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Abstract

Background: One of the tasks in the iDASH Secure Genome Analysis Competition in 2016 was to demonstrate the
feasibility of privacy-preserving queries on homomorphically encrypted genomic data. More precisely, given a list of
up to 100,000 mutations, the task was to encrypt the data using homomorphic encryption in a way that allows it to be
stored securely in the cloud, and enables the data owner to query the dataset for the presence of specific mutations,
without revealing any information about the dataset or the queries to the cloud.

Methods: We devise a novel string matching protocol to enable privacy-preserving queries on homomorphically
encrypted data. Our protocol combines state-of-the-art techniques from homomorphic encryption and private set
intersection protocols to minimize the computational and communication cost.

Results: We implemented our protocol using the homomorphic encryption library SEAL v2.1, and applied it to obtain
an efficient solution to the iDASH competition task. For example, using 8 threads, our protocol achieves a running
time of only 4 s, and a communication cost of 2 MB, when querying for the presence of 5 mutations from an
encrypted dataset of 100,000 mutations.

Conclusions: We demonstrate that homomorphic encryption can be used to enable an efficient privacy-preserving
mechanism for querying the presence of particular mutations in realistic size datasets. Beyond its applications to
genomics, our protocol can just as well be applied to any kind of data, and is therefore of independent interest to the
homomorphic encryption community.

Keywords: Cryptography, Homomorphic encryption, Genome privacy

Background
In 2015 and 2016, iDASH (integrating Data for Analysis,
Anonymization, and Sharing) hosted two international
contests on Secure Genome Analysis. Teams from around
the world participated to test the limits of secure compu-
tation on genomic data, and benchmark solutions on real
data sets. Such contests serve to bring together experts
in security, cryptography, and bioinformatics to quickly
make progress on interdisciplinary challenges. The task
for outsourced storage and computation this year was
to implement a method for private queries—specifically
string matching on encrypted genomic data.
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Motivation
In recent years cloud storage and services have been devel-
oping rapidly. Enterprise customers in the medical and
financial sectors can potentially save money and stream-
line business processes by outsourcing the storage and
computation of their data to public storage clouds. Instead
of storing and managing a large amount of data locally,
a medical center can utilize cloud storage for electronic
medical records or genomic data of patients. However,
using public storage clouds can potentially compromise
the privacy and security of the data. One effective way
of addressing these concerns is to store private data in
encrypted form in the public cloud. Typical block ciphers
do not allow data to be used in encrypted form, and
meaningful computation on the data would either require
it to be returned to the customer for decryption, or
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alternatively for the storage cloud to have access to the
decryption key. A new way to solve this problem is to
instead encrypt it using a very special encryption scheme
that is specifically designed to allow for computations to
be done in encrypted form. Such an encryption scheme is
called a homomorphic encryption scheme.
In this paper we focus on tasks related to string match-

ing, which is motivated by the following scenario. A
medical center wants to outsource the storage of several
VCF files (The Variant Call Format Version 4.2) contain-
ing patients’ genomic data to a public cloud. In order
to protect the privacy of the patients, the medical cen-
ter uploads the files in homomorphically encrypted form.
At a later date, the medical center needs to calculate the
probability of certain genetic diseases through matching
a set of biomarkers to the encrypted genomes of patients.
These query biomarkers also need to be passed to the
cloud in homomorphically encrypted form to protect the
privacy of the patients. The cloud then needs to match
the biomarkers in the encrypted query to those in the
encrypted VCF file using a string matching algorithm
compatible with homomorphic encryption. This produces
an encrypted result, which it can then send back to the
medical center for decryption and analysis.
2In its most basic form, string matching on homomor-

phically encrypted data can be summarized as follows.
Suppose a string Q of length � has been homomorphi-
cally encrypted. Now consider another string X of the
same length �. The task is to perform a comparison oper-
ation that returns a ciphertext whose decryption reveals
whether Q and X are the same string. The decryption
may or may not leak information about one or both of
the strings Q, X. As a more complicated example, con-
sider a dataset of N homomorphically encrypted strings
Q1, . . . ,QN , all of length �. Now the task might be to
query the entire dataset, and to return a ciphertext whose
decryption reveals whether a given query string X is
present in the set. Again, the decryption may or may not
reveal information about one or more of the strings Qi, X.
In more complicated examples, one might want to accept
partial matches, or strings within a certain Hamming
distance of the query string.

Summary of results
We start by discussing the basics of homomorphic
encryption, and techniques for encoding and batching
ciphertexts. Next, we outline various approaches for string
matching on homomorphically encrypted data. We then
employ hashing techniques from Private Set Intersec-
tion protocols [1, 2] to obtain significant performance
improvements over the basic methods. We then focus on
one particular method for string matching, and describe
formally a practical and efficient protocol for using it for
privacy-preserving queries.

We apply our protocol to solve the homomorphic
encryption challenge in the 2016 iDASH Secure Genome
Analysis Competition. In this task, we are given a VCF
file containing a certain number of rows (each row cor-
responds to a mutation). From each row we extract 40
bits of relevant information, encrypt it using a homomor-
phic encryption scheme, and upload it to a cloud server.
A client queries the server for the presence of a particular
mutation (single query) or several mutations (multiquery)
in the file. The server performs the query matching homo-
morphically, and returns the encrypted result to the client.
For homomorphic encryption, our solution uses the Fan-
Vercauteren scheme from [3], and the implementation in
the Simple Encrypted Arithmetic Library - SEAL [4]. We
evaluated our solution on two example VCF files, contain-
ing 10,000 rows and 100,000 rows, respectively. Table 5
summarizes the performance of our solution.
Our solution to the iDASH competition task was

selected as the winner at an associated workshop held in
Chicago, IL in November 2016.

Related work
Over the last 5 years, there have been a number of
papers demonstrating computation on homomorphically
encrypted medical and genomic data, in a line of work
starting with [5], which showed how practical statis-
tical tasks can be achieved by introducing a different
way of encoding data as polynomials to avoid deep cir-
cuits for simple multiplication of real numbers. Other
computational tasks that have been demonstrated to be
viable on homomorphically encrypted data include heart
attack risk prediction from encrypted health data [6],
and genomic computations such as Pearson Goodness-
of-Fit test, Cochran-Armitage Test for Trend, measures
of linkage disequilibrium, and Estimation Maximization
algorithm for haplotyping [7]. Homomorphic computa-
tion of edit distance was one of the tasks for the 2015
iDASH competition, and was demonstrated to be possi-
ble by a number of submissions [8]. A proceedings volume
covering the submissions to the 2015 competition was
published, including a paper covering one of the winning
submissions: an optimized implementation of the modi-
fied edit distance algorithm [9, 10]. Several other works
have focused on applications of homomorphic encryp-
tion on evaluating machine learning models on encrypted
data [11, 12].
In Bedö et al. [13] show how to perform very

advanced string matching tasks—e.g. fuzzy matching—
on homomorphically encrypted data. Unfortunately, these
techniques come with a large computational and commu-
nication overhead, making them significantly less practi-
cal than what we present here.
The homomorphic encryption library SEAL is

described in [4, 14].
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Methods
Homomorphic encryption
Homomorphic encryption is a powerful cryptographic
primitive that allows computation to be performed on
encrypted data. While the idea in principle is old [15], and
many well-known public-key cryptosystems (e.g. RSA,
ElGamal, Paillier) already allow either additions or mul-
tiplications to be performed on the ciphertext side, only
very recently Craig Gentry described the first fully homo-
morphic encryption scheme in the seminal paper [16],
where the encryption scheme respects both addition and
multiplication. Since then, a vast amount of both theo-
retical and practical implementation work has been done
to improve the efficiency of homomorphic encryption
schemes [3, 17–21], and at this point researchers are start-
ing to see performance results that are good enough for
carefully selected realistic applications [5, 12, 22].
While many of the techniques and algorithms pre-

sented in this paper are agnostic to the exact homomor-
phic encryption scheme that is being used, for simplicity
we will restrict to Ring LWE-based cryptosystems using
power-of-2 cyclotomic rings of integers [23]. In such cryp-
tosystems, the plaintext space is typically the polynomial
quotient ring Zt[ x] /(xn + 1), and the ciphertext space the
polynomial quotient ring Zq[ x] /(xn + 1), where n is a
power of 2, and t � q are positive integers. Here Zt and
Zq denote integers modulo t and q, respectively. Thus, it
is customary to denote R = Z[ x] /(xn + 1), so that the
plaintext and ciphertext spaces become Rt = R/tR, and
Rq = R/qR, respectively. We use this notation through-
out the paper. We note that in some schemes, such as the
BGV scheme described in [19], the modulus q changes
throughout the homomorphic evaluation as a result of
an operation called modulus switching, but this fact has
no consequences for our protocol, and the reader can
safely ignore it. In our experiments we use the Simple
Encrypted Arithmetic Library - SEAL [4], which imple-
ments the Fan-Vercauteren (FV) scheme described in [3].
Thus, our notation and terminology most closely follow
[4] and [3], but the techniques apply trivially also to many
other schemes.

Leveled fully homomorphic encryption
Technically speaking, fully homomorphic encryption
refers to an encryption scheme which can evaluate any
arithmetic circuit on encrypted inputs. In practice, this
turns out to be too much to ask. Instead, by restricting the
multiplicative depth of the circuits to some bound L, one
can set the parameters of the encryption scheme to sup-
port only circuits up to depth L, and obtain significantly
better performance than what a true fully homomorphic
encryption scheme would give. Such schemes are called
leveled fully homomorphic, and are typically described by
the following randomized algorithms:

• Setup
(
1κ , 1L

)
: Given a security parameter κ and a

parameter L ∈ Z
+ (level), outputs a set of encryption

parameters parms.
• KeyGen(parms): Outputs a secret key sk and a

public key pk. Optionally outputs one or more
evaluation keys evk.

• Encrypt(m,pk): Given messagem ∈ Rt , outputs
ciphertext c ∈ Rq.

• Decrypt(c,sk): Given ciphertext c ∈ Rq, outputs
messagem ∈ Rt .

• Evaluate(C, (c1, . . . , ck),evk): Given circuit f of
depth at most L with k input wires, and inputs
c1, . . . , ck with ci → Encrypt(mi,pk), outputs a
ciphertext c such that

Pr
[
Decrypt(c,sk) �= f (m1, . . . ,mk)

] = negl(κ) .

Moreover, we require that the size of the output of
Evaluate is not more than polynomial in κ

independent of f (compactness), and independent
of L (see e.g. [24]).

We say that a leveled fully homomorphic encryption
scheme is secure if it is IND-CPA secure. The reader is
referred to [19] for more details.

Encoding
As we explained above, we restrict to homomorphic
encryption schemes where the plaintext space is the poly-
nomial quotient ring Rt . Thus, when integers are to be
encrypted, and integer arithmetic performed on them in
encrypted form, one needs to employ an encoding scheme
to convert integers into elements of Rt . There are many
ways to do this (see e.g. [4]), but we only need the simplest
method in this work. Namely, given an integer m ∈ Z, we
encode it as the constant polynomial m ∈ Rt . Of course,
this allows us to only encode integers between 0 and t− 1,
which gives a strict lower bound on the size of t that we
can use. The corresponding decoding function is equally
trivial: interpret the constant polynomial as an integer. As
Zt is a subring of Rt , as long as we ensure that the under-
lying plaintext integers that are encountered during the
homomorphic evaluation never get reduced modulo t, we
can use the homomorphic encryption scheme to perform
integer arithmetic. In practice, this places a strong lower
bound on the size of t, which subsequently necessitates
the use of larger n and q for technical reasons [4]. Unfor-
tunately, increasing n and q can have a dramatic adverse
effect on performance, which is why it is crucial to choose
t as small as possible. This typically requires a detailed
analysis of the computation that is to be performed on
encrypted data.

Batching
Batching is a powerful technique that allows SIMD (Single
Instruction, Multiple Data) operations to be performed
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on homomorphically encrypted data. We give a very brief
explanation here, and refer the reader to [4, 22, 25, 26] for
more details.
The simple encoding scheme described above is

extremely wasteful, as it encodes only one single integer
modulo t into a plaintext polynomial with enough space
to store thousands of such integers. Indeed, recall that we
use the ring R = Z[ x] /(xn + 1) to construct both the
plaintext space (Rt) and the ciphertext space (Rq), and that
n is always a power of 2. Typically n is at least 1024, and
in some extreme examples as large as 65536. The size of
q depends on n, and ranges between 30 bits for n = 1024
to thousands of bits for n = 65536. A naive way to try to
improve the situation by enabling SIMD operations would
be to encode one integer modulo t into each coefficient of
the message polynomial. While such an encoding would
indeed work when the additive homomorphism is used
(addition of polynomials in Rt is done coefficient-wise), it
would not work for multiplications. Instead, the standard
approach is to choose t such that the polynomial modu-
lus xn + 1 factors into n linear factors modulo t. This is
achieved by restricting t to be a prime such that 2n|(t−1).
This causes the plaintext space Rt to split into a direct
product as Rt ∼= Z

n
t , where the isomorphism is an isomor-

phism of rings, meaning it respects both additions and
multiplications. Given a vector �m ∈ Z

n
t representing the

values in the individual slots, we denote its composition
into a plaintext polynomialm ∈ Rt by Compose( �m). Sim-
ilarly, given a plaintext polynomial m ∈ Rt , we denote its
decomposition into a vector �m ∈ Z

n
t representing the val-

ues in the individual slots by Decompose(m). An explicit
description of the isomorphism is given in the references
mentioned above.
In computations where SIMD operations can be used,

batching can provide an enormous improvement in
latency, and in other cases at least in throughput (see e.g.
[12, 22, 25, 26]), making it one of the most powerful and
important concepts in homomorphic encryption.

String matching
Setup
Suppose we are given a dataset D of distinct N �-bit
strings Q(1), . . . ,Q(N). We denote the bits in Q(i) by
Q(i)
1 , . . . ,Q(i)

� , so the dataset can be organized into anN×�

matrix of bits:

D =

⎛

⎜
⎜
⎝

Q(1)
1 · · · Q(1)

�
...

. . .
...

Q(N)
1 · · · Q(N)

�

⎞

⎟⎟
⎠

We need to homomorphically encrypt D to produce an
encrypted dataset DEnc, and we explain below how this is
done. Likewise, given an �-bit query string X, we denote

its bits by X1, . . .X�, and explain below how to homomor-
phically encrypt it to yield an encrypted query XEnc. The
task is then to construct a low-depth arithmetic circuit
fQuery, such that the result of the homomorphic evalua-
tion fQuery(DEnc,XEnc) decrypts and decodes correctly to
yield a plaintext from which one can determine whether X
matches any of the rows ofD.

EncryptingD and X
To encrypt the dataset, we use homomorphic encryption
with batching. Suppose n is a power of two, and t is a
prime such that 2n|(t − 1), so that every plaintext polyno-
mial in Rt can be considered as an n-tuple of slots, each
containing an integer modulo t.
If n � N , one can always add empty rows to extend the

dataset to satisfy n|N . Thus, without loss of generality, we
will assume n|N . Let B = N/n be the batch count. We
form a B × � matrix D of plaintext polynomials

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Compose

⎡

⎢⎢
⎣

Q(1)
1
...

Q(n)
1

⎤

⎥⎥
⎦ · · · Compose

⎡

⎢⎢
⎣

Q(1)
�

...
Q(n)

�

⎤

⎥⎥
⎦

...
. . .

...

Compose

⎡

⎢⎢
⎣

Q(N−n+1)
1

...
Q(N)
1

⎤

⎥⎥
⎦ · · · Compose

⎡

⎢⎢
⎣

Q(N−n+1)
�

...
Q(N)

�

⎤

⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which we encrypt entry-wise to form an encrypted
matrixDEnc, whose i-th rowD(i)

Enc is a vector of length � of
ciphertext polynomials.
Given a query stringX with bitsX1, . . . ,X�, we first form

an �-dimensional vector of plaintext polynomials as

X =
⎛

⎜
⎝ Compose

⎡

⎢
⎣

X1
...
X1

⎤

⎥
⎦ · · · Compose

⎡

⎢
⎣

X�

...
X�

⎤

⎥
⎦

⎞

⎟
⎠

= (X1 · · ·X�) .

The second equality is due to the fact that
Compose [a · · · a]� is equal to the constant polyno-
mial a ∈ Rt (this is not obvious, and requires one to know
the explicit description of the isomorphism Rt ∼= Z

n
t ).

We can now directly take the query string bits and write
them as the plaintext polynomials (constant polynomi-
als) to form the vector X. We then encrypt each of the
polynomials in X to form an encrypted query vector XEnc.
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Compare-add-multiply
Our first approach is particularly good for scenarios where
the strings are long, and there are few batches (large �,
small B). We homomorphically evaluate the function

CAM(DEnc,XEnc) =
B∏

i=1

�∑

j=1

((
D(i)

Enc

)

j
− (XEnc

)
j

)2
,

(1)

where (−)j denotes the j-th component of a vector.
Due to batching, each subtraction followed by squaring

in (1) compares n bits (one bit per one row in the original
dataset D) to the corresponding bit position in the query
string X. Let i be the index of one of the B batches, and
consider what happens in the sum for this particular i. If
the k-th row within the i-th batch—i.e. the (n(i−1)+k)-th
row in D—matches the query string X, then the sum will
have value 0. Otherwise it will have a non-zero value of at
most �. Finally, evaluating the product results in a cipher-
text with a 0 in the k-th slot precisely when the query
matched the (n(i − 1) + k)-th row of D for at least one
batch index i.
Note that we need the parameter t in the encryption

scheme to be bigger than �. This is to avoid false pos-
itives from appearing as a result of the sum wrapping
around t. Note also that we do not need to care about
t being large enough to support multiplication over the
batches, because t being prime ensures that the product is
0 (mod t) precisely when one of the factors is 0.
Evaluating the function CAM requires (2�−1)B additions

or subtractions, �B squarings, and B − 1 multiplications.
It has multiplicative depth 1 + ⌈

log2 B
⌉
, which is small

when N is small, and most importantly does not depend
on �. It is in fact possible to evaluate CAM with only a
depth 	log2(B+1)
 circuit, but this is computationally less
efficient, and less amenable to multithreading.

Larger base. If the strings to be compared are long, much
of the running time of CAM will be spent performing the
�B squarings. The situation can be significantly improved
by reducing the length � of the rows of D by not repre-
senting them as strings of bits, but instead as strings of
base-b digits, where b > 2. Of course the same kind of rep-
resentation has to be used for the query string X. Nearly
everything presented above still works, and in particular
the function CAM behaves analogously, i.e. it results in a
ciphertext with a 0 in the k-th slot precisely when the
query matches the (n(i − 1) + k)-th row of D for at least
one batch index i. The only major difference is that we
must be very careful now not to wrap around t during the
computation to avoid false positives. The sums of squares
of differences in (1) can now be as large as �b(b − 1)2,
where �b is the length of the string when represented in

base b. For example, if the rows are �-bit integers, we can
get �b = ⌈

�/ log2 b
⌉
. Once again, since t is a prime, we do

not need to worry about the product.
To give some concrete numbers, consider bits strings of

length 100. In the binary representation it would suffice to
take t > 100, but in base-16 we need t > 5625. Roughly
estimating, this increase in t can result in the cipher-
text noise growing by 6 extra bits in each multiplication,
amounting to a total of 6

(
1 + ⌈log2 B

⌉)
bits more noise

in the result, potentially prompting an increase in the
encryption parameters when B is large. Nevertheless, the
number of squarings is reduced by a factor of 4, so as long
as the parameters do not need to be increased (at least
too much), the result can be a significant improvement in
performance.

Other considerations. The CAMmethod is very efficient
when the bit strings are long, and B is not too large. The
possibility of using a larger base for encoding the strings
can help further reduce their length, and increase the per-
formance. The CAM method is also fully compatible with
all performance improvements described below, making it
significantly more powerful than what is suggested by the
above analysis.
The downside of the CAM method is that it only reports

whether the query string X was found in D or not. It is
hard to see how it could be improved to support partial,
or fuzzy queries, or made to return some function of the
rows that were found to match the query.

Compare-multiply-add
Our second approach is particularly good for scenar-
ios where the strings are short, and there are many of
them (small �, largeN).We homomorphically evaluate the
function

CMA(DEnc,XEnc) =
B∑

i=1

�∏

j=1

[

1 −
((

D(i)
Enc

)

j
− (XEnc

)
j

)2
]

.

(2)

Due to batching, each subtraction followed by squaring
in (2) compares n bits (one bit per one row in the original
dataset D) to the corresponding bit position in the query
string X. Since the result is subtracted from 1, a match is
indicated by a resulting value of 1 rather than by a 0, as was
the case in the CAMmethod. As the comparison results of
different bits are multiplied together, a match of the entire
string is indicated by a 1 (after the multiplication over the
index j), and a mismatch by a 0. Summing over the batch
index i results in a ciphertext with a positive entry in the k-
th slot if the k-th row within the i-th batch for some i—i.e.
the (n(i−1)+k)-th row inD—matches the query string X.
Otherwise the value at the k-th slot will be 0. Moreover,
the number in the k-th slot will be precisely the sum of
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matches found in the k-th slot of all batches, and the sum
of the values in all slots will be precisely the number of
matches found.
Evaluating the function CMA requires (� + 1)B − 1

additions or subtractions, �B squarings, and (�−1)Bmul-
tiplications. We ignore the very cheap plain subtractions,
where we subtract from an unencrypted number 1. It has
multiplicative depth 1 + ⌈

log2 �
⌉
, which is small when

� is small, but does not depend on N. It is possible to
evaluate CMA with only a depth 	log2(� + 1)
 circuit, but
this is computationally less efficient, and less amenable to
multithreading.
Since the expression in the square brackets in (2) has

always value either 0 or 1, the only restriction on t is to
take t > B to prevent modular reduction in the summa-
tion phase (compare this to the bound t > � in the CAM
method).

Other considerations. The CMA method can be very
effective when �, i.e. the length of the strings, is short.
In this case the multiplicative depth does not depend
on the number of rows in the dataset, which makes this
method particularly suitable for situations where level 1+
	log2 �
 circuits can be computed with reasonable param-
eters. Unfortunately, the computational complexity and
the multiplicative depth quickly become very high when �

grows.
Another significant advantage of the CMA approach is

that the signal of success comes in a much more useful
form that in the CAM approach. For example, consider the
case of only one batch. If a match is found, the result of
CMA is a ciphertext with a 1 exactly in the slot(s) where the
match occurred, and 0 elsewhere. Thus, the result of CMA
can be used to perform conditional computations depend-
ing on whether a match was found or not. Furthermore,
CMA always shows the exact number of matches that were
found, which is in general not true for CAM, although it
will be when we start applying hashing techniques.
Unfortunately, the CMA method does not support the

larger base optimization to reduce the length � of the
dataset strings.

Compare-add
Consider the case where D has only one row, i.e. only one
vertical batch per string bit is needed. Let

CA(DEnc,XEnc) =
�∑

j=1

((
D(1)

Enc

)

j
− (XEnc

)
j

)2
. (3)

The function CA has the very nice property that the
k-th slot will end up containing the Hamming distance
between the query string and the k-th row of the dataset.
Thus, a match can be detected as a 0 in a particular slot.
For this to work correctly, it is necessary to have t > �

to prevent modular reduction from taking place in the
summation.

Other considerations. This method is very fast and
efficient at detecting partial matches. Unfortunately, it
only works when the batch count B is 1.

Message expansion
Note that in all of the methods described above the query
will have size 1/B of the size of the entire encrypted
dataset. The result always consists of one single cipher-
text, which is (1/�B)-th of the size of the entire encrypted
dataset. Thus, when B is small, the large query size can
make it unreasonably inefficient to use the functions CAM,
CMA, and especially CA. In some cases the assumption is
that several queries will be submitted to the encrypted
dataset, in which case only the amortized query size might
matter. Later we discuss query packing techniques that
yield significantly improved amortized performance in
these cases.

Hashing
In this section we show how a technique called
permutation-based cuckoo hashing can be used in various
ways to improve the performance of the string matching
algorithms. First, it can be used to shorten the strings that
need to be homomorphically compared, resulting in over-
all better performance in the functions CAM, CMA, and CA.
Second, it allows CAM to always return the exact number
of matches found. Third, when using CAM or CA, it allows
us to pack several queries together into so-called mul-
tiqueries, resulting in significantly improved amortized
performance in both query size and running time.

Permutation-based hashing
Permutation-based hashing [27] is a technique that has
been used extensively to improve the efficiency of mod-
ern Private Set Intersection (PSI) protocols (see e.g. [1, 2]),
where two distrusting parties both hold sets of bits strings,
and want to find the intersection of their sets without
revealing anything else to each other. Permutation-based
hashing can be used to shorten the strings that need to
be compared in these protocols, resulting in improved
performance. We employ the same trick.
Let X be an �-bit string, and split it into two parts

as X = XL‖XR. Let �L be the bit-length of XL, and �R the
bit-length ofXR. LetH : {0, 1}�L → {0, 1}�R be a hash func-
tion.We define the location ofX as Loc(X) = H(XL)⊕XR,
where ⊕ denotes binary XOR. Consider now a hash table
with n bins, where n = 2�R , and insert XL in the bin with
index Loc(X).
Two different strings can never yield the same value

in the same bin, because Loc(X) = Loc(Y ) (same bin)
together with XL = YL (same value) imply immediately
that X = Y . In some sense permutation-based cuckoo
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hashing encodes a part of the string into the index of the
bin (location in the hash table). If we can make bin com-
parisons cheap (or free), the amount of work that needs
to be done in actual string comparison operations may
be significantly reduced. For this to work, we need each
bin to contain at most one item, which depending on the
hash functionH, the total number of strings, and the hash
table size nmay or may not be likely to happen. The stan-
dard trick to make this happen is by using cuckoo hashing,
which is a hashing technique with a particularly high load
factor.

Permutation-based cuckoo hashing
In the above description of permutation-based hashing
we assumed that each bin will end up containing at most
one value. This is not hard to achieve by taking the table
to be much larger than the number of possible strings to
be inserted, but this is hugely wasteful. Instead, we use
a hashing technique known as cuckoo hashing [28–32],
which uses several hash functions to try to find a hash-
ing scheme that gives as small of a hash table as pos-
sible, while ensuring that each bin ends up with at
most one item.

Cuckoo hashing. Let n be the size of the hash table, and
suppose we have N items to be inserted. Let H0 and H1
be independent and random hash functions {0, 1}�L →
{0, 1}�R . We denote Loci(X) = Hi(XL)⊕XR, where XL and
XR are as before. The N items are inserted into the table
as follows. Given an item X, insert XL at Loc1(X). If this
location was already occupied by X′

L for some other item
X′ with Loci(X′) = Loc1(X), then pop X′

L, and insert it
at Loc1−i(X′). Continue in this way until the conflict is
resolved, and until all items are inserted. This method can
fail due to an infinite loop of insertions occurring, but it is
likely to succeed as long as n ≥ 2N .
A subtle issue with the approach above was pointed out

in [2, 33]. Namely, when using more than one hash func-
tion in permutation-based hashing, it is possible that two
distinct items hash to the same value in the same bin,
breaking the nice property that the location and the hash
value uniquely describe the item. This problem can be
fixed in a number of ways, e.g. by appending the index of
the hash function to the string stored in the bin, or to the
bin index. We choose to append it to the bin index. Thus,
we take the size of the hash table to be n = 2�R+1, and set

Loci(X) = i · 2�R + [Hi(XL) ⊕ XR] .

d-cuckoo hashing. The space-efficiency of cuckoo hash-
ing can be significantly improved by using more hash
functions. The generalization which we call d-cuckoo

hashing was described and analyzed in [31, 32]. Consider
d independent and random hash functions

H0, . . . ,Hd−1 : {0, 1}�L → {0, 1}�R ,
and denote

Loci(X) = i · 2�R + [Hi(XL) ⊕ XR] .

N items are inserted into a hash table of size n =
2�R+	log2 d
 using the random-walk method of [32] as
follows. To insert an item X, choose a random hash
function index i, and insert XL at Loci(X). If the loca-
tion was already occupied by X′

L for some other item
X′ with Locj(X′) = Loci(X), then pop X′

L, randomly
choose another hash function index j′ �= j, and insert
X′
L at Locj′(X′). Continue in this way until the conflict is

resolved, and until all items are inserted.

Success probability. The probability that the method
described above will fail due to an infinite loop increases
asN approaches the hash table size n. In practice, the ran-
domwalk not will not be able to find a valid configuration,
where each item is mapped to a unique location. While
increasing the number of hash functions d increases the
probability of finding a valid configuration, the underly-
ing problem of too many collisions Loci(X) = Locj(X′)
remains, unless the ratio n/N is increased.
It is important to be able to estimate the failure probabil-

ity for hashing the dataset. This is because of our security
model, which assumes that the dataset size is known to
the adversary. If the hashed dataset is unexpectedly large
(resp. small), the adversary will learn something about
the dataset: it caused unusually many (resp. few) hash
collisions. Thus, for the security proof to go through, it
is important to determine n and d before hashing the
dataset in such a way that the failure probability is at
most 2−λ, where λ is the statistical security parameter.
This guarantees that the adversary will not learn any extra
information, except perhaps with probability at most 2−λ.
Typically a λ of around 30 or 40 is deemed sufficient.
Several works [1, 31, 32] have analyzed the failure prob-

ability of d-cuckoo hashing, both from an asymptotic and
a concrete perspective. While the asymptotic results can
be informative, they do not give concrete parameters for
desired statistical security levels. We instead follow the
lead of [1], and empirically evaluate the failure proba-
bility by repeatedly constructing more than 230 cuckoo
tables, each with random hash functions. This allows us
to observe the empirical failure probability 2−λ for various
values of d and e = n/N > 1. In particular, we observe
that for a fixed n and d ≥ 3 there is a linear—or nearly
linear—relationship between e and the statistical security
parameter λ, and we interpolate the failure probability as
a linear function to obtain parameters when λ is greater
than 30, due to the prohibitive amount of time it would
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take to run d-cuckoo hashing significantly more than
230 times.
We provide an empirical analysis for n ∈

{4096, 8192, 16384}, and will see below that this is in fact
sufficient to also treat huge datasets with N � n. Figure 1
shows the empirical failure probability for d ∈ {3, 4, 5}
and n = 4096 for a variety of expansion factors e = n/N .
The solid line indicates the regions where measured
failure probabilities were obtained with more then 230
trials, and the dotted lines denote results obtained by
extrapolation. These empirical results clearly show that
for d ∈ {3, 4, 5} the security parameter scales linearly with
the expansion factor e.
Table 1 shows the complete set of interpolated

equations, which were obtained from the empirical anal-
ysis with the parameters in question. In general, we find
that the required e to achieve a desired security level
increases as n becomes larger. For instance, when consid-
ering d = 5 hash functions, n = 4096 requires an e of
approximately 0.01 smaller than n = 8192, for all mea-
sured λ. However, this trend is weak, and may not hold for
much larger n as the asymptotic analysis suggests. In addi-
tion, while d ≥ 3 yields a linear relationship with λ, the
special case of d = 2 scales exponentially in the security
parameter, as was also found by [1]. This is why we restrict
to the much more efficient parameters of d ≥ 3. More-
over, because of the diminishing returns that increasing
d provides, we conclude that d = 4 provides the best
trade-off for the setting that we consider.

Improved exact string matching
Single batch dataset
Suppose we are given a datasetD, and that the total num-
ber of rows N < n so that the batch count B = 1.
Instead of working with D directly, we instead hash each

Fig. 1 Empirical (solid line) and extrapolated (dotted line) failure
probabilities of d-cuckoo hashing when inserting N items into a table
of size n = 4096. Graph describing cuckoo hashing failure probability

Table 1 The linearly interpolated lines relating the statistical
security parameter λ to the d-cuckoo hash table expansion factor
e, where N = n/e items are inserted to a table of size
n ∈ {4096, 8192, 16384} using d ∈ {3, 4, 5} hash functions

d n = 4096 n = 8192 n = 16384

3 λ = 120.5e − 138.1 λ = 122.5e − 141.5 λ = 123.3e − 143.5

4 λ = 126.2e − 136.3 λ = 128.2e − 139.6 λ = 127.5e − 140.0

5 λ = 126.1e − 134.0 λ = 121.3e − 129.7 λ = 121.5e − 130.8

row Q(1), . . . ,Q(N) using permutation-based d-cuckoo
hashing to produce a hashed dataset H(D). The length of
the rows Q(i) is � = �R + �L, and n = 2�R+	log2 d
. Sup-
pose for now thatN is somuch smaller than n that hashing
succeeds with overwhelming probability. LetH(D) denote
the batching of the hashed dataset—analogous to D—and
let H(D)Enc denote its encryption.
Given a query string X of length �, we need to apply

permutation-based d-cuckoo hashing to form a hashed
query. In this case we hash only one item (namely X) into
a table of size n, and populate each of the d locations
Loci(X) with XL. This is necessary, because we cannot
know into which of the d locations X eventually ended
up when the dataset was hashed. Let H(X) denote the
hash table containing the hashed query string. Each row
of the hash table will have length �L bits, and we apply the
Compose function exactly as before to form the batch-
ing of the hashed query H(X), and finally encrypt it to
obtain H(X)Enc.
The comparison of H(X)Enc with H(D)Enc can be done

using CAM, CMA, or CA, almost exactly as before, but
now the strings that need to be compared have length
�L bits, which is �R = log2 n − 	log2 d
 bits fewer
than the original � bits. In an optimal case d is as small
as possible, and n as large as possible, but in prac-
tice n is bounded by performance restrictions coming
from homomorphic encryption (bigger n means worse
performance).

Multiple batch dataset
When the total number of items N is very large, it is
not realistic to take n to be such that N < n, as this
results in poor performance for homomorphic encryp-
tion. Instead, we break the dataset into several (vertical)
batches, each containing at most N ′ elements, where N ′ |
N , such that N ′ < n. We then use d-cuckoo hashing to
hash each of the B = N/N ′ batches of items into B sep-
arate hash tables of size n. As long N ′ is small enough,
and d large enough, the probability of d-cuckoo hashing
succeeding for each of the B hash tables is good. It is
necessary to use the same set of hash functions for each
of the hash tables. This technique works with both CAM
and CMA.
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In our security model the size N of the dataset and the
length � of the strings are public information. For secu-
rity reasons (see below), we need to be able to fix a public
predetermined choice for B, and say that the probability
of a hashing failure occurring for at least one of these B
batches is at most 2−λ. Building on our failure probabil-
ity estimates for cuckoo hashing, it is straightforward to
adjust the bounds for this setting with B batches: instead
of solving the equations of Table 1 for a given λ, we must
compensate for the fact that B such hash tables are con-
structed. Thus, cuckoo hashing should be expected to fail
at most once in every 2λB trials. Therefore, the left hand
side of the equations of Table 1 should be λ+log2 B; e.g. for
d = 3, n = 4096 the equation becomes λ + log2 B =
120.5e−138.1, when applied to the multiple batch setting.
Note that e = n/N ′, and the total number of items in the
dataset is N = BN ′ = Bn/e.

Larger base
In the CAM method we would still want to use larger
base b > 2 for more compact representation of the
strings, and for better message expansion in encryption.
The dataset and query are hashed just as before, but the
items in the bins that earlier were expressed as bit strings
of length �L are now instead expressed as base-b strings of
length �L,b = ⌈�L/ log2 b

⌉
.

The problem of empty bins
There is one issue that we have ignored until now. The
hash tables in the hashed dataset will typically contain
some number of empty bins, and the hashed queries
(which are also hash tables) will contain almost entirely
empty bins. An empty bin naturally results in a value of 0
in the corresponding slot after batching. These zeros will
cause false matches to occur, unless they are in some way
invalidated.
This problem is easy to solve by writing an impossible

value to the slots that correspond to empty bins in the
batched hashed query and dataset. Note that these impos-
sible values do also need to be different for the query,
and for the dataset. Note that when using a base b in
decomposing the strings, after batching the values in all
(non-empty) slots will be at most b − 1.
For the CAM method we populate the empty bins of

the hashed dataset with the value b, and the empty bins
of the hashed query with the value b + 1. We conclude
that the CAM method works as long as the homomorphic
encryption parameter t > �L,b(b + 1)2. It is in fact possi-
ble to do slightly better by simply invalidating the unused
bins for one of the �L positions, and require t to be such
that (�L,b − 1)(b − 1)2 + (b + 1)2 < t.
For the CMA method the situation is a bit trickier. Sup-

pose the batch count is B. Then the party that encrypts
the dataset includes with it B additional ciphertexts that

contain masks for the batches, invalidating (i.e. setting to
zero) all locations that are empty in the hash table. Like-
wise, the party that submits the query includes an extra
ciphertext that encrypts a mask that invalidates all loca-
tions that are empty in the query hash table. So instead of
the usual CMA, we now evaluate

CMA
(
H(D)Enc,H(X)Enc

)

= Mask(H(X))

B∑

i=1

⎧
⎨

⎩
Mask(H(D))i

×
�∏

j=1

[

1 −
((

H(D(i))Enc

)

j
−
(
H(X)Enc

)

j

)2
⎤

⎦

⎫
⎬

⎭
,

where Mask(H(D))i is a batched ciphertext that has a 1
in each slot that corresponds to a non-zero hash table bin
inH(D(i)), and a 0 in the rest of the slots, and Mask(H(X))

is a batched ciphertext that has a 1 in the slots that cor-
respond to non-empty bins, and a 0 in other slots. The
masks will now automatically invalidate all rows that are
not supposed to be included in the comparison by setting
them to zero.

Multiqueries
Suppose the dataset has been hashed and encrypted as
described above, and instead of one queryX, consider sub-
mitting k queries X(1), . . . ,X(k). Naively, the performance
and communication cost is k-fold compared to submit-
ting a single query. Alternatively, we could try to use the
same hash table when hashing each of the k queries, cut-
ting down the performance to (1/k)-th of that of the naive
approach. This will work as long as for each of the d
location functions the locations Loc(X(j)) are distinct. In
case there is overlap in the locations, we need to split
the multiquery into two or more parts. More precisely, if
BX denotes the size of the largest bin after inserting all k
items with all d hash functions, then we need to break the
multiquery up into BX hash tables, each of which will be
batched and encrypted separately.

Success probability
We assume the number of k of concurrent queries (k-
multiqueries) to be public information. For security rea-
sons, we need to be able to predetermine a value for BX
that is exceeded with probability at most 2−λ, where again
λ is the statistical security parameter. Then we always
submit BX separate queries, because otherwise someone
observing the queries can tell whether hash collisions
occurred more or less than expected, which leaks infor-
mation.
Distinct location functions are constructed to map val-

ues to non-overlapping regions in the hash table. Each
such region has size n/d. Thinking of balls and boxes, we
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need to first determine how likely it is that when plac-
ing k balls into n/d boxes the largest box has size at
most BX :

Pr[ at least one box contains more than BX balls]

≤n
d

· Pr[ first box contains more than BX balls]

=n
d

k∑

i=BX+1

(
k
i

)(
d
n

)i (
1 − d

n

)k−i
.

To fail, this must occur in at least one of the d regions.
Therefore,

Pr[multiquery packing failure] ≤ n
k∑

i=BX+1

(
k
i

)

×
(
d
n

)i (
1 − d

n

)k−i
.

A few examples are presented in Table 2 (for λ = 30)
and Table 3 (for λ = 40).
Furthermore, if more than one multiquery is performed

over the lifetime of the data, it might be necessary to
adjust the success probability to ensure that the fail-
ure probability is negligible even when performing some
predetermined number M of k-multiqueries. Namely,
we should select BX in such a way that on expecta-
tion at most one of every 2λM k-multiqueries fails. For
simplicity, we ignore this correction for now on, and
assumeM = 1.
It is also possible to ignore this information leak, and

simply submit a k-multiquery in as few batches as possi-
ble. The information leak resulting from this seems very
difficult for an adversary to use, in particular if it does not
know the hash functions used by the location functions.
Nevertheless, our proof of security requires the number
BX to be determined beforehand, and that the multi-
query size does not depend on the individual query strings
themselves.

Table 2 Parameters with multiquery failure probability ≈ 2−30

d = 3 d = 4

n k BX n k BX

4096 4 3 4096 10 4

4096 13 4 4096 27 5

4096 35 5 4096 57 6

4096 76 6 8192 4 3

8192 5 3 8192 16 4

8192 20 4 8192 45 5

8192 59 5 8192 102 6

8192 134 6

Table 3 Parameters with multiquery failure probability ≈ 2−40

d = 3 d = 4

n k BX n k BX

4096 5 4 4096 10 5

4096 13 5 4096 23 6

4096 30 6 8192 6 4

8192 7 4 8192 16 5

8192 21 5 8192 39 6

8192 52 6

Our protocol
In this section we describe in detail our protocol for
querying an encrypted dataset using the CAM method
with d-cuckoo hashing for multiqueries. Protocols for
using CMA and CA are similar, and we omit their formal
descriptions.

Formal protocol description
We consider two parties:

• The server who stores the encrypted dataset and
evaluates the string matching function CAM.

• The client who owns the encrypts the dataset,
submits encrypted queries to the server, owns the
secret key, and obtains the results of the queries.

It is easy to extend our protocol to work instead with a
dataset owner who is different from the client, and uses
only the client’s public key to encrypt its dataset. Indeed,
the protocol would be nearly identical, except that the
server would have to randomize the non-zero slots in
the output of CAM to not leak extra information about
the dataset to the client. We have chosen to restrict to
the two-party version of the protocol to make the security
model, and the description of the protocol simpler.
We assume that the size N of the dataset D, the length

� of the strings, and the number of k of queries are public
information. A formal description of our protocol �CAM is
given in Fig. 2.

Security
Our protocol works in the semi-honest setting, where the
client can have complete knowledge of the dataset and
queries. As such, we need not consider whether addi-
tional information is revealed to them. The server, on
the other hand, should only learn the size of the dataset,
and the number of queries that are made. At the core
of the security argument is a reduction to the underly-
ing homomorphic encryption scheme, and the fact that
hashing failures occur with negligible probability for the
parameters used. Even though we only presented a proto-
col for using CAM, a similar type of protocol works with
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Fig. 2 Protocol �CAM Protocol description

CMA and CA, and the proof of security does not depend
in a significant way on which string matching method
is used.
First, let us consider the setup phase where the

encrypted dataset is constructed. When constructing the
hashed dataset H(D), failing to construct the B cuckoo
hash tables obtained within it may reveal to the server
that a certain number of hash collisions occurred while
hashing the dataset. As such, we must ensure that the
probability of this event is negligible in the statistical secu-
rity parameter λ. Our hashing failure probability estimates
show how the public parameters n, d, and B can be chosen
to have this property. Such a choice is made in proto-
col �CAM (Fig. 2). Once the hashed dataset H(D) is con-
structed, it is encrypted with homomorphic encryption
as was described above, the exact details depending on
whether CAM, CMA, or CA is used. The encrypted dataset
is then uploaded to the server.
Later, a query of size k is made. The exact details depend

slightly on whether CAM, CMA, or CA is used. However,
in all cases the query is encrypted using homomorphic
encryption. Moreover, the size of the query is a function
of the public parameters k,N , �, and b. A full simulation
of the protocol can therefore be obtained by replacing D
and the query with uniformly sampled ones of the same
size. This change is computationally indistinguishable by

a straightforward reduction to the indistinguishability
property of the homomorphic encryption scheme.

Results
In this section wewill give an example application that was
one of the problem tracks in the iDASH Secure Genome
Analysis Competition in 2016. Track number 3 in the
competition—Testing for Genetic Diseases on Encrypted
Genomes—can be described as follows:

Problem description. Consider a setup with a client (or
possibly several clients), and a server. Initially the client
holds genomic data in VCF files in plaintext form. It
encrypts the files using homomorphic encryption, and
uploads them to the server for long-term storage. At a
later point the client wishes to query the server for the
presence of a particular entry (line) in the encrypted data.
The query will also be encrypted using homomorphic
encryption to prevent the server from learning any of the
client’s private data from it. More generally, the client can
issue multiqueries, in which several entries are queries at
once. After the client gets an encrypted result back from
the server, it decrypts and decodes it to learn a Boolean
result: MATCH or NO MATCH (or k Boolean results for a
k-multiquery).
We consider two scenarios. In the first one we assume

that the VCF files contain up to 104 rows, and in the sec-
ond one up to 105 rows. We present separate parameters
optimized for both scenarios.

Parsing the files. The client starts with parsing the VCF
files as follows. It reads in a line, and outputs #CHROM
(chromosome number), POS (position), the last entry in
the string REF (one of {A,C,G,T , empty}), the last entry in
the string ALT (similarly one of {A,C,G,T , empty}), and
one bit representing whether SVTYPE=SNP. We encode
the symbols in REF and ALT using numbers as

{A = 0, C = 1, G = 2, T = 3, empty = 0} .
The empty symbol appears for example when

SVTYPE=DEL. Substitutions (SVTYPE=SUB) and
insertions (SVTYPE=INS) are ignored to obtain better
performance, and because the competition problem
description allowed it. This is why we only care about the
last (and only) symbol in the REF and ALT strings. While
our implementation only supports querying entries with
SVTYPE=SNP, but it is possible—and easy—to generalize
our solution to support more general queries at the price
of only slightly reduced performance. This is because the
CAM function behaves very nicely with increasing string
length.
After each row has been represented as integers in

this way, we convert it to binary representation. Since
#CHROM is an integer between 0 and 22, or a symbol
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X or Y, we need 5 bits to represent it. Since POS is an
integer of length at most 9 decimal digits, we need 30
bits to represent it. Since we only encrypt homomorphi-
cally the last symbol of the REF and ALT strings, we
need 2 bits for both. Finally we need one bit to repre-
sent whether SVTYPE=SNP. In total, our encoding of each
row has length � = 40 bits. For each row we will encrypt
homomorphically only these 40 bits.
Thus, we encode an entry of the VCF file into 40 bits (to

be homomorphically encrypted) as follows:

x = x1 . . . x5︸ ︷︷ ︸
Chromosome number

‖ x6 . . . x35︸ ︷︷ ︸
Starting position

‖ x36x37︸ ︷︷ ︸
Reference

‖ x38x39︸ ︷︷ ︸
Alternative

‖ x40︸︷︷︸
Is SNP?

Encrypting the dataset. In order to reduce the
bit length of the inputs, we use permutation-
based 4-cuckoo hashing. We use n = 8192, and
N ′ = 7700. We consider two types of situations,
where in the first one N = 104 (so B = 2),
and in the second one N = 105 (so B = 13). Now, d = 4,
so �R = log2 n−	log2 d
 = 11, and �L = �−�R = 29. The
location functions are Loci(x) = i · 211 + [Hi(xL) ⊕ xR]
for i ∈ {0, . . . , 3}. With table size this much larger than the
number of items inserted in each table, 4 hash functions
suffices to obtain a good probability of succeeding in the
hashing process. Each data entry (also each query) is
represented by 40 bits, which hashing reduces to �L = 29
bits. We use a block size b = 210 to get �L,b = 3. Thus,
we need t > �L,b(b + 1)2 = 3151875. In our first example
with N = 104 and B = 2 this results in an encrypted
dataset consisting of B�L,b = 6 ciphertexts. Similarly, in
our second example with N = 105 and B = 13 we obtain
an encrypted dataset consisting of B�L,b = 39 ciphertexts.
For the sake of performance, in our example we ignore

the possibility of a (very) minor information leak due to
a small but non-negligible hash failure probability. Con-
sidering the case of B = 13, to instead obtain a statistical
security level of λ = 30, it suffices to use the same param-
eters but to restrict the VCF files with at most 78781
rows (N ′ ≈ 6060). To obtain a statistical security level of
λ = 40, the VCF files should have no more than 74483
rows (N ′ ≈ 5729).

Encrypting multiqueries. We restricted to multiqueries
of size at most 5 due to the specifications of the compe-
tition problem description. Again, we ignored potential
information leaks from hash failures, in all examples pro-
ducing only a single set of �L,b ciphertexts (BX = 1).
Indeed, for n = 213, and d = 4, packing a 5-multiquery
into one succeeds with probability approximately 0.98.
Thus, in our implementation, the 5-multiqueries consist
of only BX�L,b = 3 ciphertexts. The amortized size of

each query is therefore (3/5)/39 = 1/65 of the size of the
encrypted dataset.
Even if a hash collision would occur, and the multi-

query would have to be split up, it is very hard to see
how an adversary could use this information, since typ-
ically it would not even know what the hash functions
are. Nevertheless, to instead obtain a statistical security
level of λ = 40 would require taking BX = 4. Alterna-
tively, BX = 4 allows for up to 16-multiqueries while still
achieving a statistical security level of λ = 30.

Implementation and performance
For homomorphic encryption we use the Simple
Encrypted Arithmetic Library - SEAL [4], which imple-
ments the Fan-Vercauteren encryption scheme [3].
Table 4 summarizes the SEAL encryption parameters
that we used. In fact, we used two sets of parameters:
one for our smaller example (N = 104), and another one
for the larger one (N = 105). Note that both parameter
sets use the same n (exponent in poly_modulus),
but the smaller parameters have a much smaller q
(coeff_modulus). The larger parameters are estimated
to have a computational security level κ ≈ 100 bits [34],
and the smaller parameters have a significantly higher
security level, which we did not explicitly estimate. The
larger parameter set can easily be upgraded to support
over 128 bits of security if needed, and this will come at a
slight decrease in performance.
The results of our experiments are presented in Table 5.

The experiments were ran on an Intel Xeon E5-1620 v3 @
3.50 GHz, with 16 GB of RAM installed. Our implemen-
tation used 8 threads to speed up the evaluation of CAM.
For homomorphic encryption we used SEAL v2.1.

Discussion
Our results in Table 5 demonstrate that homomorphic
encryption can be practical for outsourcing data storage,
and enabling privacy-preserving queries on the encrypted
data with realistic performance.Message expansion due to
homomorphic encryption is not prohibitively big (10–12x
based on Table 5), and we certainly expect the situation
to improve during the next few years as a result of new
innovations in cryptography and encoding techniques.

Table 4 SEAL encryption parameters for N = 104 (left) and
N = 105 (right)

SEAL parameter N = 104 N = 105

poly_modulus x8192 + 1 x8192 + 1

coeff_modulus 2155 − 225 + 1 2253 − 221

+5 · 214 + 1

plain_modulus 3686401 3686401

decomposition_bit_count 78 52
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Table 5 5-multiquery performance results with N = 104 (left)
and N = 105 (right)

N = 104 N = 105

Operation Time (ms)

Encoding dataset 115 1098

Encrypting dataset 120 956

Encoding 5-multiquery 9 9

Encrypting 5-multiquery 60 75

Evaluating CAM 225 2003

Decrypting response 15 19

Data description Size (KB)

Original VCF 557 5490

Parsed VCF 196 1920

Encrypted dataset 2305 19971

Encrypted 5-multiquery (BX = 1) 1158 1545

Encrypted response (BX = 1) 386 515

Computational performance is already surprisingly good,
and could easily be improved further by using a homo-
morphic encryption library that has a stronger emphasis
on performance optimizations, such as FV-NFLlib [35].
We were only concerned about simple set membership
queries in this work, and it remains a challenge to cre-
ate efficient protocols that allow more flexible types of
queries.
We demonstrated our techniques in the context of

querying SNPs in encrypted (parsed) VCF files of up
to 105 rows. By increasing the homomorphic encryption
parameters it becomes possible to query also much larger
files (millions of rows).
Our protocol relies heavily on the semi-honest security

model, which is a standard assumption to make due to
the often huge performance benefits it yields over pro-
tocols secure under stronger security models, where the
parties behavior is not necessarily restricted to follow the
protocol description.

Conclusions
We have demonstrated that homomorphic encryption is
indeed powerful and efficient enough to be used for stor-
ing and privately querying encrypted genomic data for
the presence of mutations. We also showed that the com-
putational and communication cost can be dramatically
reduced in the amortized setting, where the presence of
several mutations is queried at once.
Extending our protocol to more complicated types

of queries remains an interesting and important chal-
lenge. Another possible direction for future research is
to extend this work to the malicious security model, or

perhaps some slightly weaker model, but doing this with-
out accruing too much performance or communication
overhead seems challenging.
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