emerging approach for disease
prevention and treatment strategies based on patients’
environmental and genomic variabilities, is moving
toward a new era of future medicine [1]. Since cancer is
a disease of the genome, cancer genomics aims to
improve personalized medicine through the advanced
sequencing technology and analysis of patient tumors to
discover new genetic alterations associated with specific
cancers. To support advances in developing more effect-
ive ways to diagnosis, treat, and prevent cancer, a
comprehensive understanding of the underlying genetic
architectures that drive different cancers is needed.
One of the fundamental challenges in cancer is to

detect the regulators of gene expression changes during
cancer progression. Through transcriptional silencing of
critical cancer-related genes, epigenetic change such as
DNA methylation plays a crucial role in cancer [2].
Cytosine methylation of CpG islands are likely to occur
in promoter regions located close to the start of tran-
scription, and hypermethylation in the promoter regions
is negatively associated with the mRNA level [3]. For
example, the hypermethylation of tumor suppressor
genes, which is associated with their inhibition of tran-
scription, is recognized as one of the key features of can-
cer pathogenesis [4]. On the contrary, CpG methylations
in gene body regions are likely to be positively associated
with transcript level [3]. In addition to DNA methylation,
miRNA, another major component of epigenome, is also a
regulator at the post-transcriptional levels that modulate
transcriptome changes [5]. miRNAs regulate many
cancer-related genes associated with different biological
processes such as proliferation, apoptosis, development,
and tumorigenesis [6–8]. However, a mechanistic role of
synergistic interactions between DNA methylation and
miRNA as epigenetic regulators on transcriptomic
changes and its association with clinical outcomes such as
survival have remained largely unexplored in cancer.
Patients’ variability in multi-omics data, including

somatic mutation, copy number alteration (CNA), DNA
methylation, miRNA, gene, and protein expression,
should be captured simultaneously since cancer is an ex-
tremely heterogeneous disease. Large-scale collaborative
initiatives such as The Cancer Genome Atlas (TCGA)
and The International Cancer Genome Consortium
(ICGC) have been generating multi-omics data, mostly
using the advanced sequencing technologies, as well as
patients’ clinical data. These collaborative initiatives have
provided unprecedented opportunities to deepen our
understanding of complex mechanisms of cancer for
advancing precision medicine [9, 10]. Since different
types of genomic data sets are regarded as partially inde-
pendent from and partially complementary to others,
there has been an ever-increasing demand for the

development of data integration methodologies [11–13].
Therefore, many data integration methods have been
developed to improve prediction of cancer clinical out-
comes [14–23].
Previously, we developed a novel graph-based framework

that integrates multi-omics data and inter-relationship be-
tween omic features to better predict cancer clinical
outcomes [21]. Notably, a prediction model showed the
great improvement when combining inter-relationship
between miRNA and DNA methylation data [21]. The
previous study suggested that there might be possible
synergistic regulatory mechanisms between miRNA and
methylation within the epigenome of cancer-related genes,
and further these epigenetic interactions could be associ-
ated with clinical outcomes such as survival. Thus, integrat-
ing miRNA, DNA methylation and gene expression profiles
can aid in extracting new biological knowledge by drawing
associations between epigenetic interactions and clinical
outcomes in cancer. In this study, we propose an integrative
framework to identify epigenetic interactions between
methylation and miRNA associated with transcriptomic
changes and further detect epigenetic interactions signifi-
cantly associated with prognosis. To test the utility of the
proposed framework, urothelial carcinoma of the bladder
data set from TCGA was analyzed for this study. Thus far,
no molecularly targeted agents have been approved for
treatment of the disease [24].

Methods
Data
We obtained the bladder cancer dataset from The Cancer
Genome Atlas (TCGA) data portal (https://gdc.cancer.-
gov/). Data for 403 patients were available with complete
RNA-Seq, DNA methylation, miRNA-Seq, and clinical
datasets. Demographic characteristics are presented in
Table 1. Four data matrices were constructed for each
clinical data set with rows indexed by TCGA patient ID
and columns using the following metrics: RSEM (RNA-
Seq by Expectation Maximization) normalized count
(RNA-Seq), beta values (DNA methylation) and reads per
million miRNA mapped (miRNA-Seq). Methylation
probes with null values and gene expression values
containing more than 50% zero values were removed.

Table 1 Demographic characteristics

Clinical variables Clinical values (N = 403)

Sex (Male/Female) 297/106

Age (Mean/Std) 68.1/10.6

Race (Asian/Black/White/NA) 44/23/320/16

Histological subtype (Non-papillary/
Papillary/NA)

270/128/5

Stage (I, II/III, IV/NA) 132/170/1

Smoking status (Smoker/Non-smoker/NA) 109/281/13
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Then, methylation, RNA-Seq and miRNA-Seq data were
log-transformed with base 2. More details about the data
can be found here [24].
After quality control steps, the methylation, miRNA

and gene expression profiles contained 382,570 probes,
1,046 miRNAs and 12,657 genes, respectively (Table 2).
Clinical data in XML format were downloaded to aggre-
gate the clinical information of the corresponding
patient cohort (N = 403). The XML file was filtered using
the variables ‘days to follow up’, ‘vital status’, ‘days to
death’, and ‘days to birth’. To calculate the overall
survival, ‘days to death’ was used for expired patients
and ‘days to last follow up’ for surviving patients. Since
the XML data contained many versions of follow up
information, the latest version was used to get ‘days to
last follow up’. One sample with a discrepancy in ‘days
to death’ was removed.

Extracting relationship between methylations, miRNAs
and genes
The methylation probes in the TCGA data were mapped
to the nearest gene using the open source Illumina
methylation platform annotation file. To reduce many
false positives of miRNA-target gene interactions, the
relationships between miRNAs and their target genes
were obtained using miRTarBase, which is a manually
collected database of miRNA-target interactions experi-
mentally validated by reporter assay, western blot,
microarray and next generation sequencing experiments
[25]. Relationships between miRNAs and target genes
are many-to-many; thus miRTarBase with 410,621
entries mapped 1,046 miRNAs to 12,657 genes, resulting
in 722,812 combinations consisting of 7,922 genes,
146,653 methylation probes and 416 miRNAs.

Identifying interactions between miRNA and methylation
associated with gene expression
Linear regression models were used to determine the
significance of the interaction between miRNA and
methylation above and beyond the additive effects of
each variable alone on gene expression variability. To
achieve this goal, we performed a likelihood ratio test
(LRT) between the full and reduced model for 722,812
combinations. The full model tested the effects of
miRNA +methylation +miRNA*methylation (interaction
term) on gene expression. The reduced model tested

only the effects of miRNA +methylation. For both
models, we adjusted for sex and age. LRT is a well-
established statistical test to examine whether the
observed difference in model fit is statistically significant.
Bonferroni correction was applied to correcting for
multiple LRT p-values.

Overall survival analysis
To identify interactions between miRNA and methylation
that are significantly associated with prognosis, Kaplan-
Meier overall survival analysis was performed. We
graphed the methylation with miRNA expression profiles
and classified patients’ profiles into nine subgroups based
on three quantiles of miRNA and three quantiles of
methylation profiles. We then ran survival analysis for the
two extreme subgroups – the first subgroup from the
lowest quantiles of miRNA and methylation profiles, and
the second subgroup from the top quantiles of both profiles.

Analysis of differential gene expression
We tested the difference in gene expression levels be-
tween subgroups defined based on quantiles of miRNA
and methylation. Student’s T-test was performed to
check significant differential gene expression levels
between the subgroup from the lowest quantiles of
miRNA and methylation and the subgroup from the top
quantiles of the data set. ANOVA was used to test the
significance of differential expression levels among four
different subgroups, including low methylation & low
miRNA (LL), low methylation & high miRNA (LH), high
methylation & low miRNA (HL), and high methylation
& high miRNA (HH) levels.

Results
Identification of interactions between miRNA and
methylation associated mRNA levels
Out of 722,812 combinations of miRNA, methylation
and genes, 227 interactions between miRNA and methy-
lation were significantly associated with gene expression
level (Bonferroni-corrected LRT p < 0.05) (Additional file
1: Table S1). The obtained combinations contained 120
genes, 200 methylation probes, 76 miRNAs, respectively.
A pathway over-representation analysis using Consen-
susPathDB (CPDB) [26] showed that 120 genes were
significantly over-represented in 23 Reactome pathways
(FDR q < 0.05), including many cancer-related pathways
such as PI3K/AKT activation, oncogene induced senes-
cence, repression of WNT target genes, etc. (Table 3).
To examine histology-specific interactions between
miRNA and methylation, patients were divided into two
subgroups, papillary and non-papillary groups. Then, we
reran the framework to identify subtype-specific epigen-
etic interactions associated with gene expression levels
(Additional file 1: Table S2 and S3). Thirteen genes and

Table 2 TCGA bladder cancer data types used for the analysis

Data type Platform Number of featuresa

DNA methylation Infinium HM450 BeadChip 382,570 probes

miRNA expression Illumina HiSeq miRNA-Seq 1,046 miRNAs

Gene expression Illumina HiSeq RNA-Seq 12,657 genes
aThis is the number of features after QC
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21 genes were observed as papillary-specific and non-pa-
pillary-specific genes associated with epigenetic interac-
tions, respectively (Additional file 1: Figure S1, Table S2
and S3).

Epigenetic interactions associated with survival outcome
To determine whether any of the 227 significant combi-
nations has a significant effect on survival of the
patients, an overall survival analysis was performed.
Each pair of miRNA and methylation probe from 227
combinations was scatter-plotted, then patients were
divided into nine subgroups based on three quantiles of
each data set. For example, an interaction between
cg13979562 methylation probe and hsa-miR-107 miRNA
was significantly associated with gene expression level of
NACC2. Out of nine subgroups based on three quantiles
of levels of methylation probe intensity at cg13979562
and expression of hsa-miR-107, two groups were chosen
to be tested whether survival outcome was significantly

different: Group 1 (L/L) having low levels of methylation
and low levels of miRNA, and Group 2 (H/H) having
high levels of methylation and high levels of miRNA
(Fig. 1 (a)). Survival analysis showed that L/L (N = 54)
and H/H (N = 58) epigenetic subgroups acting on
NACC2 significantly differ in prognosis (p = 3.21e-02),
meaning that patients with higher methylation probe in-
tensity at cg13979562 and higher level of hsa-miR-107
expression were associated with a good prognosis
(Fig. 1 (b)). Among 227 combinations of gene, miRNA
and methylation, 11 combinations acting upon ten genes
were found to be significantly associated with survival (p
< 0.05): E2F3, CCND1, UTP6, CDADC1, SL35E3,
METRNL, TPCN2, NACC2, VGLL4, and PTEN (Table 4
and Additional file 1: Figure S2). Methylation (on two
different probes) of METRNL along with the presence of
miR-107 was found to be a significant epigenetic inter-
action impacting survival outcome. To assess whether
these interactions are more significant than expected by
chance, methylation and miRNA were randomly selected
1,000 times per gene to generate background data set,
then, LRT was performed. These 11 epigenetic interac-
tions were still more significant than expected by chance
(Additional file 1: Table S2).

Differential gene expression between subgroups defined
by epigenetic interactions
To test for differential levels of gene expression be-
tween subgroups defined by epigenetic interactions, a
T-test was performed for the 11 combinations that
were significantly associated with survival (Additional file 1:
Figure S3). For example, Fig. 1c shows the boxplot of gene
expression levels between the low epigenetic control cohort
(L/L) and the high epigenetic control cohort (H/H) for
NACC2 at cg13979562 and hsa-miR-107 (p = 4.49E-12).
Epigenetic control led to lower expression levels of E2F3,
CCND1, CDADC1, SLC35E3, NACC2, and VGLL4, and the
epigenetic control of four genes, CCND1, CDADC1, NACC2,
and VGLL4, was found to be associated with a worse survival
outcome (Additional file 1: Figure S2 and S3). For UTP6,
METRNL, TPCN2, and PTEN, high epigenetic control was
associated with higher or unchanged expression levels of
the target genes (Additional file 1: Figure S3). Of
these, high epigenetic control led to a worse survival
outcome for UTP6 and PTEN (Additional file 1:
Figure S2). In addition, we tested the significance of
differential expression levels among four different sub-
groups, including low methylation & low miRNA (LL),
low methylation & high miRNA (LH), high methylation &
low miRNA (HL), and high methylation & high miRNA
(HH) levels. Levels of gene expression of CDADC1, E2F3,
METRNL, NACC2, VGLL4 across four subtypes were
significantly different (p < 0.05) and there were consistent
patterns that levels of gene expression decreased gradually

Table 3 Pathway over-representation analysis of 120 genes
associated with interactions between miRNA and methylation

Reactome pathway name p-value FDR q-value

Oncogene induced senescence 0.0002 0.019

Deactivation of the beta-catenin
transactivating complex

0.0002 0.019

Pre-NOTCH transcription and translation 0.0004 0.023

Oxidative stress induced senescence 0.001 0.025

NCAM1 interactions 0.001 0.025

PIP3 activates AKT signaling 0.002 0.025

PI-3 K cascade:FGFR1 0.002 0.025

PI-3 K cascade:FGFR2 0.002 0.025

PI-3 K cascade:FGFR3 0.002 0.025

PI-3 K cascade:FGFR4 0.002 0.025

PI3K events in ERBB4 signaling 0.002 0.025

PI3K events in ERBB2 signaling 0.002 0.025

Pre-NOTCH expression and processing 0.002 0.025

Cellular senescence 0.002 0.025

PI3K/AKT activation 0.002 0.025

GAB1 signalosome 0.002 0.025

Role of LAT2/NTAL/LAB on calcium
mobilization

0.003 0.027

repression of WNT target genes 0.005 0.044

Downstream signaling events of B
Cell Receptor (BCR)

0.005 0.047

AKT phosphorylates targets in the
cytosol

0.006 0.048

Negative regulation of the PI3K/AKT
network

0.006 0.048

Cyclin D associated events in G1 0.007 0.048

G1 phase 0.007 0.048
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Fig. 1 An example result of significant epigenetic interactions between miRNA and methylation on NACC2 associated with survival outcome. a
Patients were divided into 9 subgroups based on three quantiles of cg13979562 and hsa-miR-107. b Overall survival analysis was performed to
show the relative survival in each of the L/L (N = 54) and H/H (N = 58) subgroups on NACC2. c Levels of gene expression of NACC2 between two
subgroups (L/L vs. H/H) were significantly different (p = 4.69E-12)

Table 4 Summary of overall survival analysis results

Gene Methylation miRNA Bonferroni-corrected LRT p-value p-value from survival analysis

E2F3 cg21803390 hsa-miR-217 8.31E-08 2.17E-02

CCND1 cg03040489 hsa-miR-944 3.81E-05 1.08E-02

UTP6 cg13453082 hsa-miR-1254 2.44E-04 4.54E-02

CDADC1 cg17226947 hsa-miR-107 7.37E-04 1.03E-02

SLC35E3 cg02006977 hsa-miR-940 1.08E-03 3.58E-02

METRNL cg01502876 hsa-miR-107 1.49E-03 1.50E-02

TPCN2 cg10490196 hsa-miR-1976 1.69E-03 3.56E-02

NACC2 cg13979562 hsa-miR-107 1.92E-03 3.21E-02

VGLL4 cg25619837 hsa-miR-3662 9.72E-03 1.89E-02

METRNL cg03155999 hsa-miR-107 1.15E-02 1.19E-02

PTEN cg166686761 hsa-miR-543 4.97E-02 4.53E-02
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based on the levels of epigenetic controls, whereas the
gene expression levels of PTEN across four subtypes
showed the opposite pattern (Additional file 1: Figure S4).
Notably, even though NACC2 mRNA levels were signifi-
cantly lower in HH, HL, and LH subgroups than in LL
subgroups, HH subgroup was only associated with good
prognosis, indicating that this signal was achieved by only
interactions between miRNA and methylation, not by
miRNA or methylation alone (Fig. 2). Other results of
overall survival analysis for comparing four subgroups can
be found here (Additional file 1: Figure S5).

Discussion
DNA methylation downregulates gene expression by
inhibiting binding of transcription factors to DNA.
Downstream, miRNA silencing, mediated by RNA poly-
merase II, also works to downregulate gene expression
by regulating the processing of mRNA transcripts. We
expected miRNA activity targeting methylated genes to
decrease expression and worsen survival outcome. We
found that a common interaction was one in which
there was, as expected, lower gene expression with the
presence of epigenetic control, and this phenomenon
would tend to lead to a worse survival outcome. Canon-
ical CGI methylation is associated with gene expression
silencing, but our results seem to support the previous
finding that cancer cells seem to activate CGI methyla-
tion of hypomethylated genes which were previously
lowly expressed in normal tissues; hypermethylation did
not increase the expression of the corresponding genes
in cancer cells, but transcription factors were overex-
pressed [27]. In some cases, the target gene maintained
same or higher expression even with microRNA and
methylation (UTP6, METRNL, TPCN2, and PTEN); for
all these except TPCN2, this led to a worse survival

outcome (Fig. 3). Out of the 120 genes we found ten
genes to be associated with the interaction between
miRNA silencing and methylation, the following epigen-
etic interactions were shown to be especially associated
with survival outcome in bladder cancer even though
expression patterns largely did not show epigenetically-
induced simple downregulation.

Differential miRNA expression patterns in cancer – tumor-
suppressing effect
Decreased expression of miR-217 was found to be sig-
nificantly associated with large tumor size and advanced
clinical stage [28], and miR-217 directly suppressed
E2F3 and thereby inhibited invasion of hepatocellular
carcinoma [29]. MiR-217 was also found to regulate and
be regulated by miR-30a-3p, which suppresses p53 [30].
Previously, introduction of synthetic miR-107 suppressed
growth of human non-small cell lung cancer cell lines
[31] and high levels of miR-107 were associated with a
better survival outcome in gastric cancer [32]. MiR-107
was found to target DICER1 and thereby regulate tumor
invasion and metastasis (Fig. 3) [33]. Mutations in
DICER1 lead to an abnormally short Dicer protein that
is unable to aid in the production of miRNA; Dicer acts
as an oncogene or tumor suppressor in varying contexts,
including varied roles in bladder cancer (Fig. 3) [34].
MIR-940 levels were found to be the highest in invasive
and advanced bladder cancer [35] and has previously
been found to inhibit the migratory and invasive
potential of cells and increase E-cadherin expression by
regulating MIEN1. MiR-940 is highly expressed in im-
mortalized normal cells compared to cancer cells and
plays a role in mesenchymal-to-epithelial transition
(MET) [36]. MiR-543 is known to target SIRT1 in gastric
cancer [37], and miR-543-mediated targeting of SIRT1 is

Fig. 2 Relative contribution of epigenetic controls on NACC2. a Significance of differential expression levels among four different subgroups,
including low methylation & low miRNA (LL), low methylation & high miRNA (LH), high methylation & low miRNA (HL), and high methylation &
high miRNA (HH) levels. b Overall survival analysis for 4 subgroups
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known to alleviate insulin resistance [38]. MMP7 (an
oncogene) is also targeted by miR-543 in ovarian cancer;
downregulation of miR-543 promotes cancer invasion
[39]. The function of miR-1976 is poorly characterized
although it was identified as aberrantly expressed in
lymphoblastic leukemia [40].

Differential miRNA expression patterns in cancer – high
levels of expression in cancer
MiR-944 is overexpressed in human cervical cancer cells
[41]. MiR-944 is located in the intron of the TP63 gene
but has its own promoter; however, miR-944 biogenesis
is markedly increased by the binding of a TP63 gene
product, ΔNp63 protein. Moreover, miR-944 upregulates
p53 expression [42]. In making the case for distinct
subtypes of bladder cancer, basal and luminal, Choi et al.
found that TP63 knockdown (and inferred from that,
lessened miR-944) deceased basal pathway gene expres-
sion and also increased PPAR pathway gene expression,
associated with luminal-type carcinomas. The evidence
suggests a complex pathway for the interaction of miR-

944 and p63 in encouraging the development of primary
basal MIBC and perhaps discouraging the luminal type
of MIBC. Plasma-borne levels of miR-944 and miR-3662
has been suggested as possible biomarkers for lung
cancer [43]. In hepatocellular carcinoma, miR-3662 was
also found to be upregulated by p53 (Fig. 3) [44]. MiR-
1254 was suggested as a serum-based miRNA biomarker
for early-stage lung cancer [45] and in contrast to
canonical miRNAs, its biogenesis is independent of
DROSHA [46]; miR-1254 expression enhancement may
re-sensitize tamoxifen-resistant breast cancer cells to
tamoxifen [47].

Downregulation of expression of target with high
epigenetic control
The pattern of epigenetic control leading to lower
expression held for E2F3, CCND1, CDADC1, SLC35E3,
NACC2, and VGLL4, and for some of these (CCND1,
CDADC1, NACC2, VGLL4), the epigenetic control was
found to be associated with a worse survival outcome.
CDADC1 is a domain of cytidine and dCMP deaminase,

Fig. 3 A global view of differential expression patterns emerging from epigenetic control in bladder cancer
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also called NYD-SP15. CDADC1 was found to dynamic-
ally shuttle between nucleus and cytoplasm and overex-
pression of CDADC1 was found to reduce cell growth
and block G1 to S phase transition in the cell cycle [48].
It was also dysregulated in liver cancer [49] and involved
in regulating testicular development [50]. High epigen-
etic control of CDADC1 was associated with lower
expression and with a worse survival outcome; we posit
that lower expression of CDADC1 would encourage cell
cycle deregulation (including less breakdown of cytidine,
a component of RNA) and thereby worsen survival
outcome. NACC2, also known as RBB, is a transcription
repressor that is an important regulator of the p53 path-
way: NACC2 inhibits the expression of MDM2, which
stabilizes p53 expression [51]. VGLL4 is a Hippo path-
way member and acts as a YAP agonist [52]; it is said to
function as a tumor suppressor in gastric cancer [53],
lung cancer [54] and was also included in a smoking
cessation quit-success genotype score calculation [55].
As esophageal squamous cell carcinoma progresses,
VGLL4 expression is downregulated [56].
CCND1 gene amplification was previously found to be

correlated to histopathological tumor characteristics,
cancer-specific survival and response to chemotherapy
in bladder cancer [57, 58]. CCND1 protein regulates the
cell cycle during the G(1)/S transition, is a substrate for
SMAD1, and also phosphorylates and inhibits members
of the RB protein family, including RB1. When RB1 is
phosphorylated, E2F, a transcription factor, disassociates
from the RB/E2F complex and allows the E2F target
genes to be transcribed. Our model also implicated
epigenetic control of a component of E2F, E2F3, as asso-
ciated with a better survival outcome. MiRNA targeting
(miR-577) of E2F3 was found to inhibit gastric cancer
cell progression [59], and miRNA targeting of E2F3 and
CCND1 (miR-449b) was found to inhibit the prolifera-
tion of SW1116 colon cancer stem cells [60].
In a study of metastatic urothelial carcinoma, signifi-

cant copy number amplifications were found in E2F3
(30% vs. 7% amplification) and CCND1 [61]. For E2F3
and CCND1, we found that the interaction of methyla-
tion of the target gene (E2F3/CCND1) and presence of a
targeting miRNA was associated with lower expression
of the target gene; high epigenetic control was associated
with a worse survival outcome for CCND1, but a better
survival outcome for E2F3.
For SLC35E3, the lowered expression resulting from

the interaction between miRNA targeting and methyla-
tion of target, as for E2F3, led to a better survival
outcome. SLC35E3, also called Bladder Cancer-
Overexpressed gene 1 (BLOV1), acts in transmembrane
transport and belongs to the drug/metabolite transporter
protein superfamily (Luscombe, MJ, A novel gene which
is overexpressed in advanced bladder cancer May 1999,

EMBL/GenBank/DDBJ databases). SLC35E3 was also
bioinformatically identified as a potential secreted or
transmembrane protein [62].

Maintenance or increase of expression of target with high
epigenetic control
For UTP6, METRNL, TPCN2, and PTEN, high epigen-
etic control was associated with higher expression of the
target gene. For UTP6 and PTEN, high epigenetic
control led to a worse survival outcome. UTP6 (HCA66)
is required for both centriole duplication and ribosome
synthesis [63]. Haploinsufficiency-derived UTP6 under-
expression in neurofibromatosis type 1 (NF1) cells
resulted in those cells being less susceptible to apoptosis
[64]. UTP6 was also implicated as element of the inter-
actome of the human histone deacetylase family [65].
PTEN has been shown to be hypermethylated in ovarian
cancer cell lines and also highly regulated at the transla-
tional level [66], and aberrantly expressed in many forms
of cancer [67]. In MIBC squamous epithelia, the expres-
sion of PTEN was reduced or lost, and mTOR expression
was negatively correlated with PTEN expression only in
urothelial squamous cell carcinoma, not schistosomal
bladder squamous cell carcinoma [68].
METRNL expression was reduced in the high methyla-

tion/high miR-107 (H/H) cohort as compared to the low
methylation/low miR-107 (L/L) group for one methyla-
tion probe (cg01502876) and unchanged for the other
methylation probe (cg03155999), suggesting that methy-
lation of METRNL in cancer will reduce its expression
in some cases (Fig. 3). We found that the cohort of
patients with high levels of miR-107 and high methyla-
tion of its target METRNL at both probes had a better
survival outcome. METRNL promotes glucose tolerance
and energy expenditure, and blocking METRNL in vivo
causes reduces thermogenic gene response and may play
a role in tissue inflammation [69]. TPCN2 encodes an
NAADP (nicotinic acid adenine dinucleotide phos-
phate)-induced two-pore Ca(2+) ion channel which is
ubiquitously expressed but has elevated expression in
liver and kidney and operates as a sensor of both
luminal pH and Ca(2+) [70]. TPCN2 is highly sensitive
to pH, and is localized intracellularly to endolysosomal
organelles [71]. The fact that TPCN2 is induced by
nicotinic acid raises questions about potentially novel
mechanisms that may underlie well-established link
between bladder cancer and smoking.

Conclusions
In this study, we proposed a novel approach to identify
epigenetic interactions between methylation and miRNA
associated with prognosis in bladder cancer. We identi-
fied 11 significant epigenetic interactions associated with
survival (Table 4). In particular, a higher epigenetic
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control group (HH) on NACC2 was only associated with
good prognosis compared to other subgroups (HL, LH,
and LL) (Fig. 2). This suggests that these epigenetic in-
teractions might be new prognostic markers that can be
detected by only integrating both methylation and
miRNA data, not by miRNA or methylation alone. In
addition, a global view of inter-plays of miRNA, methy-
lation, and gene expression could aid in extracting new
biological knowledge (Fig. 3). The interactions with
miRNAs as targeter and targetee belie potential feedback
loops in dictating survival outcome. Intriguingly, double
epigenetic control in some cases leads to no change or a
slight increase in expression. For UTP6 and PTEN, the
presence of epigenetic control does not lead to a change
in expression of the target but does lead to a worse
survival outcome. For current study, we captured the in-
teractions between miRNA and methylation. However,
genomic changes, such as somatic mutations or CNA,
could substantially affect the transcriptomic changes and
could induce a certain level of bias in estimating the
interactions between other epigenetic factors. To better
understand the role of epigenetic interactions on gene
expression levels, we will improve the current approach
to incorporate other omics data as well as a future work.
To this end, exploration of TCGA bladder cancer data

identified epigenetic interactions that are associated with
survival as a potential prognostic marker. Given the
importance and prevalence of these interactions of epi-
genetics events in bladder cancer it is timely to under-
stand further how different epigenetic components
interact and influence each other. Thus, cancer patient’s
variability in molecular signatures based on these
epigenetic interactions in bladder cancer may lead to bet-
ter prognostic/treatment strategies for improved precision
medicine. Our results warrant further investigation in a
larger independent cohort.
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