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Abstract

Background: Whole genome sequencing has become fast, accurate, and cheap, paving the way towards the
large-scale collection and processing of human genome data. Unfortunately, this dawning genome era does not only
promise tremendous advances in biomedical research but also causes unprecedented privacy risks for the many.
Handling storage and processing of large genome datasets through cloud services greatly aggravates these concerns.
Current research efforts thus investigate the use of strong cryptographic methods and protocols to implement
privacy-preserving genomic computations.

Methods: We propose FHE-BLOOM and PHE-BLOOM, two efficient approaches for genetic disease testing using
homomorphically encrypted Bloom filters. Both approaches allow the data owner to securely outsource storage and
computation to an untrusted cloud. FHE-BLOOM is fully secure in the semi-honest model while PHE-BLOOM slightly
relaxes security guarantees in a trade-off for highly improved performance.

Results: We implement and evaluate both approaches on a large dataset of up to 50 patient genomes each with up
to 1000000 variations (single nucleotide polymorphisms). For both implementations, overheads scale linearly in the
number of patients and variations, while PHE-BLOOM is faster by at least three orders of magnitude. For example,
testing disease susceptibility of 50 patients with 100000 variations requires only a total of 308.31 s (σ = 8.73 s) with
our first approach and a mere 0.07 s (σ = 0.00 s) with the second. We additionally discuss security guarantees of both
approaches and their limitations as well as possible extensions towards more complex query types, e.g., fuzzy or range
queries.

Conclusions: Both approaches handle practical problem sizes efficiently and are easily parallelized to scale with the
elastic resources available in the cloud. The fully homomorphic scheme, FHE-BLOOM, realizes a comprehensive
outsourcing to the cloud, while the partially homomorphic scheme, PHE-BLOOM, trades a slight relaxation of security
guarantees against performance improvements by at least three orders of magnitude.
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Background
Recent technology advances have made Whole genome
sequencing (WGS) fast, accurate, and affordable. Enabled
by WGS, several public initiatives [1–3] have built large
cohorts of volunteers willing to share their genomes in
order to accelerate biomedical research. Meanwhile, an
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increasing number of private players offer services related
to genomic data, e.g., tracing ancestry [4]. Evidently, WGS
is here to stay and the massive collection, storage, and
processing of human genome data have already become a
reality.
On the other side, the genome era also brings unprece-

dented risks for personal privacy. Genomic information
uniquely identifies its owner [5] and may be misused,
e.g., for surveillance [6]. The genome further carries
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information about an individual’s appearance, health, or
predispositions [7, 8] which could cause genetic discrimi-
nation. This is aggravated by the fact that genomes remain
almost stable over time and, thus, cannot be revoked or
replaced once leaked or made public [9]. Since relatives
share large fractions of an individual’s genome, an indi-
vidual’s decision also affects the privacy of others, raising
the question of kin genomic privacy [10]. Finally, the full
extent of personal information that can be extracted from
a person’s genome is still unknown and so are the asso-
ciated privacy risks, e.g., whether it is possible to even
predict human behavior from genomic analyses [11].
These significant personal privacy risks are aggra-

vated by various attacks that have proved traditional
anonymization mechanisms ineffective for genome
data [12]: Wang et al. [13] re-identify individuals in a
genome-wide association study (GWAS) and apply their
attack to the HapMap project [3]. Sweeney et al. [14] use
public demographics to re-identify a significant fraction
of public profiles of the Personal Genome Project [2].
Shringarpure et al. [15] re-identify individuals in public
genomic data-sharing beacons.
In response to the failure of traditional methods to pro-

tect genomic privacy, current research focuses on secure
computation techniques to protect genomic privacy
[16, 17]. Secure computations enable two relevant sce-
narios: i) Secure collaboration: two or multiple parties
collaborate on their joint data, yet without disclosing their
individual datasets. ii) Secure outsourcing: one or more
parties outsource storage and processing of genome data
to an untrusted computation cloud which remains oblivi-
ous of the data and computed analyses. In these settings,
privacy-preserving variants have been proposed for, e.g.,
GWAS [18–20], sequence comparisons [18, 20], sequence
alignments [21, 22], and genomic tests [23, 24].
The applicability of secure computation techniques is,

however, limited by their significant processing, com-
munication, and storage overheads. Scalability issues
are exacerbated by the typically huge amounts of data
in genomics. Secure computations and related crypto-
graphic techniques are thus not the panacea to genomic
privacy risks. Instead, their limitations and potential must
be further explored and the achieved progress must be
made available to non-experts. To this end, the center for
integrating data for analysis, anonymization and SHar-
ing (iDASH) [25] organizes yearly competitions to assess
the state-of-the-art in secure genomic computations. The
outcomes of the previous competitions are summarized
in [26, 27].
In this paper, we introduce BLoom filter based

Outsourced Oblivious Matchings (BLOOM), our solution
to the 2016 iDASH Secure Genome Analysis Competi-
tion. In Track 3 of this competition, participants were
challenged to securely outsource the computations for

matching a query against a database of patients’ SNPs to
the cloud, e.g., to test disease susceptibility of a patient.
Our key idea is to represent the query and the patient
database efficiently using Bloom filters. The data owner
then encrypts the Bloom filters bitwise using packing and
stores the encrypted Bloom filters securely in the cloud.
To enable computations on these encrypted Bloom fil-
ters, we use two different encryption schemes. In our
first approach, FHE-BLOOM, we use Fully homomorphic
encryption (FHE) which enables the cloud to compute
a match under encryption by multiplying query and
patients’ Bloom filters and to aggregate the results into
single ciphertexts that are returned to the data owner. The
core idea of our second approach, PHE-BLOOM, is to con-
struct the query Bloom filter using keyed hashing which
obsoletes encryption and enables efficient use of Partially
homomorphic encryption (PHE). Note that this scheme
slightly leaks access patterns, e.g., the cloud may learn
when a query is posed twice. However, the actual contents
of a query and, importantly, the patients’ data are still fully
protected. PHE thus requires only a slight relaxation of
the specified security requirements. We implement, eval-
uate, and compare both approaches on a real-world data
set. FHE-BLOOM performs a disease susceptibility test on
a database with 50 patients with up to 100000 variations in
approximately 5min. PHE-BLOOM notably decreases this
by four orders of magnitude to 75 ms. FHE-BLOOM was
ranked runner-up in the 2016 iDASH competition, while
PHE-BLOOM was developed after the competition.
Before we present our two solutions, we first concisely

define the problem scenario of Track 3 of the iDASH com-
petition and briefly introduce the basic building blocks for
our approaches and analyze relevant related work.

Problem description
The iDASH Secure Genome Analysis Competition is
organized yearly by the iDASH National Center for
Biomedical Computing with the goal to assess and
advance the state of the art of research in cryptographic
techniques for the protection of genomic privacy [26, 27].
The 2016 edition of the iDASH challenge comprises three
tracks [28]: addressing privacy-preserving genomic data
sharing (Track 1), secure sequence comparisons in the
two-party setting (Track 2), and secure matchings in the
outsourcing setting (Track 3).
Figure 1 shows the basic scenario of Track 3 of the

2016 iDASH secure genome analysis competition [28].
We assume a researcher who owns a database containing
n patient records. Each record comprises up to m SNPs
given in Variant call format (VCF). The researcher also
holds a queryQ of different SNPs and wants to obtain a list
of those patients that match all SNPs in the query. As the
data owner is not capable of analyzing the data locally due
to limited computation and storage resources, she strives
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Fig. 1 The problem scenario of Track 3 in the iDASH competition: A
researcher aims to securely outsource expensive genome analysis to
the cloud using homomorphic encryption

to outsource computations and storage to the cloud. Due
to the sensitive nature of genomic data, the cloud must
remain oblivious of the computations and stored data. In
this setting, the competition goal is to design a secure
protocol using Homomorphic encryption (HE) that accu-
rately and efficiently outsources computations and storage
to a single cloud server. Importantly, we require a single-
round protocol, i.e., after an initial setup phase the data
owner poses the query and receives back the result with-
out any intermediate interaction with the cloud server. In
the following, we present the detailed requirements for
solutions to this problem.

Accuracy requirements. The researcher aims to find
exact matches, i.e., a patient matches the query iff all
queried SNPs are contained in his patient record. The final
result is a binary vector that indicates for each patient
whether the query matches or not. Moreover, solutions
are also judged by their ability to be generalized, e.g., to
fuzzy queries or partial matches.

Performance requirements. Themain optimization cri-
terion is the query completion time which includes
i) preprocessing and encryption by the researcher, ii)
computations on the encrypted data in the cloud, and
iii) postprocessing the final results by the researcher.
Communication and processing overheads of Step iii) are
tightly limited to 20 SNPs and 100 comparisons, respec-
tively, for a database of n = 50 patients and queries of
|Q| ≤ 5 SNPs [28]. Communication and storage over-
heads are secondary optimization goals but should still be
minimized. Furthermore, overheads related to preparing
and uploading the patient database should be reason-
able one-time preprocessing overheads that amortize over
subsequent queries.

Security requirements. Solutions must be secure in the
semi-honest adversary model. All cryptographic primi-
tives must offer at least 80 bits symmetric security or

equivalent. The cloud must remain completely oblivious
of the outsourced data and the results of the query. In par-
ticular, the length of the results must not leak the number
of found matches. Furthermore, no access patterns should
be leaked. The latter requirement was judged qualitatively
and could be relaxed.

Bloom filters
Both our solutions use Bloom filters [29] to efficiently rep-
resent the SNPs in queries and the patient records. Bloom
filters offer a space-efficient probabilistic data structure to
represent sets. They are particularly efficient when check-
ing set membership which is a central part of our general
approach.
Formally, an empty Bloom filter is a bit array B ∈ {0, 1}l

of length l with all bits bi ∈ B set to zero. Before insert-
ing elements, we fix k distinct hash functions H1, . . .,Hk :
U → {0, . . ., l− 1} that map from the universe of elements
U into the Bloom filter B. To add an element e ∈ U to
B, we compute positions i1 = H1(e), . . ., ik = Hk(e) and
set the corresponding bits bi1 , . . ., bik to one. Similarly, to
answer whether e ∈ B, we check whether the bits at all k
positions H1(e), . . .,Hk(e) are set. Due to hash collisions,
membership checks can produce false positives, but not
false negatives. The false positive probability p is deter-
mined by the number of hash functions k, the number of
added elements m, and the length l of the Bloom filter.
Given a fixed m, setting l = −m log(p)/ log(2)2 and k =
− log(p)/ log(2) minimizes the false positive probability

p =
(
1 − (

1 − 1
l
)km)k

.
In our second solution, we use keyed hashing when

adding elements to Bloom filters, i.e., the input element to
the hash functions is extended by a secret key sk. This pre-
vents any party not in possession of the key sk to check set
membership which is crucial for the security of our second
approach. Keyed hashing does not affect the false positive
rate and related parameters.

Homomorphic encryption
In our approach, we encrypt the bits of Bloom filters using
HE which allows performing certain arithmetic opera-
tions over ciphertexts in the encrypted domain.We utilize
this property to securely match a query against the patient
records under encryption such that the cloud remains
completely oblivious of the processed genomic data. We
distinguish three flavors of HE: i) PHE, ii) Somewhat
homomorphic encryption (SWHE), and iii) FHE.
PHE schemes allow us to compute a single arithmetic

operation, addition or multiplication, on ciphertexts. E.g.,
the Paillier [30] scheme supports additions under encryp-
tion, i.e., E(x + y) = E(x)E(y), while ElGamal [31]
allows multiplications, i.e., E(x · y) = E(x)E(y). Unfortu-
nately, these schemes do not allow the second arithmetic
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operation which either limits them to simple applications
or requires interaction with the data owner for more
complex computations.
SWHE schemes [32] allow addition and multiplication

in the encrypted domain. However, homomorphic oper-
ations generate new ciphertexts with noise that accumu-
lates over subsequent operations. Eventually, the result
cannot be correctly decrypted anymore which limits the
number of homomorphic operations. These schemes are
thus not fully homomorphic.
FHE schemes [33–35] allow an unlimited number of

additions and multiplications in the encrypted domain.
Being functionally complete, they can theoretically imple-
ment any computable functionality securely by evaluating
a corresponding arithmetic circuit consisting of addition
and multiplication gates. Practically, the applicability of
FHE schemes is limited by their significant processing
and storage overheads. Especially, sequential multiplica-
tions are still very expensive such that multiplicative depth
of arithmetic circuits evaluated under FHE should be
minimized.
In this work, we present two solutions to securely out-

source genetic disease testing, one based on the partially
homomorphic Paillier scheme [30] and one based on the
fully homomorphic BGV scheme [32].

Related work
From a technical perspective, our work is related to the
Private set intersection (PSI) problem which has been
widely studied in the literature. We discuss the proposed
solutions with respect to the special requirements in
our problem setting, i.e., outsourcing to a single cloud
server. The broader scope of our work is secure (out-
sourced) genome analysis and we conclude with a discus-
sion of other use cases in this field. Due to the context of
our work, we specifically focus our discussion of related
work on cryptographic protection for computations over
genomic data. Architectural or policy-based approaches
[36, 37] are orthogonal approaches that may complement
our work.

Private set intersection. In the standard PSI setting,
client and server each hold one set of elements and
they aim to compute their intersection or its cardinal-
ity securely, i.e., without either party learning the other
party’s private input. PSI is an important building block
for privacy-preserving protocols. Approaches range from
(insecure) naive hashing [38] and semi-trusted third par-
ties [39] over public key encryption [40, 41] to the cur-
rently most efficient protocols based on generic secure
two-party computations or oblivious transfer [42]. Our
approach is inspired by some of the ideas proposed in
these works, i.e., the use of Bloom filters [41] and keyed
hashing [38].

Most solutions to PSI are realized as two- or multi-party
computation protocols, i.e., the result is computed inter-
actively by two or more participants. Indeed, for some of
these approaches, the majority of computations could be
outsourced to two non-colluding computation peers. This
has been shown for Garbled Circuits [43], Boolean shar-
ings [21, 44], and arithmetic secret-sharing [45, 46]. Con-
cretely, in [47], the authors outsource the set intersection
protocol proposed in [42] to two untrusted computation
peers. Still, these techniques do not enable outsourcing
to a single peer and are thus inapplicable to our problem
scenario. Relaxing this requirement renders these works
interesting alternatives and, generally, opens up the solu-
tion space to a wide variety of existing secure computation
frameworks and techniques [44, 48, 49].
In contrast, the protocols by Kerschbaum [50] and

Atallah et al. [51] target outsourcing to a single server.
Kerschbaum [50] proposes (outsourced) set intersection
based on the Boneh-Go-Nissim encryption system [52]
combined with the Sander-Young-Yung technique [53].
Atallah et al. [51] propose the secure outsourcing of lin-
ear algebra operations to a single server using secret
sharing and HE. The proposed techniques could alter-
natively be used to implement the algorithms in our
approach securely. Unfortunately, neither Kerschbaum
[50] nor Atallah et al. [51] analyze the performance of
their outsourcing protocols. Hence, it remains unclear
whether they scale to our problem size, i.e., multiplication
and addition of Bloom filters with hundreds of thousands
of bits.

Secure genome analysis. In the related literature,
many privacy-preserving variants of applications with a
genomics context have been proposed. Their focus has
been on GWAS [18–20, 54–56], sequence comparisons
[18, 20], sequence alignments [21, 22], and statistical
genomic tests [23, 24, 57]. Like ours, some of these works
target the secure outsourcing setting [18, 54, 56] and
make use of different flavors of HE. However, most others
[19–21, 24, 55] are set in the secure collaboration setting
and can only be outsourced to two or more non-colluding
cloud servers. This would require a relaxation of the secu-
rity requirements set forth in the iDASH 2016 challenge,
as it introduces the additional security assumption that
the two parties do not collude which must be further
discussed in the context of genomics.

Methods
In this section, we present our two approaches, FHE-
BLOOM and PHE-BLOOM, to Track 3 of the 2016 iDASH
challenge which targets secure outsourced genetic dis-
ease testing. Our core idea is to efficiently represent the
SNPs in the patient database and in the query using
Bloom filters and then to reduce the matching steps to
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operations over sets. We then design two different match-
ing algorithms using either fully or partially homomorphic
encryption. The first approach, FHE-BLOOM, facilitates
a fully secure and reasonably efficient outsourcing. This
solution finished runner-up in the iDASH 2016 challenge.
The second approach, PHE-BLOOM, slightly relaxes secu-
rity guarantees and thereby improves performance by
orders of magnitude. This solution was developed after
the competition and has not been ranked. In the remain-
der of this section, we first present a generic overview of
both approaches and then explain each one in detail.

Overview. Figure 2 provides a combined overview of
both approaches. We distinguish a preprocessing phase
(upper part) during which the patient database is encoded,
encrypted, and uploaded to the cloud and an online phase
(lower part) that comprises all steps required to pro-
cess a query. On the highest level, our goals are i) to
securely outsource as much processing as possible from
the data owner (left) to the cloud (right) and ii) to min-
imize online overheads. Both approaches proceed in the
following steps: At the beginning of the preprocessing
phase, the data owner holds a patient database. She creates

one empty Bloom filter per patient (using keyed-hashing
in PHE-BLOOM) and inserts the patient’s SNPs (Step 1).
The data owner then encrypts the resulting Bloom fil-
ters bitwise before she uploads and stores them securely
in the cloud (Step 2). At the beginning of the online
phase, the data owner holds a fresh query to be matched
against the database. In FHE-BLOOM, she transforms the
query into a Bloom filter, then encrypts and uploads it to
the cloud. In PHE-BLOOM, the Bloom filter is built using
keyed hashing which allows to upload it to the cloud with-
out encryption. The cloud service thenmatches query and
patient records (Step 3) and aggregates the results in the
encrypted domain (Step 4). Steps 3 and 4 are realized dif-
ferently in our two approaches drawing on the different
homomorphic properties of the employed HE schemes. In
both approaches, the result vector contains the encrypted
number of intersections between the Bloom filters encod-
ing the query and the patient’s record. In the final step,
the data owner downloads and decrypts the result vec-
tor (Step 5) and checks in a simple postprocessing step
whether the number of intersections between the query
and patient record is equal to the set bits in the query
Bloom filter (Step 6). Note that this check finds all correct

Fig. 2 General overview of our approach: The data owner holds a database with genomes of Patients Pi=1...n which she encodes row-wise as Bloom
filters (Step 1) and encrypts and uploads them to the cloud (Step 2) in the preprocessing phase. In the online phase, the data owner encodes,
encrypts (only in FHE-BLOOM), and uploads her query. In the encrypted domain, the cloud matches the query to each database record (Step 3) and
aggregates the results (Step 4) without ever learning the data in clear by utilizing the homomorphic properties of the chosen encryption scheme.
The final results are returned to the data owner, who decrypts (Step 5) and postprocesses the results (Step 6) to obtain a list of patients that match
her query
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matches but may produce false matches with a probability
that is upper-bounded by the configurable false positive
probability of the underlying Bloom filters.

FHE-BLOOM - genetic disease testing using FHE
The core idea of our first approach, FHE-BLOOM, is to
represent patient records and queries as Bloom filters
and then match and aggregate them in the encrypted
domain using arithmetic operations over the Bloom filter
bits. Note that this involves both multiplication (match-
ing) and addition (aggregation) over ciphertexts which
requires a fully homomorphic encryption scheme. In the
following, we give the detailed steps of our first approach,
FHE-BLOOM.

Step 1: Bloom filter encoding. In the first step, the
data owner encodes the whole patient database row-wise
as Bloom filters. To this end, the data owner chooses k
hash functionsH1, . . .,Hk and determines the Bloom filter
length l according to the desired false positive probabil-
ity p and the number m of SNPs that have to be inserted.
Note that the choice of hash functions and the Bloom fil-
ter length remain fixed for all subsequent steps. The data
owner allocates one empty Bloom filter Bi of length l for
each patient Pi=1...n. To insert an SNP into a Bloom fil-
ter, we first compute a unique and stable representation
from themandatory columns in VCF files to abstract from
different VCF versions. We then proceed to insert Pi’s
SNPs into Bi by hashing each SNP k times and setting
the corresponding bits in Bi, i.e., bi,H1(SNPij), . . ., bi,Hk(SNPij)
∀i = 1. . .n, j = 1. . .m.
Later, in the online phase, the data owner applies the

same steps to her query to obtain the Bloom filter encod-
ing Q. Additionally, the data owner counts the number
of set bits cntQ in the Bloom filter Q. Note that for
queries with |Q| SNPs, the Bloom filterQwill have at most
cntQ ≤ |Q| · k bits set.

Step 2: Encryption and upload. In the second step, the
data owner chooses an FHE scheme, generates a key
pair, and encrypts the bits in each Bloom filter. Current
FHE schemes support packing techniques which offer
multiple plaintext slots within a single ciphertext and
allow operating on the encrypted plaintexts in a SIMD
manner [58–60]. In the following, we denote a packed
encryption of sF plaintexts by �x1|. . .|xsF �. We apply pack-
ing to the Bloom filter representations of the rows of
the database, i.e., we encrypt Bi by �l/sF� ciphertexts
�bi,1|. . .|bi,sF �, . . ., �bi,l−sF+1|. . .|bi,l�. The total n · �l/sF�
ciphertexts that encrypt the whole database are uploaded
and stored in the cloud. In the online phase, the data
owner repeats the same steps for her query Q and obtains
�l/sF� ciphertexts �q1|. . .|qsF �, . . ., �ql−sF+1|. . .|ql�.

Step 3: Encryptedmatching. In the third step, the cloud
filters the encrypted patient database according to the
SNPs in the encrypted query. This is achieved by multi-
plying the encrypted Bloom filters Bi and Q component-
wise, i.e., �Bi� � �Q� = �Ri� where � denotes the
encrypted multiplication operation of the FHE scheme.
Note that we slightly abuse notation here, since this
step actually requires �l/sF� parallel ciphertext multipli-
cations, each of which carries out sF pairwise multipli-
cations in an SIMD fashion. The resulting ciphertexts
�Ri� = �ri,1|. . .|ri,sF �, . . ., �ri,l−sF+1|. . .|ri,l� correspond to
an encrypted Bloom filter in which exactly those bits are
set that correspond to the intersection of Q and Bi, i.e.,
ri,j = bi,j · qj ∀i = 1. . .n, j = 1. . .l.

Step 4: Encrypted aggregation. After Step 3, we are left
with as many ciphertexts as required to store the whole
patient database, i.e., a total of n·�l/sF� ciphertexts. Before
providing the results to the client, we aim to aggregate
them further to reduce communication overheads and
postprocessing. Aggregation is performed by summing up
all �l/sF� ciphertexts used to encrypt one row into a single
ciphertext. To avoid overflows, key parameters must thus
be chosen such that each slot has at least log2(|Q| · k) bits.

Step 5: Download and decryption. After the cloud
has aggregated the results, the data owner downloads
and decrypts the n corresponding ciphertexts. The
results ri = ∑l

j=1 bi,j · qj hold the number of intersections
between database row i and the query Q.

Step 6: Postprocessing. The data owner determines all
exact matches by comparing the counts ri to the number
cntQ of set bits in the query bloom filter. If ri = cntQ,
then query Q fully matches patient Pi except for possibly
false positives. A single false positive occurs with proba-
bility p. Thus, a query Q will produce a false match to a
patient with all but one of the queried SNPs with probabil-
ity p. Generally, if the patient matches only i < |Q| SNPs
of the query, the probability of a false match decreases
to p|Q|−i.

PHE-BLOOM - Genetic disease testing using PHE
In our second approach, PHE-BLOOM, we represent
records and queries as Bloom filters as before. However,
we now use a pre-image resistant keyed hash function to
insert elements into Bloom filters. The query Bloom fil-
ter is then sent to the cloud without encryption since the
keyed hashing already protects its contents. This enables
a simpler matching algorithm as well as a higher degree
of aggregation before results are sent back to the client.
Note that the use of keyed hashing prevents the cloud
from learning which SNPs are queried. However, the cloud
learns when the same query is posed twice. While this
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presents a slight leakage of access patterns, performance is
increased by orders of magnitude. Importantly, the patient
database is still fully protected through encryption. We
now explain each step of PHE-BLOOM in detail.

Step 1: Bloom filter encoding. Step 1 of PHE-BLOOM
is similar to FHE-BLOOM with the only difference that
the data owner uses keyed hashing to insert SNPs into
Bloom filters. This prevents anyone who is not in posses-
sion of the hashing key from determining which SNPs are
contained in a given Bloom filter.

Step 2: Encryption and upload. The data owner chooses
a PHE scheme, generates a key pair and encrypts
the bits in each Bloom filter. In contrast to our
first approach, we pack Bloom filter bits column-wise
into ciphertexts using Horner’s scheme [61]. With sP
slots, we obtain for the jth column �n/sP� ciphertexts
�b1,j|. . .|bsP ,j�, . . ., �bn−sP+1,j|. . .|bn,j�. The resulting total l ·
�n/sP� ciphertexts are uploaded to the cloud. The query is
uploaded without encryption, relying on keyed hashing to
protect its content.

Step 3: Encryptedmatching. Since the cloud obtains the
query bits in the clear, matching the query to the database
becomes a simple matter of selecting those columns cor-
responding to set bits in the query, i.e., we select the
encrypted column j iff qj = 1.We thus retain atmost |Q|·k
encrypted columns.

Step 4: Encrypted summation. Before providing the
results to the client, the cloud aggregates them to reduce
communication and postprocessing overheads. Aggrega-
tion is done by summing up columns element-wise which
is realized using encrypted additions and reduces the
result’s size to only �n/sP� ciphertexts.

Step 5: Download and decryption. The data owner
downloads the �n/sP� encrypted results from the cloud.
After reception, she decrypts and unpacks them to obtain
the counts ri = ∑l

j=1 bi,j · qj ∀i = 1. . .n.

Step 6: Postprocessing. The occurrence of matches is
decided as before by comparing the counts ri to the
number cntQ of set bits in the query Bloom filter. The
probability for a false positive is exactly the same as for
FHE-BLOOM.
In summary, both our approaches are based on the idea

of reducing the given disease testing problem to set oper-
ations. We then identify Bloom filters as an efficient data
structure that allows manipulating sets efficiently in the
encrypted domain using SIMD arithmetic operations on
the individual bits of the Bloom filter. Here, FHE-BLOOM

is based on FHE which affords full security and competi-
tive performance with the other solutions presented at the
iDASH workshop. In comparison, PHE-BLOOM provides
slightly weaker security guarantees but requires only PHE
which significantly decreases overheads.

Results
In this section, we discuss and compare the perfor-
mance of FHE-BLOOM and PHE-BLOOM. We first for-
mally analyze runtime and communication complexity
(cf. Table 1), showing that both approaches scale linearly
in the number of patients n and the number of SNPs m
during setup while PHE-BLOOM has a better complex-
ity during the query phase. We then implement both
approaches to thoroughly quantify their runtime, com-
munication, and memory overheads. First, we benchmark
both approaches using the evaluation setup of the iDASH
competition [28] (cf. Table 2). Afterwards, we conduct a
more extensive evaluation of relevant parameters to study
the performance of both approaches in greater detail
(cf. Figs. 3, 4, 5, 6, 7 and 8). A qualitative discussion of
the security and potential limitations is deferred to the
following section.

Complexity analysis
We compare the runtime and communication complexity
of both approaches in Table 1. Following the evaluation
criteria of the iDASH competition, we distinguish the fol-
lowing three phases: i) DB setup (Client) includes all steps
required for pre-processing, encryption, and upload of
the patient database; ii) Query (Cloud) comprises all com-
putations by the cloud over encrypted data per query;
iii) Query (Client) includes preparation, encryption, and
upload of the query as well as download, decryption, and
postprocessing of the result. For simplicity, we measure
runtime complexity in terms of the number of encryptions
and decryptions as well as additions and multiplications
in the encrypted domain. In comparison, (keyed) hash-
ing causes only negligible overheads that are omitted in
our complexity analysis. Communication complexity is
measured in the number of exchanged ciphertexts.

DB Setup: The setup overheads for both approaches
scale linearly in the number of patients n and length of
the Bloom filter l. Both approaches support SIMD oper-
ations which decrease complexity by a factor 1/s, with
sF and sP denoting the number of slots of the FHE and
PHE schemes, respectively. The exact values of sF and sP
depend on the chosen key, e.g., sF = 1180 and sP = 170 in
our evaluation.

Query (Cloud): FHE-BLOOM requires the cloud to per-
formO(n·l/sF) additions andmultiplications. In contrast,
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Table 1 Complexity analysis of FHE-BLOOM and PHE-BLOOM: Setup overheads are similar in both approaches and grow linearly in the
number of patients n and Bloom filter size l which is proportional to the number of SNPsm, i.e., l = −m log(p)/ log(2)2

Approach DB setup (Client) Query (Cloud) Query (Client)

Time Comm Time Time Comm.

FHE-BLOOM O(n · l/sF) EncF O(n · l/sF) CF O(n · l/sF) MulF +O(n · l/sF) AddF O(l/sF) EncF +O(n) DecF O(l/sF + n) CF

PHE-BLOOM O(n · l/sP) EncP O(n · l/sP) CP O(n/sP) AddP O(n/sP) DecP O(n/sP) CP

PHE-BLOOM requires only O(n/sP) additions which is
orders of magnitude more efficient.

Query (Client): For FHE-BLOOM, the online processing
and communication overhead per query for the client are
in O(l/sF + n). Specifically, query preparation, encryp-
tion, and upload accounts for overheads in O(l/sF) while
download and decryption account for overheads in O(n).
PHE-BLOOM notably decreases the online overheads for
the client by orders of magnitude to O(n/sP). This is
achieved by the use of keyed hashing which obsoletes
query encryption and thereby enables much more effi-
cient query matching and a denser packing of the results.
As we will discuss in detail later on, these significant com-
plexity improvements of PHE-BLOOM are made possible
by slightly relaxing security guarantees. While a small
leakage of access patterns must be tolerated, PHE-BLOOM
still fully protects the patient data stored in the cloud.

Performance evaluation
We first describe our implementations and the experi-
mental setup, before presenting our quantitative evalua-
tion of runtime, communication, and memory overhead
of FHE-BLOOM and PHE-BLOOM.We deliberately analyze
and compare only our own two approaches. A compari-
son of FHE-BLOOM with the competitors’ approaches has
been presented by the organizers of the iDASH challenge
[28].We also emphasize that communication andmemory

were secondary optimization goals in the iDASH competi-
tion. Thus, we put the focus of our evaluation on the main
optimization goal, i.e., the runtime per query.

Implementation. FHE-BLOOM is implemented in C++
based on HElib [62, 63]. All protocol steps are imple-
mented in separate scripts that read inputs from and write
outputs to disk. This allows us to process the encrypted
database in chunks which becomes necessary for the
larger problem sizes.
PHE-BLOOM is implemented in Python and uses our

own implementation of the Paillier scheme [30, 64] and
msgpack for serialization. Despite being mostly unop-
timized, our implementation of PHE-BLOOM manages
to keep all data in memory for the problem sizes in
our evaluation. However, chunk-wise processing of the
patient database as in FHE-BLOOM is also straightforward
to implement for this approach if memory consump-
tion needs to be reduced. Both implementations use the
pybloom implementation of Bloom filters which uses
SHA512 as hash function. For keyed hashing, we append
a secret key to the hashed input just as done for salted
hashes. Both implementations are available online to facil-
itate reproducibility of our results [65].

Experimental setup. We perform experiments on a
desktop client (Ubuntu 14.04 LTS, 8 CPUs at 3.40GHz,
8GB RAM) and a server (Ubuntu 14.04 LTS, 16 CPUs at

Table 2 Competition benchmarks and test cases: i) database setup (preparing, encrypting, and uploading the database), ii) query
processing in the cloud (matching query and database in the encrypted domain), iii) query overheads on the client (pre- and
postprocessing the query, including overheads for up- and download), and iv) total query overheads

Setting DB Setup (Client) Query (Cloud) Query (Client) Query (Total)

n m Time Mem. Comm. Time Mem. Time Mem. Time Comm.

FHE-BLOOM

Test 1 1 10000 5.73 91.78 26.81 3.258 86.95 7.532 91.12 10.790 27.10

Test 2 1 100000 35.24 105.77 265.44 21.075 86.81 32.938 105.65 54.013 265.74

Test 3 50 100000 1452.78 157.43 13264.54 273.922 92.98 34.385 105.53 308.307 287.71

PHE-BLOOM

Test 1 1 10000 76.77 126.06 53.29 0.008 240.40 0.001 126.06 0.009 0.03

Test 2 1 100000 752.61 128.24 533.00 0.073 2081.71 0.002 128.24 0.075 0.25

Test 3 50 100000 822.76 143.85 533.03 0.073 2081.70 0.002 143.85 0.075 0.25

Time is measured in seconds, memory and communication are measured in MBs
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Fig. 3 Query time of FHE-BLOOM grows linearly in the number of
patients n

2.60GHz, 32GB RAM) that communicate over a Giga-
bit LAN. As in the competition, we limit execution on
both machines to 4 cores. All cryptographic primitives are
configured to offer at least 80 bit symmetric security.
We use the dataset provided by the organizers of the

iDASH competition and vary the parameters that deter-
mine the performance of our approach, i.e., number of
patients n, maximum number of SNPs per patient m, and
false positive probability p. If not stated otherwise, we fix
n = 10,m = 100000, and p = 2−14. The setup overheads
are measured over 5 independent runs and online over-
heads over 30 independent runs. We report the mean and
the standard deviation.
Since the provided dataset contains no queries, we use

random matching and non-matching queries in our eval-
uation. However, we emphasize that for fixed n, m, and
p the performance of our approach does not in any way
depend on which or how many SNPs are queried and
whether they match or not.

Fig. 4 Query time of FHE-BLOOM grows linearly in the number of SNPs
m (note the non-linear x-axis)

Fig. 5 Query time of FHE-BLOOM grows linearly with exponentially
decreasing p (note the logarithmic x-axis)

Runtime
Table 2 compares how both approaches perform in the
three test cases of the iDASH competition. We observe
that overheads for preparing, encrypting, and uploading
the database are within the same order of magnitude for
both approaches. Overheads of FHE-BLOOM are lower for
small n but grow quickly, while PHE-BLOOM has a higher
overhead first but, interestingly, does not increase when
moving from n = 1 in Test 1 and 2 to n = 50 in Test 3. This
is due to the different packing strategy of PHE-BLOOM
that packs column-wise with sP = 170 slots which is
easily big enough to fit each column into a single cipher-
text. To draw a fair comparison between both approaches,
we measure the asymptotic runtime per patient for fixed
m = 100000. FHE-BLOOM then requires 27.98 s (σ =
2.39 s) per patient in the database, while PHE-BLOOM only
requires 5.40 s (σ = 0.12 s).While these overheads are sig-
nificant, they are still reasonable and are computed only
once. We now focus on the main optimization goal, i.e.,
the online runtime per query.

Fig. 6 Query time of PHE-BLOOM grows linearly in �n/sP�
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Fig. 7 Query time of PHE-BLOOM increases linearly in the maximum
number of SNPsm (note the non-linear x-axis)

For FHE-BLOOM, the query runtime increases linearly in
n andm and is in the order of seconds for Test 1 and 2 and
in the order of minutes for Test 3. In contrast, the online
overheads of PHE-BLOOM are smaller by three orders of
magnitude. Figures 3, 4, 5, 6, 7 and 8 further break down
query turnaround time for different n,m, and p. The plots
show mean and standard deviation for i) query prepa-
ration on the client, ii) query upload, iii) processing the
encrypted data in the cloud, iv) results download, and v)
postprocessing the results.
For FHE-BLOOM, we observe linear growth in the num-

ber of patients n (Fig. 3) as well as in the number of
SNPs m (Fig. 4), while runtime increases only logarithmi-
cally with decreasing false positive probability p (Fig. 5).
We observe that in all cases, cloud overhead dominates
the query turnaround time. The overheads for the client
are much smaller in comparison, the postprocessing over-
heads being barely noticeable. This is a desirable property
of our system as it fulfills the main goal of outsourcing,
i.e., to minimize client overheads.

Fig. 8 Query time of PHE-BLOOM grows linearly with exponentially
decreasing p (note the logarithmic x-axis)

For PHE-BLOOM, we measure the same query
turnaround time for all n < sP = 170, i.e., all previous
choices. This is expected since overheads of PHE-
BLOOM increase only stepwise every sP-many patients
as up to sP patients are packed into a single ciphertext.
To confirm this behavior, we evaluate PHE-BLOOM
for numbers of patients that are multiples of sP , i.e.,
n = 10 · sP, 20 · sP , . . ., 60 · sP (Fig. 6). Indeed, we observe
a linear growth of the postprocessing overheads due to
the increased number of decryptions. Interestingly, the
fixed costs of iterating over all bits in the query dominate
the cloud overheads such that the overhead for adding
columns, which grows in n, is barely perceivable. As
expected, preprocessing and upload overheads remain
constant since they do not depend on n. Notably, PHE-
BLOOM scales easily to thousands of patients. As for
FHE-BLOOM, the online runtime of PHE-BLOOM grows
linear inm (Fig. 7) and logarithmic in p (Fig. 8). Our com-
plexity analysis (Table 1) does not capture this behavior
since the measured overheads (Figs. 6, 7 and 8) are due to
iterating the query Bloom filter, i.e., plaintext operations
that are not considered in our complexity analysis.
In summary, the runtimes of FHE-BLOOM are within the

order of minutes even for the largest parameter choices
which we deem reasonable for practical deployments. In
comparison, PHE-BLOOM is at least three orders of mag-
nitude faster and answers queries on a database with
thousands of patients in milliseconds.

Communication
Table 2 shows the communication overheads for i) the
upload of the encrypted patient database and ii) the
upload of the query plus the download of the results.
FHE-BLOOM has lower overheads for a small number
of patients n which is due to the previous observation
that PHE-BLOOM’s different packing strategy pays off only
for larger numbers of patients. To confirm this behav-
ior, we measure the asymptotic overheads per patient
in the database. For m = 100000, FHE-BLOOM asymp-
totically uploads 265.30MB (σ = 0.01MB) per patient
during setup of the database and a fixed 265.29MB (σ =
0.00MB) per query irrespective of n, while download-
ing only 0.45MB (σ = 0.00MB) per patient in the
database. In contrast, PHE-BLOOM asymptotically only
uploads 3.13MB (σ = 0.00MB) per patient during setup
and 0.25MB (σ = 0.00MB) per query while need-
ing to download only 1.58 B (σ = 0.00 B) per patient.
Thus, communication overheads in PHE-BLOOM are two
orders of magnitude smaller than in FHE-BLOOM for large
patient databases.

Memory
Table 2 shows cloud’s and client’s memory overhead dur-
ing the setup and query phase. In the following, we discuss
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memory consumption in the setup and query phase by
the example of Test 3, i.e., m = 100000 and n = 50.
For both approaches, the client’s memory consumption
in both phases is fairly low with a maximum consump-
tion of 156.86MB (σ = 1.78MB) and 143.85MB (σ =
0.38MB) in FHE-BLOOM and PHE-BLOOM, respectively.
Clearly, these overheads are manageable even by con-
strained clients. For FHE-BLOOM, the cloud’s memory
consumption is fairly low as well and amounts to only
92.97MB (σ = 0.15MB). This is achieved by storing the
encrypted database on disk and reading and processing
it in chunks of the desired size. While this introduces
perceivable I/O overhead, it becomes necessary for the
larger problem settings, e.g., in Test 3 where the encrypted
database has a storage size of 13264.54MB (σ = 0.01MB)
and is too big to be kept in the memory. In contrast, the
encrypted database in our second approach, PHE-BLOOM,
is at least one order of magnitude smaller and can be
kept in memory entirely. While this saves I/O overhead,
it increases memory consumption to 2081.70MB (σ =
0.03MB). In scenarios where the cloud has constrained
memory, the database could also be processed chunk-wise
to reduce memory overhead, similarly to our implemen-
tation of FHE-BLOOM. Overall, the cloud’s memory over-
heads are still feasible in both approaches even for large
problem sizes.

Discussion
In this section, we discuss our two approaches, FHE-
BLOOM and PHE-BLOOM, w.r.t. their security guarantees
and their limitations and potential extensions.

Security discussion
We briefly discuss security of our approaches in the semi-
honest adversary model. In the semi-honest model, all
parties correctly follow the protocol but may try to infer
additional information from the protocol transcript. The
semi-honest model has many applications and advan-
tages: It allows for efficient protocols and protects against
insider and outsider attacks in settings where both parties
are not actively cheating. In our setting, the cloud does not
contribute any private data. Thus, we only have to show
that the cloud learns nothing from the protocol transcript
about the patient database, the query, and the result.
In FHE-BLOOM, the client begins by uploading the

encrypted database to the cloud. While the cloud learns
the number of patients n in the database, we argue that
it learns nothing else about the content of the database
due to the semantic security of the employed encryp-
tion scheme. In particular, semantic security guarantees
that the cloud cannot learn any partial information from
the ciphertexts, e.g., whether two patients have the same
SNPs. Since all encrypted Bloom filters have the same
size, the cloud does not even learn the individual number

of SNPs per patient but only the configured maximum
number m. In the second step, the client poses multiple
queries to the cloud. Again due to the semantic security
of the encryption scheme, the cloud learns nothing about
the queried SNPs and cannot even distinguish whether
the same query was posed twice. Thus, no access patterns
are leaked. Following, the cloud computes the matching
and aggregation steps. All operations in the cloud are per-
formed on encrypted data, hence any intermediate results
remain encrypted. Importantly, the matching and aggre-
gation steps always access the complete database and all
bits in the query such that data access patterns are com-
pletely independent of the database, the query, and the
result. We thus argue that the processing steps reveal
nothing to the cloud and even withstand timing side-
channel attacks. Finally, the cloud returns the encrypted
results to the client. The results always consist of n cipher-
texts independent of the number of matches found, and
hence do not leak information to the cloud. We thus con-
clude that FHE-BLOOM is fully secure in the semi-honest
model and even withstands timing attacks.
In PHE-BLOOM, the client begins with the upload of

the encrypted database as before. The employed Paillier
scheme is semantically secure and thus the previous secu-
rity arguments apply. Different to FHE-BLOOM, the query
is not encrypted in PHE-BLOOM. Instead, we use a pre-
image resistant keyed hash function to map SNPs into
the query Bloom filter, where only the client knows the
hashing key. The use of a secret hashing key prevents the
cloud from mounting a brute-force attack to learn which
SNPs are queried. Note that we use the key only to salt the
hash and do not require, e.g., robustness against length-
extension attacks as provided by keyed hash functions
for message authentication such as HMAC [66]. However,
keyed hashing is deterministic and thus not semantically
secure. In consequence, the cloud can distinguish whether
queries are different or the same and if they overlap. This
presents a slight leakage of access patterns which we argue
might be tolerable in scenarios where high performance
is paramount. The same but no additional access pat-
terns are leaked during matching, where the cloud selects
the database columns corresponding to the bits set in
the query Bloom filter. Aggregation is then performed
completely under semantically secure encryption with-
out any further information leakage. The returned results
and their length are, as before, independent of the found
matches. We thus conclude that, besides slightly leak-
ing information about the posed queries, PHE-BLOOM is
secure in the semi-honest model.
PHE-BLOOM shows that tolerating a slight leakage of

access patterns leads to significant performance speed-
ups. To conclude the security discussion, we briefly point
out a different relaxation of the security requirements
that can achieve performance improvements. As we have
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noted in our analysis of related work, a significant part
of the research on secure genomic analysis relates to
the secure collaboration setting. In this setting, state-of-
the-art techniques such as Yao’s Garbled Circuits [67],
the Goldreich-Micali-Wigderson protocol [68], or secret-
sharing-based SMC [69], have often found to be more
efficient than (fully) homomorphic encryption. Unfortu-
nately, they are interactive protocols that require collab-
oration of multiple parties. These techniques are thus
inapplicable in a strict secure outsourcing setting. Relax-
ing the strict requirement of outsourcing to a single
party, however, renders these established secure multi-
party computation techniques applicable in our problem
scenario. Instead of outsourcing to a single cloud provider,
the data owner would securely split data across two cloud
services and instruct them to carry out the genomic com-
putations together using any of the established secure
computation techniques. It is important to note that this
relaxation introduces the additional security assumption
that the two parties do not collude which must be further
discussed in the context of genomics.

Limitations and extensions
Our evaluation has shown that the most expensive step
is the setup of the patient database in both approaches.
Although these overheads amortize over multiple queries,
we aim for a system that does not require repetition
of the whole setup phase each time the database has
to be changed or query functionality is extended. We
thus first analyze the costs for modifying the encrypted
and outsourced patient database at a later point in time,
i.e., adding, deleting, and modifying patient records.
Afterwards, we briefly discuss the flexibility of our two
approaches in answering different types of queries beyond
exact matches.

Modifying the encrypted database. In FHE-BLOOM, it
does not matter whether patient records are uploaded in
one batch during setup or whether they are added later
on. In both cases, we need to construct one Bloom filter
per patient, encrypt, and upload it. The runtime over-
heads are thus exactly the asymptotic costs per patient
during database setup reported earlier. To delete a patient
the cloud simply deletes the corresponding ciphertexts. A
record can be modified by simply replacing it. In compar-
ison, single row-wise operations, such as adding, deleting,
and modifying a patient, are more expensive in PHE-
BLOOM. Each of these operations requires the client to
create and upload exactly l new encryptions. This is due
to the different packing strategy which packs the data
of sP patients column-wise into l ciphertexts. However,
this allows us to operate on a batch of sP consecutive
rows in an SIMD fashion. Thus, operations should be per-
formed on batches of sP patients whenever possible such

that overheads amortize. Also, PHE-BLOOM is more effi-
cient for column-wise operations, e.g., adding, deleting, or
modifying particular SNPs of the patients.

Answering further query types. Both FHE-BLOOM and
PHE-BLOOM are designed to compute exact matches.
However, the results can also be interpreted as the size
of the intersection between query and patient records to
probabilistically estimate the degree of a partial match.
In particular, this allows answering negative queries effi-
ciently, e.g., which patients do not show certain variations.
Note that both approaches allow us to compute arbitrary
linear combinations of the patients’ SNPs. This allows us
to answer weighted queries, e.g., enabling disease tests
where certain SNPs are more critical than others. Con-
cretely, this can be implemented in both approaches by
assigning integer weights instead of bits to the Bloom fil-
ter slots and interpreting the final results as the weights
of the matchings. Finally, with Bloom filters at the core of
both approaches, a wide variety of Bloom filter extensions
might apply to add support for, e.g., range queries [70] or
locality-sensitive hashing for fuzzy queries [71].

Conclusions
The grave privacy risks and failure of traditional protec-
tion schemes make evident the need for strongest possible
protection for genomic data. Currently, best protection is
achieved by secure computation protocols that share data
only in cryptographically protected form such that the
data is never learned by third parties in clear. The 2016
Secure Genome Analysis Competition, organized by the
iDASH center, aims to assess the state of the art of these
techniques and to make them available to non-experts. In
this paper, we presented two solutions to Track 3 of this
competition, i.e., secure outsourced disease testing. Both
of our solutions are based on Bloom filters but differ in
the use of homomorphic encryption to realize computa-
tions over encrypted data in the cloud. Our first approach,
FHE-BLOOM, uses fully homomorphic encryption to pro-
tect the patient database and the posed queries while
fully outsourcing storage and computations. In our second
approach, PHE-BLOOM, we slightly relax security guaran-
tees by allowing a slight leakage of access patterns. This
enables efficient use of partially homomorphic encryption
which significantly improves performance while still real-
izing a comprehensive outsourcing and full protection of
patient data. Concretely, FHE-BLOOM queries a database
of 50 patients with up to 10000 disease markers in 308.31 s
(σ = 8.73 s), while PHE-BLOOM performs the same test
case over three orders of magnitude faster, in only 0.07 s
(σ = 0.00 s). Both approaches support flexible and effi-
cient management of the outsourced data, e.g., adding or
modifying patient records, and may be extended to sup-
port further query types beyond exact matches that were
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required in the competition. FHE-BLOOM was ranked
runner-up in the iDASH competition, while PHE-BLOOM
was developed only afterwards but presents an excit-
ing alternative when high performance is of paramount
importance.
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